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The three-dimensional nonrelativistic isometry algebras, namely Galilei and Newton-Hooke algebras,
are known to admit double central extensions, which allows for nondegenerate bilinear forms hence for
action principles through Chern-Simons formulation. In three-dimensional colored gravity, the same
central extension helps the theory evade the multigraviton no-go theorems by enlarging the color-decorated
isometry algebra. We investigate the nonrelativistic limits of three-dimensional colored gravity in terms of
generalized İnönü-Wigner contractions.
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I. INTRODUCTION

In the nonrelativistic limit, Einstein’s general relativity
reduces to Newtonian gravity. In analogy to Einstein-
Cartan gravity, Newtonian gravity has a coordinate-
independent formulation in terms of frame fields, namely,
Newton-Cartan gravity [1–5]. Since Einstein-Cartan grav-
ity can be obtained by gauging the relativistic Poincaré
algebra, one may attempt to derive Newton-Cartan gravity
by gauging a nonrelativistic symmetry algebra. The first
candidate algebra would be the Galilei algebra g0, which is
the nonrelativistic limit of the Poincaré algebra. However, it
turns out that one instead needs to consider the Bargmann
algebra gþ0 [6], which is an extension of the Galilei algebra
with a central generator M called “mass.” This mass
generator is related to an additional Uð1Þ gauge field in
Newton-Cartan gravity. If we introduce a nonzero cosmo-
logical constant, then the counterparts of the Galilei algebra
g0 and the Bargmann algebra gþ0 are the Newton-Hooke
algebra gΛ and the extended Newton-Hooke algebra gþΛ .
Since the equations of motion of Newton-Cartan gravity

can be obtained by gauging the Bargmann algebra gþ0 [7],
Newton-Cartan gravity can be considered as a gauge theory
of the Bargmann algebra. Another way to derive Newton-
Cartan gravity is to consider a limit of Einstein-Cartan
gravity mimicking the İnönü-Wigner contraction of the
relativistic algebra [8]. However, in general spacetime
dimensions, these equations of motion do not have a
simple action principle.

In three dimensions, the Bargmann algebra g0 admits a
second central extension by the “spin” generator S [9–12].1
The resulting algebra is referred to as the extended
Bargmann algebra gþþ

0 . In parallel, in the cosmological
case, the three-dimensional Newton-Hooke algebra admits
double extensions. We refer to this as the doubly extended
Newton-Hooke (NH) algebra gþþ

Λ . We summarize the zoo
of three-dimensional nonrelativistic algebras in Table I.
Note that the subscriptΛ denotes the cosmological constant
and the superscriptþ orþþmeans the central extension by
M or M, S. Because of the second central extension, both
gþþ
0 and gþþ

Λ have nondegenerate invariant bilinear forms
[15,16]. Consequently, the corresponding theories admit
action principles through Chern-Simons formulation.
These nonrelativistic gravity theories are sometimes called
extended Bargmann gravity and extended NH gravity,
respectively. Along the same lines, the nonrelativistic
Chern-Simons theories admit various extensions according
to the symmetry algebras [17–19].
The presence of two central generators M and S are

hence crucial to the action principle of three-dimensional
nonrelativistic gravities in the frame formulation. In fact, as
we shall show later, these doubly extended nonrelativistic
algebras can be obtained from the relativistic ones with
two uð1Þ generators after suitable contractions (see also
Refs. [17,20]). For instance, in anti-de Sitter (AdS), the
relativistic isometry algebra with two uð1Þ’s,

soð2; 2Þ ⊕ uð1Þ ⊕ uð1Þ
¼ ðslð2;RÞ ⊕ uð1ÞÞ ⊕ ðslð2;RÞ ⊕ uð1ÞÞ; ð1Þ

contracts to the doubly extended NH gþþ
Λ under a suitable

scaling limit. In fact, both the relativistic and nonrelativistic
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1In Refs. [13,14], the second central extension is related to the
noncommutativity of the particle’s position coordinates.
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algebras can be split into left- and right-moving sectors, so
the contraction can be performed in each sector. After the
contraction, the uð1Þ generators become central elements,
and the resulting algebra cannot be arranged as a direct sum
anymore. This is the key mechanism for a nondegenerate
bilinear form—and hence for the action principle.
We notice that another peculiar utility of uð1Þ can be

found in a different extension of three-dimensional gravity,
namely, the colored gravity, which has been studied
recently in Refs. [21–23]. There exists a no-go result
[24] for theories of multiple gravitons,2 but in three
dimensions, it can be evaded3 by extending the isometry
algebra soð2; 2Þ with two uð1Þ generators. It is remarkable
that the resolution of the problems in the nonrelativistic
limit and color decoration are the same: replace slð2;RÞ by
slð2;RÞ ⊕ uð1Þ. This observation leads us to the following
question: does the three-dimensional colored gravity have a
natural nonrelativistic limit?
Let us explain a fewmore details about the colored gravity.

It can be constructed in the Chern-Simons formulation with
an appropriate choice of gauge algebra. For themultigraviton
interpretation, this algebra should contain multiple copies of
isometry generators, hence is a direct product of the isometry
soð2; 2Þ and the internal symmetry. Usually, the direct
product of two Lie algebras does not define a Lie algebra,
but the case of two associative algebras does so. The internal
symmetry can be taken as UðNÞ, which obviously has an
associative structure. About the isometry algebra, we can
extend the Lie algebra slð2;RÞ ⊕ slð2;RÞ to an associative
algebra glð2;RÞ ⊕ glð2;RÞ by adding two copies of uð1Þ.
We refer to the internal symmetry as “color symmetry” for a
reason that will become clear later, and the resulting gravity
theory will be correspondingly referred to as “colored
gravity.”The colored gravity has several interesting features:

(i) It has a nontrivial potential with many saddle points
corresponding to the (A)dS vacua of different

cosmological constants. These vacua can be classi-
fied according to how much the internal symmetry is
preserved.

(ii) Around the color singlet vacuum, the theory has one
graviton, ðN2 − 1Þ massless spin-2 fields charged
under the color symmetry, and a UðNÞ ×UðNÞ
Chern-Simons gauge field. The color nonsinglet
spin-2 fields are strongly interacting for large N.

(iii) Around a color symmetry–breaking background, a
Higgs-like mechanism takes place, and one finds
partially massless spin-2 fields [28,29] appearing in
the spectrum.

The organization of the paper is as follows. In Sec. II, we
present a concise overview of several aspects of the three-
dimensional nonrelativistic algebras. In Sec. III, we derive
the nonrelativistic colored-gravity algebras from the İnönü-
Wigner contractions of the relativistic ones. In Sec. IV, we
construct the actions of nonrelativistic colored gravities
using the Chern-Simons formulation. In Sec. V, we con-
clude the work with a brief summary. The Appendix
includes technical details and additional materials.

II. NONRELATIVISTIC ALGEBRAS
AND THEIR BILINEAR FORMS

A. Various nonrelativistic algebras
in three dimensions

We will give a concise review of various three-
dimensional nonrelativistic algebras: the Galilei, Bargmann,
extended Bargmann, NH, extended NH, and doubly
extended NH algebras, which have been briefly discussed
in the Introduction.

1. Galilei algebra g0
The three-dimensional Galilei algebra is an eight-

dimensional Lie algebra with the nontrivial Lie brackets:

½J;Gi�¼2ϵijGj; ½J;Pi�¼2ϵijPj; ½H;Gi�¼2ϵijPj: ð2Þ

Here,H,Pi, J, andGi are the generators of time translations,
spatial translations, spatial rotations, and Galilean boosts,
respectively. The Levi-Cività symbol ϵij is defined as

ϵ12 ¼ −ϵ21 ¼ 1; ϵ11 ¼ ϵ22 ¼ 0: ð3Þ

Remark that, in higher dimensions, there exist nonzero
brackets between two spatial rotation generators.

2. Newton-Hooke algebra gΛ
When the cosmological constant Λ is turned on, the

Galilei algebra is deformed to the so-called Newton-Hooke
algebra. As a result, we have an additional set of Lie
brackets,

TABLE I. Three-dimensional nonrelativistic isometry algebras.

Extension Flat (Anti-)de Sitter

None Galilei g0 NH gΛ
M Bargmann gþ0 Extended NH gþΛ
M, S Extended Bargmann gþþ

0 Doubly extended NH gþþ
Λ

2Multigraviton theories are obtained by gauging the tensor
product of the spacetime isometry and an internal, associative,
commutative algebra equipped with a nondegenerate invariant
norm. See Ref. [25] for a review and Ref. [26] for an extension to
the conformal (super)gravities. In these results, no additional
fields besides the graviton (multiplet) are introduced, as opposed
to Refs. [21–23].

3The first exception to the no-go result in three dimensions was
found in Ref. [27], in which an “exotic”multigraviton theory was
constructed by allowing for a PT-noninvariant interaction.
Interestingly, such an exotic interaction can be obtained by a
contraction of the usual Einstein gravity after a field redefinition.
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½H;Pi� ¼ −2ΛϵijGj; ð4Þ

besides those in Eq. (2).

3. Bargmann algebra g+
0 and extended

NH algebra g+
Λ

In general dimensions, both the Galilean and NH
algebras can be centrally extended by the mass generator
M.4 The resulting algebras are known as the Bargmann
algebra and the extended NH algebra, respectively. In three
dimensions, the additional Lie brackets are

½Gi; Pj� ¼ 2ϵijM: ð5Þ

4. Extended Bargmann algebra g+ +
0 and doubly

extended NH algebra g+ +
Λ

In three dimensions, the Bargmann and extended NH
algebras admit a second central extension by the spin
generator S.5 The extended Bargmann algebra, or equiv-
alently the doubly extended Galilei algebra, has one more
set of Lie brackets,

½Gi; Gj� ¼ 2ϵijS: ð6Þ

In the doubly extended Newton-Hooke algebra, the addi-
tional Lie brackets are (6) and

½Pi; Pj� ¼ −2ΛϵijS: ð7Þ

All the nonrelativistic algebras presented above can be
obtained from the most general one, the doubly extended
NH algebra, by various İnönü-Wigner contractions. The
cosmological constant–dependent terms can be removed by
the usual İnönü-Wigner contraction. The mass and spin
generators only appear in the right-hand sides of the Lie
brackets and hence can be eliminated by a suitable
contraction: rescale them first by a contraction parameter,
and then send the parameter to zero.

B. Nonrelativistic limits as contractions

It is useful to realize these nonrelativistic limits as
contractions. In fact, the three-dimensional relativistic
isometry algebra with a nonzero cosmological constant
and two additional uð1Þ generators can contract to the
doubly extended NH algebra (hence, all nonrelativistic
algebras discussed in Sec. II A). Let us provide more details

on this point. The relativistic isometry algebra in three
dimensions has the Lie brackets

½J a;J b� ¼ 2ϵab
cJ c; ½J a;Pb� ¼ 2ϵab

cPc;

½Pa;Pb� ¼ −2ΛϵabcJ c; ð8Þ

wherePa and J a are the translation and Lorentz generators
and Λ is the cosmological constant.

1. Contraction to Newton-Hooke algebra

For an illustration, let us see how the relativistic isometry
algebra (8) contracts to the Newton-Hooke algebra gΛ. We
first redefine the generators using the parameter c as

Gi ¼
1

c
J i; Pi ¼

1

c
Pi ð9Þ

and

J ¼ J 0; H ¼ P0 ð10Þ

then derive their Lie brackets. Notice that the temporal
components scale differently in c from the spatial ones. The
İnönü-Wigner contraction is performed in the c → ∞ limit,
which effectively removes certain terms in the structure
constants. One can easily check that the resulting algebra is
the NH algebra gΛ. Hence, one can view this contraction as
the nonrelativistic limit and interpret the parameter c as the
speed of light.

2. Contraction to doubly extended
Newton-Hooke algebra

Let us now show how the doubly extended NH algebra
gþþ
Λ can be derived by a contraction. As the algebra gþþ

Λ has
dimension 8 due to the central generatorsM and S, it cannot
be obtained as a contraction of the relativistic isometry
algebra, which has dimension 6. To fix the mismatch
between the numbers of generators, we need to include
two additional uð1Þ generators. We refer to these generators
as ZP and ZJ . In terms of them, we change the definitions
of H and J to

J ¼ ZJ þ J 0; H ¼ ZP þ P0 ð11Þ

but keep those of Pi and Gi the same as (9). The mass and
spin generators are given by the other combinations with
different rescalings,

S ¼ ZJ − J 0

2c2
; M ¼ ZP − P0

2c2
: ð12Þ

With these definitions, one can successfully reproduce the
doubly extended NH algebra gþþ

Λ by taking the c → ∞
limit. Note that in Eqs. (11) and (12) the mixings with ZP

4In a relativistic theory, the energy of a particle in the rest frame
is proportional to the rest mass. However, in a nonrelativistic
theory, spacetime symmetries do not require energy-mass equiv-
alence, so we can consider an independent generator for mass in
the form of a central extension. Intuitively speaking, the energy-
mass relation is lost in the large speed-of-light limit.

5To interpret S as a spin generator is subtle. See Refs. [30,31]
for more details.
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and ZJ are independent, and hence the corresponding
central extensions by M and S are also independent.

3. Chiral decomposition

When Λ ≠ 0, the relativistic isometry algebra can be
decomposed into two parts,

La ¼
1

2

�
J a þ

1ffiffiffiffiffiffiffi
−Λ

p Pa

�
;

L̃a ¼
1

2

�
J a −

1ffiffiffiffiffiffiffi
−Λ

p Pa

�
; ð13Þ

and each of them forms an slð2Þ:
½La;Lb� ¼ 2ϵab

cLc; ½L̃a; L̃b� ¼ 2ϵab
cL̃c: ð14Þ

Accordingly, it is natural to decompose the uð1Þ ⊕ uð1Þ
part as

Z ¼ 1

2

�
ZJ þ 1ffiffiffiffiffiffiffi

−Λ
p ZP

�
;

Z̃ ¼ 1

2

�
ZJ −

1ffiffiffiffiffiffiffi
−Λ

p ZP

�
: ð15Þ

For the nonrelativistic limit c → ∞, one can check that the
redefinitions (9), (11), and (12) are compatible with the
chiral decomposition.More precisely,with the redefinitions,

K ¼ Z þ L0; Li ¼
1

c
Li; Z ¼ Z − L0

2c2
; ð16Þ

K̃ ¼ Z̃ þ L̃0; L̃i ¼
1

c
L̃i; Z̃ ¼ Z̃ − L̃0

2c2
; ð17Þ

the two copies of the relativistic chiral algebra slð2Þ ⊕ uð1Þ
contract to the nonrelativistic chiral algebras

½K;Li� ¼ 2ϵijLj; ½Li; Lj� ¼ 2ϵijZ; ð18Þ

½K̃; L̃i� ¼ 2ϵijL̃j; ½L̃i; L̃j� ¼ 2ϵijZ̃; ð19Þ

where Z and Z̃ are the centers of the chiral algebras. The
chiral subalgebra h, spanned byK, Li, and Z, can be viewed
as a central extension of the two-dimensional Euclidean
algebra in which K and Li can be interpreted as two-
dimensional translation and rotation generators, respec-
tively. One can equally interpret h as a harmonic oscillator,
in which L1 � iL2 are creation/annihilation or position/
momentum operators, K is the Hamiltonian, and Z is the
Plank constant ℏ.6

The doubly extended NH algebra gþþ
Λ can be directly

decomposed into two copies of the chiral algebra h and h̃,

gþþ
Λ ¼ h ⊕ h̃; ð20Þ

where the explicit decomposition reads

Gi ¼ Li þ L̃i; J ¼ K þ K̃; S ¼ Z þ Z̃;

Pi ¼
ffiffiffiffiffiffiffi
−Λ

p
ðLi − L̃iÞ; H ¼

ffiffiffiffiffiffiffi
−Λ

p
ðK − K̃Þ;

M ¼
ffiffiffiffiffiffiffi
−Λ

p
ðZ − Z̃Þ: ð21Þ

C. Invariant bilinear form

One may attempt to use the nonrelativistic algebras in
Sec. II A to construct nonrelativistic gravity theories. In
three dimensions, as in the relativistic case, one can rely on
the Chern-Simons formulation in which nondegeneracy of
the bilinear form is important for the dynamics of the
resulting theory. It turns out that, among the algebras that
we have considered, only those with double extensions by
M and J admit a nondegenerate bilinear form. Below, we
focus on the doubly extended NH algebra and discuss its
bilinear form.
Since the doubly extended NH algebra gþþ

Λ admits the
decomposition (20), we can consider the invariant bilinear
form h·; ·i for each chiral sector. The nondiagonal parts are
the 2 × 2 symmetric matrices,

B¼
�hK;Ki hZ;Ki
hK;Zi hZ;Zi

�
; B̃¼

�hK̃;K̃i hZ̃; K̃i
hK̃; Z̃i hZ̃; Z̃i

�
: ð22Þ

Because of the rotational symmetry, the diagonal part is
fixed as

hLi; Lji ¼ lδij; hL̃i; L̃ji ¼ l̃δij; ð23Þ

with undetermined constants l and l̃, while the other
bilinear forms hLi; Ki, hLi; Zi, and their tilded counterparts
vanish. Symmetry also determines the matrices B and B̃
to be

B ¼
�
β l

l 0

�
; B̃ ¼

�
β̃ l̃

l̃ 0

�
; ð24Þ

where β and β̃ are additional allowed constants. The
nondegeneracy of the bilinear form requires l ≠ 0 and
l̃ ≠ 0, but β and β̃ are left unconstrained.
The bilinear form of the doubly extended NH algebra

(21) is given by those of the left and right chiral algebras h
and h̃, together with possible cross-terms. However, one
can show that the only cross-term compatible with sym-
metry is

6The same algebra can be obtained from the subalgebra of
Virasoro algebra spanned by Lm=m3=2, L−m=m3=2, and L0=m
(here, Lm are the standard generators of Virasoro algebra) in the
m → ∞ limit. The Virasoro central charge c becomes the central
element Z.

EUIHUN JOUNG and WENLIANG LI PHYS. REV. D 97, 105020 (2018)

105020-4



hK; K̃i ¼ γ: ð25Þ

In the end, the invariant bilinear form of gþþ
Λ has five

undetermined constants:

l; l̃; β; β̃; γ: ð26Þ

The number of free parameters is consistent with the
analysis of Ref. [18].
As in the usual relativistic Chern-Simons gravity, we set

l and l̃ as

l ¼ −l̃ ¼ 1

2
ffiffiffiffiffiffiffi
−Λ

p ; ð27Þ

so the spatial part takes the standard form. The non-
vanishing components of the bilinear form are

hJ;Mi ¼ hS;Hi ¼ 1; hPi; Gji ¼ δij; ð28Þ

and

� hH;Hi hH;Ji
hJ;Hi hJ;Ji

�
¼
�
−Λðβþ β̃− 2γÞ ffiffiffiffiffiffiffi

−Λ
p ðβ− β̃Þffiffiffiffiffiffiffi

−Λ
p ðβ− β̃Þ βþ β̃þ 2γ

�
:

ð29Þ

The above symmetric matrix remains completely arbitrary.
The bilinear form that we have derived using symmetry

can also be obtained from the relativistic one by a
contraction. To begin with, let us focus on the chiral sector.
The bilinear form of h ¼ slð2Þ ⊕ uð1Þ is unique for each of
the slð2Þ and uð1Þ parts, up to overall factors:

hZ;Zi ¼ ζ; hZ̃; Z̃i ¼ ζ̃; ð30Þ

hLa;Lbi ¼ ληab; hL̃a; L̃bi ¼ λ̃ηab: ð31Þ

Using Eqs. (16) and (17), these give the bilinear form for
the rescaled generators as

hLi; Lji ¼
λ

c2
δij; hL̃i; L̃ji ¼

λ̃

c2
δij; ð32Þ

B ¼
 

ζ − λ ðζ þ λÞ=ð2c2Þ
ðζ þ λÞ=ð2c2Þ ðζ − λÞ=ð4c4Þ

!
;

B̃ ¼
 

ζ̃ − λ̃ ðζ̃ þ λ̃Þ=ð2c2Þ
ðζ̃ þ λ̃Þ=ð2c2Þ ðζ̃ − λ̃Þ=ð4c4Þ

!
: ð33Þ

Hence, by choosing

ζ ¼ c2lþ β=2; ζ̃ ¼ c2l̃þ β̃=2;

λ ¼ c2l − β=2; λ̃ ¼ c2l̃ − β̃=2; ð34Þ

we recover the bilinear form (24) in the contraction limit.
Then, we consider the brackets of the left and right sectors.
We have the freedom to introduce the cross-term,

hZ; Z̃i ¼ γ; ð35Þ

which leads to Eq. (25) after the contraction.
We have seen that all the nonrelativistic algebras and

their bilinear forms can be obtained from the relativistic one
by contractions. In addition, it is also sufficient to consider
the chiral sector slð2Þ ⊕ uð1Þ. At the level of Lie algebra,
there is no relation between slð2Þ and uð1Þ, and hence their
bilinear forms (30) are also independent.
On the other hand, one simple way to introduce an

invariant bilinear form is through an invariant linear form,
i.e., trace:

hX; Yi ¼ TrðXYÞ: ð36Þ

A well-defined trace requires an associative product
between X and Y. This can be done by representing X
and Y as matrices. But the price to pay is that we have to
work with a larger space because the associative products
of the original elements will generate additional elements.
The enlargement can be minimized by choosing the
smallest representation. For slð2Þ, the smallest representa-
tion is the fundamental representation, which is two
dimensional and requires only one more element, i.e.,
the identity, to have the associative structure. The associa-
tive product of the relativistic chiral algebra reads

LaLb¼ ηabIþ ϵab
cLc; L̃aL̃b ¼ ηabĨþ ϵab

cL̃c; ð37Þ

and we recover the bilinear form (31) using

TrðIÞ ¼ λ; TrðĨÞ ¼ λ̃; TrðLaÞ ¼ TrðL̃aÞ ¼ 0: ð38Þ

There is no a priori reason to identify the identities I and Ĩ
with the uð1Þ generators Z and Z̃. However, if they
coincide up to some factors zðcÞ and z̃ðcÞ, the coefficients
λ, λ̃ and ζ, ζ̃ in Eqs. (30) and (31) will be related as

Z ¼ zðcÞI ⇒ ζ ¼ z2ðcÞλ; ð39Þ

Z̃ ¼ z̃ðcÞĨ ⇒ ζ̃ ¼ z̃2ðcÞλ̃: ð40Þ

These relations together with Eq. (34) fix the form of the
functions zðcÞ and z̃ðcÞ as

z2ðcÞ ¼ c2lþ β=2
c2l − β=2

; z̃2ðcÞ ¼ c2l̃þ β̃=2

c2l̃ − β̃=2
: ð41Þ

Therefore, we fully recover the nonrelativistic algebras h
and h̃ and their bilinear forms using the associative
structure of the relativistic counterpart, glð2Þ. As we
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mentioned in the Introduction, the associative structure of
the isometry algebras plays a central role in the color
decoration of three-dimensional gravity. From this obser-
vation, we are driven to look more closely the possible
interplay between nonrelativistic and color deformations of
gravity in three dimensions.

III. COLORED GRAVITY AND ITS
NONRELATIVISTIC LIMITS

If a theory contains more than one graviton and they are
related by internal symmetry, the global symmetry should
be extended from the usual isometry gi to a color-decorated
one gi ⊗ gc, where gc is a finite vector space generated by
the color label. This leads to severe algebraic constraints:
there is only trivial possibility if we assume the color-
decorated algebra does not include additional generators,
which means extra fields are necessary [21,22]. Even if we
find a good candidate of colored-gravity algebras by
including a reasonable amount of additional fields, the
construction of equations of motion or/and actions is not
guaranteed to be straightforward. In three dimensions, the
situation is much simpler. First, thanks to the Chern-
Simons formulation, we obtain the action directly from a
given algebra. Second, a color-decorated algebra can be
constructed by extending the isometry algebra with only
two additional uð1Þ generators.
Technically speaking, we want to find a Lie algebra

structure on the tensor-product vector space gi ⊗ gc. The
Lie brackets between two elements of the above space may
be written as

½MX ⊗ T I;MY ⊗ T J� ¼ 1

2
½MX;MY � ⊗ fT I;T Jg

þ 1

2
fMX;MYg ⊗ ½T I;T J�;

ð42Þ
whereMX andMY belong to gi, whereas T I and T J belong
to gc. Note that we have used both the commutator and
anticommutator of the generators of each space. Therefore,
to have well-defined Lie brackets (42), we should begin
with two associative algebras gi and gc. For the color
algebra gc, we use the matrix algebra uðNÞ.7 For the
isometry algebra gi, the minimal choice is glð2Þ ⊕ glð2Þ.
This is precisely the same as the setting (1) for the doubly
extended NH algebra.

A. Chiral sector

Let us start from the nonrelativistic limits of one chiral
sector of the colored-gravity algebra. It is generated by the
generators,

Z; La; T I; LI
a; ð43Þ

where La and Z form the original relativistic algebra
slð2Þ ⊕ uð1Þ ¼ glð2Þ and T I are the suðNÞ generators:

½T I;T J� ¼ 2ifIJKT K: ð44Þ

The generators LI
a are the color decoration of the spin-2

generators, and they transform covariantly under slð2Þ and
suðNÞ,

½La;LI
b� ¼ 2ϵab

cLI
c; ½T I;LJ

a� ¼ 2ifIJKLK
a ; ð45Þ

but the Lie brackets between them are nontrivial:

½LI
a;LJ

b� ¼ 2iηabfIJKT K þ 2ϵab
c

�
1

N
δIJLc þ gIJKLK

c

�
:

ð46Þ

In Eq. (46), we used the associative algebra of uðNÞ,

T IT J ¼ 1

N
δIJI þ gIJKT K þ ifIJKT K; ð47Þ

where gIJK is totally symmetric and fIJK totally antisym-
metric. We assign its bilinear form as

hT I;T Ji ¼ TrðT IT JÞ ¼ δIJ; ð48Þ

where we used TrðIÞ ¼ N while TrðT IÞ ¼ 0.
We want to construct the nonrelativistic analogs of the

above colored-gravity algebra, which we assume to have
the same number of generators as the relativistic one. The
nonrelativistic algebra is spanned by

Z; Li; K; T I; LI
i ; KI: ð49Þ

Their Lie brackets depend on the nonrelativistic limits.

1. Color decoration after contraction

One of the possible ways to obtain the nonrelativistic
colored-gravity algebra is by colored decorating the doubly
extended NH algebra. For that, the latter algebra should
admit an associative algebra structure. In the previous
section, we have shown that it can be obtained from an
associative relativistic algebra by a suitable contraction.
However, we have not examined the full consistency of the
associative structure of the resulting nonrelativistic algebra.
An associative product can be split into commutators,
which reproduce the Lie brackets, and anticommutators.
Therefore, we have to check whether the contraction limit
(16) is equally well defined for the anticommutators. From
Eqs. (37), (39), and (41), most of the anticommutators are
regular in the contraction limit:

7In principle, any finite-dimensional associative algebra can be
used as the color algebra.
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fK;Lig ¼ 2Li; fK; Zg ¼ 2Z; fLi; Ljg ¼ 2δijZ;

fLi; Zg ¼ 0; fZ; Zg ¼ 0: ð50Þ

However, before taking the contraction limit, the fK;Kg
anticommutator reads

fK;Kg ¼ 2ðK − 2c2ZÞ: ð51Þ

In the c → ∞ limit, the anticommutator (51) becomes ill
defined, so the corresponding associative product is prob-
lematic. The contraction of the glð2Þ gives a good Lie
algebra structure and bilinear form or trace, but not the fully
associative algebra structure.
This issue does not affect the Chern-Simons action of the

doubly extended NH gravity. The reason we consider the
anticommutator fK;Kg here is that from Eq. (42) it appears
in the Lie bracket of its color-decorated counterparts,
½KI;KJ�. We can avoid the divergence by defining the
colored generators as

KI ¼ 1

c
K ⊗ T I; ZI ¼ Z ⊗ T I; ð52Þ

which leads to a regular commutator,

½KI;KJ� ¼ −4ifIJKZK: ð53Þ

Concerning the color decoration of Li generators, we
consider two options:

(i) In the first option, by defining them as

LI
i ¼

1

c
Li ⊗ T I; ð54Þ

we have

½KI; Li� ¼ ½K;LI
i � ¼ 2ϵijLI

j: ð55Þ

(ii) In the second option, with the definition

LI
i ¼ Li ⊗ T I; ð56Þ

we obtain different Lie brackets:

½K;LI
i � ¼ 2ϵijLI

j; ½Li;LI
j� ¼ 2ϵijZI; ð57Þ

½LI
i ;L

J
j � ¼ 2ϵij

�
1

N
ϵijδ

IJZ þ 2gIJKZK

�
þ 2iδijfIJKZK: ð58Þ

The rest of the Lie brackets vanish in both cases.
In the above paragraph, we obtained two nonrelativistic

colored-gravity algebras with suitable contractions.
However, it turns out that they do not have nondegenerate

invariant bilinear form due to the additional contraction
related to the color decoration. This problem can be fixed
by considering the mixing between the two chiral algebras,
which will be explained in Sec. III C. In the next sub-
section, we will introduce the generalized İnönü-Wigner
contraction, the concept of which is crucial to the system-
atic construction of nonrelativistic algebras from the
relativistic ones.

B. Generalized İnönü-Wigner contraction

İnönü-Wigner contraction [32] is a procedure for gen-
erating Lie algebras from a starting Lie algebra by taking
certain limits of the group-contraction parameters. The
contraction procedure involves singular changes of bases,
so the contracted algebra is not isomorphic to the original
algebra. If a Lie algebra g has a subalgebra h, we can
decompose g into

g ¼ h ⊕ i: ð59Þ

We then rescale the generators of i by a contraction
parameter c and introduce the new generators as

j ¼ 1

c
i: ð60Þ

The Lie brackets become

½h;h� ⊂ h; ½h; j� ⊂ 1

c
h⊕ j; ½j; j� ⊂ 1

c2
h⊕

1

c
j: ð61Þ

In the singular limit where c → ∞, we obtain a new Lie
algebra,

GðgÞ ¼ h ⊕ j; ð62Þ

with the Lie brackets

½h; h� ⊂ h; ½h; j� ⊂ j; ½j; j� ⊂ ∅; ð63Þ

where j corresponds to an Abelian ideal. As an example,
the Poincaré algebra can be obtained from the (A)dS
algebra by sending the radius of curvature to infinity,
and the translation generators in the Poincaré algebra
generate an Abelian ideal.

1. Three-level contraction

The standard contraction procedure can be generalized.
Assume the original Lie algebra g admits a decomposition
into three parts,

g ¼ i0 ⊕ i1 ⊕ i2; ð64Þ

with the condition
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½i0; i0� ⊂ i0; ½i0; i1� ⊂ i0 ⊕ i1: ð65Þ

If we rescale the generators i1 and i2 by c−1 and c−2,
respectively,

j0 ¼ i0; j1 ¼
1

c
i1; j2 ¼

1

c2
i2; ð66Þ

the contraction limit c → ∞ gives a new algebra,

GðgÞ ¼ j0 ⊕ j1 ⊕ j2; ð67Þ

with the Lie brackets

½j0; j0� ⊂ j0; ½j0; j1� ⊂ j1;

½j0; j2� ⊂ j2; ½j1; j1� ⊂ j2; ð68Þ

and

½j1; j2� ⊂ ∅; ½j2; j2� ⊂ ∅: ð69Þ

Note that j2 and j1 þ j2 are two different ideals of the
contracted Lie algebra. This contraction actually covers all
the nonrelativistic limits considered in this paper.

2. Multilevel contraction

We can further generalize the contraction procedure by
considering arbitrary many “levels,” i.e., several integer
rescaling dimensions. In the mathematical physics litera-
ture, this generalized İnönü-Wigner contraction has been
studied in Ref. [33].
Our starting point is again a decomposition of the

original algebra

g ¼ i0 ⊕ i1 ⊕ � � � ⊕ iL; ð70Þ

with the condition

½im; in� ⊂ i0 ⊕ � � � ⊕ imþn; in>L ¼ ∅: ð71Þ

After the rescaling

jk ¼
1

ck
ik; ð72Þ

and the contraction c → ∞, we obtain a new algebra,

GðgÞ ¼ j0 ⊕ j1 ⊕ � � � ⊕ jL; ð73Þ

with the Lie brackets

½jm; jn� ⊂ jmþn; jn>L ¼ ∅: ð74Þ

When the levels of the elements are higher than L=2, their
commutators will vanish as the maximum is L. At least half

of the ideals jn ⊕ jnþ1 ⊕ � � � ⊕ jL are Abelian. We need
L > 1 to have a non-Abelian ideal.
Mathematically, the condition (71) is nothing but a

filtration structure, for which it is more natural to work with

fn ¼ i0 ⊕ � � � ⊕ in: ð75Þ

Then, the decomposition (70) and the condition (71) can be
recast as the definition of the filtered Lie algebra:

f0 ⊂ � � � ⊂ fL−1 ⊂ fL ¼ g; with ½fm; fn� ⊂ fmþn: ð76Þ

For a given filtered (Lie) algebra g, there exists a graded
(Lie) algebra GðgÞ with Eq. (74). The latter is referred to as
“associated graded (Lie) algebra.”
An example of multilevel contractions can be found in

higher-spin algebras. By definition, the vector space of a
higher-spin algebra consists of the spaces Ks of spin s
Killing tensors,

gHS ¼ ⨁
s
Ks: ð77Þ

EachKs is generated by the traceless tensorMa1���as−1;b1���bs−1
with the permutation symmetry of a two-rowYoungdiagram
ðs − 1; s − 1Þ. The Lie brackets of the higher-spin algebra
satisfy

½Ks1 ;Ks2 � ⊂ Ks1þs2−2 ⊕ Ks1þs2−3 ⊕ � � � : ð78Þ

The spins on the right-hand side of Eq. (78) are bounded
from above because one cannot construct ðr; rÞ tensors with
r ≥ s1 þ s2 − 2 in terms of Mðs1−1;s2−1Þ and Mðs2−1;s2−1Þ.

8

Hence, taking is−2 ¼ Ks, one can see that the higher-spin
algebra enjoys the filtration structure (71). An unusual
point is that a higher-spin algebra is typically infinite
dimensional, so it involves infinitely many levels
(L ¼ ∞). In three dimensions, one can consider finite-
dimensional higher-spin algebras. For instance, slðN;RÞ is
isomorphic to the chiral part of the higher-spin algebras
involving spin 2 to N. The contracted higher-spin algebra
still satisfies all the higher-spin covariance conditions but
does not admit an invariant bilinear form. It would be
interesting to check whether a central extension of this
contracted higher-spin algebra may admit a nondegenerate
bilinear form, as in the case of three-dimensional non-
relativistic spin-2 algebras.9

C. Nonrelativistic colored-gravity algebra

In this subsection, we will study the nonrelativistic limits
of the three-dimensional colored-gravity algebra using the

8The case of r ¼ s1 þ s2 − 2 is ruled out by the antisymmetry
of Lie bracket.

9The case of slð3;RÞ was discussed in Ref. [19].
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generalized İnönü-Wigner contraction. The guiding prin-
ciple is that the limiting algebra should have a nondegen-
erate bilinear form. This nondegeneracy is related to the
physical requirement that the kinetic terms are present.10 As
we have seen before, this condition cannot be met in the
chiral sector, so we will work with the full algebra from
now on.
We shall define the generators of the nonrelativistic

colored-gravity algebras in terms of the relativistic ones and
the contraction parameter c. For the color-singlet gener-
ators, we will use the same contraction ansatz as the doubly
extended NH algebra gþþ

Λ , i.e., Eqs. (9), (11), and (12). This
choice corresponds to the three-level ansatz:

j0∶ Z þ L0; Z̃ þ L̃0;

j1∶
Li

c
;

L̃i

c
;

j2∶
Z − L0

c2
;

Z̃ − L̃0

c2
: ð79Þ

The nonsinglet generators of the colored-gravity algebra
should be appended to j0, j1, and j2 such that the contracted
algebra admits a nondegenerate bilinear form. From
the symmetry consideration, the bilinear form of the
nonsinglet sector generators is determined by that of the
singlet sector as

ha ⊗ T I; b ⊗ T Ji ¼ ha; biδIJ; ð80Þ

where a and b are elements of glð2Þ ⊕ glð2Þ and their
bilinear form is given in Sec. II C. Let us summarize it here
for the reader’s convenience: due to the associative struc-
ture, the bilinear form should be diagonal, i.e.,
hZ; Z̃i ¼ γ ¼ 0, and then we have

hZ;Zi ¼ c2lþβ=2; hLa;Lbi ¼ ηabðc2l−β=2Þ;
hZ̃; Z̃i ¼ c2l̃þ β̃=2; hL̃a; L̃bi ¼ ηabðc2l̃− β̃=2Þ: ð81Þ

As one can see, they all scale as c2 and hence diverge unless
we rescale them appropriately. About the spatial part of
nonsinglet generators, we take the analogous rescaling as
the singlet ones,

j1∶
Li ⊗ T I

c
;

L̃i ⊗ T I

c
; ð82Þ

and hence these generators belong to j1. About the
remaining generators, there are a few consistent possibil-
ities. In the classification, an important guideline is the fact
that j0 must form a subalgebra for a consistent contraction.

Moreover, due to the presence of suðNÞ part, the
glð2Þ ⊕ glð2Þ part of the nonsinglet elements in j0 should
be closed under the anticommutator. Let us write the
nonsinglet part of j0 as A ⊗ T I; then, A should satisfy

fA;Ag ⊂ A; ð83Þ

where A is a subspace of glð2Þ ⊕ glð2Þ. With the above
condition, let us examine what the possible candidates for
the A elements are. The first guess is the combinations
analogous to the singlet sector,

ðZ þ L0Þ ⊗ T I; ðZ̃ þ L̃0Þ ⊗ T I; ð84Þ

but one can easily see that neither Z þ L0 nor Z̃ þ L̃0 is
closed under the anticommutator. In addition, we cannot
consider Z or Z̃ because its bilinear form will diverge. In
fact, the only possible way to have a finite bilinear form in
the j0 part—that is, without rescaling the generators—is to
cancel the c2 terms; for instance, hZ þ L0;Z þ L0i ¼
hZ;Zi þ hL0;L0i ¼ ðc2lþ β=2Þ − ðc2l − β=2Þ ¼ β in
the singlet sector. Noticing this, we can see

j0∶ ðZ þ Z̃Þ ⊗ T I ð85Þ

has a finite bilinear form, hZ þ Z̃;Z þ Z̃i ¼ βþβ̃
2
, and it is

closed under the anticommutator: ðZ þ Z̃Þ2 ¼ Z þ Z̃. The
similar combination Z − Z̃ has a finite bilinear form but is
not closed. For the nondegeneracy of the bilinear form, the
choice (85) should be accompanied by

j2∶
ðZ − Z̃Þ ⊗ T I

c2
: ð86Þ

Now, there remain only two generators, L0 and L̃0, and
there are two nontrivial choices:

j0∶ ðL0 � L̃0Þ ⊗ T I; j2∶
ðL0 ∓ L̃0Þ ⊗ T I

c2
: ð87Þ

Note that both signs give consistent contractions. There
also exist rather trivial options: i) the entire nonsinglet
generators are in i1, and ii) we have Eqs. (85) and (86), but
L0 ⊗ T I and L̃0 ⊗ T I are in i1. The latter two cases are
mathematically consistent options, but they treat the color-
decorated isometry generators La ⊗ T I in the Lorentz-
invariant manner, and hence they are unnatural for the
interpretation as nonrelativistic physics. In the following,
we consider only the “nontrivial” cases. See Appendix C
for the other two cases. Another implicit assumption is that
the suðNÞ symmetry is not broken in the nonrelativistic
limits. There will be more possibilities if we relax this
assumption.

10In a more general setting, we may consider degenerate
bilinear form. Then, some fields will not have kinetic terms
and only appear in the cubic terms.
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IV. CHERN-SIMONS FORMULATION

In this section, we derive the actions of the nonrelativistic
colored-gravity theories. There are two ways to compute
these nonrelativistic actions. The first way is to directly
evaluate the Chern-Simons actions of which the gauge
fields take values in the nonrelativistic gauge algebras. The
second way is to take the nonrelativistic limits of the
relativistic Chern-Simons action according to the contrac-
tions. We will use the first method in the current section and
discuss the second one in Appendix B.

A. Gauge algebras

Before starting our discussion, let us summarize the
algebraic structure of nonrelativistic colored-gravity sym-
metry. For a more clear physical interpretation, we use
“J , P” bases rather than the chiral and antichiral bases.
Since the singlet sector is identical to the doubly extended
NH algebra, we directly start with the nonsinglet ones. The
contractions we have considered in the previous section are

CI ¼ ZJ ⊗ T I; DI ¼ 1

c2
ZP ⊗ T I; ð88Þ

GI
i ¼

1

c
J i ⊗ T I; PI

i ¼
1

c
Pi ⊗ T I: ð89Þ

These generators transform covariantly under the NH
symmetry as

½J;GI
i � ¼ 2ϵijGI

j; ½J;PI
i � ¼ 2ϵijPI

j; ð90Þ

½H;GI
i � ¼ 2ϵijPI

j; ½H;PI
i � ¼ −2ΛϵijGI

j; ð91Þ

and they have nontrivial Lie brackets among themselves:

½CI;CJ� ¼ 2ifIJKCK; ½CI;DJ� ¼ 2ifIJKDK; ð92Þ

½CI;GJ
i � ¼ 2ifIJKGK

i ; ½CI;PJ
i � ¼ 2ifIJKPK

i : ð93Þ

Besides CI , DI, GI
i , and PI

i , we also have the temporal and
central generators. The two possibilities of the sign in
Eq. (87) are translated into the following two cases:

TypeA∶ JI ¼ J 0 ⊗ T I; MI ¼ 1

c2
P0 ⊗ T I; ð94Þ

TypeB∶ HI ¼ P0 ⊗ T I; SI ¼ 1

c2
J 0 ⊗ T I: ð95Þ

Only one of the two central generators in the doubly
extended NH algebra admits color decoration. Let us
present the Lie brackets of the two cases.

1. Type A

The nonzero commutators involving one singlet and one
nonsinglet are

½JI; Gi� ¼ 2ϵijGI
j; ½JI; Pi� ¼ 2ϵijPI

j; ð96Þ
½GI

i ; Pj� ¼ ½Gi;PI
j� ¼ −2ϵijMI: ð97Þ

The nonzero commutators involving only the nonsinglet
sectors are

½CI; JJ� ¼ 2ifIJKJK; ð98Þ

½CI;MJ� ¼ ½DI; JJ� ¼ 2ifIJKMK; ð99Þ

½JI;JJ� ¼−2ifIJKCK; ½JI;MJ� ¼−2ifIJKDK; ð100Þ

½JI;GJ
i � ¼ 2ϵij

�
1

N
δIJGj þ gIJKGK

j

�
; ð101Þ

½JI;PJ
i � ¼ 2ϵij

�
1

N
δIJPj þ gIJKPK

j

�
; ð102Þ

½GI
i ;G

J
j � ¼ −

1

Λ
½PI

i ;P
J
j � ¼

2

N
ϵijδ

IJS; ð103Þ

½GI
i ;P

J
j �¼

2

N
ϵijδ

IJM−2ϵijgIJKMKþ2iδijfIJKDK: ð104Þ

2. Type B

The nonzero commutators containing one singlet and
one nonsinglet sector are

½HI; Gi� ¼ 2ϵijPI
j; ½HI; Pi� ¼ −2ΛϵijGI

j; ð105Þ

½Gi;GI
j� ¼ −

1

Λ
½Pi;PI

j� ¼ −2ϵijSI: ð106Þ

The nonzero Lie brackets involving only the nonsinglet
sector are

½CI;HJ� ¼ 2ifIJKHK; ð107Þ

½CI; SJ� ¼ −
1

Λ
½DI;HJ� ¼ 2ifIJKSK; ð108Þ

½HI;HJ� ¼ 2iΛfIJKCK; ½SI;HJ� ¼−2ifIJKDK; ð109Þ

½HI;GJ
i � ¼ 2ϵij

�
1

N
δIJPj þ gIJKPK

j

�
; ð110Þ

½HI;PJ
i � ¼ −2Λϵij

�
1

N
δIJGj þ gIJKGK

j

�
; ð111Þ

½GI
i ;G

J
j � ¼ −

1

Λ
½PI

i ;P
J
j � ¼

2

N
ϵijδ

IJS − 2ϵijgIJKSJ; ð112Þ

½GI
i ;P

J
j � ¼

2

N
ϵijδ

IJM þ 2iδijfIJKDK: ð113Þ
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3. Bilinear form

Let us also remind the reader that the invariant bilinear
form reads

hJ;Mi ¼ hS;Hi ¼ 1; hPi; Gji ¼ δij; ð114Þ

hCI;DJi ¼ δIJ; hPI
i ;G

J
j i ¼ δijδ

IJ; ð115Þ

and

hJI;MJi ¼ −δIJ; hHI; SJi ¼ −δIJ; ð116Þ

for type A and B, respectively. Here, we took the choice
β ¼ β̃ ¼ γ ¼ 0 for simplicity.

B. Actions

Now, we consider the Chern-Simons actions of the
nonrelativistic colored gravities. The 1-form gauge fields
are

TypeA∶

A ¼ jJ þ sSþ hH þmM þΩiGi þ EiPi

þ σICI þ ςIDI þ ϑIJI þϖIMI

þ θiIG
I
i þ πiIP

I
i ; ð117Þ

TypeB∶

A ¼ jJ þ sSþ hH þmM þ ΩiGi þ EiPi

þ σICI þ ςIDI þ ϑISI þϖIHI

þ θiIG
I
i þ πiIP

I
i ; ð118Þ

which correspond to the nonrelativistic colored-gravity
algebras constructed in Sec. III C. It is now sufficient to
plug the above into the Chern-Simons action,

S ¼ κ

4π

Z
hA ∧ dAi þ 2

3
hA ∧ A ∧ Ai: ð119Þ

In terms of the component fields, this action can be
decomposed into several pieces:

S ¼ Sgravity þ Sgauge þ Smatter: ð120Þ

Here, Sgravity is the usual uncolored nonrelativistic action,

Sgravity ¼
κN
2π

Z
Ei ∧ ∇Ωi þm ∧ dj

þ h ∧ ½dsþ ϵijðΩi ∧ Ωj − ΛEi ∧ EjÞ�; ð121Þ

where the covariant derivative∇ acts on “spatial” 1-formωi
as

∇ωi ¼ dωi þ ϵijðωj ∧ j − j ∧ ωjÞ: ð122Þ

About the other pieces of the action, it is convenient to
introduce the suðNÞ-valued fields as

σ ¼ σIT
I; ς ¼ ςIT

I; ϑ ¼ ϑIT
I;

ϖ ¼ ϖIT
I; θi ¼ θiIT

I; πi ¼ πiIT
I ð123Þ

and write the action in terms of Tr, the trace in the adjoint
representation. Then, the gauge field part Sgauge takes the
simple form

Sgauge ¼
κ

2π

Z
Tr½ς ∧ ðdσ þ σ ∧ σÞ�: ð124Þ

The matter field part Smatter depends whether we consider
the type A or B:

Smatter ¼ Smatter;0 þ StypeA=B: ð125Þ

The common part Smatter;0 is

Smatter;0 ¼
κ

2π

Z
Tr½−ϑ ∧ Dϖ þ θi ∧ Dπi

þ ϵijh ∧ ðθi ∧ θj − Λπi ∧ πjÞ�; ð126Þ

where the covariant derivative D acts on the suðNÞ-valued
1-form ω as

Dω ¼ ∇ωþ σ ∧ ωþω ∧ σ; ð127Þ

and ω can have spatial indices.
Finally, the last piece that depends on the type of the

nonrelativistic limit is

StypeA ¼ κ

2π

Z
Tr½−ς ∧ ϑ ∧ ϑ þ 2ϵijϑ ∧ ðπi ∧ Ωj

þ θi ∧ Ej þ θi ∧ πjÞ�; ð128Þ

StypeB ¼ κ

2π

Z
Tr½Λς ∧ ϖ ∧ ϖ þ ϵijϖ ∧ ð2θi ∧ Ωj

− 2Λπi ∧ Ej þ θi ∧ θj − Λπi ∧ πjÞ�: ð129Þ

V. CONCLUSION

In this work, we have studied the nonrelativistic limits of
three-dimensional colored gravity in terms of generalized
İnönü-Wigner contractions. Let us conclude our work with
a brief summary of what has been done. In Sec. II, we
revisited the three-dimensional nonrelativistic isometry
algebras and their bilinear forms. We reviewed various
central extensions of the Galilei and Newton-Hooke alge-
bras. Then, we discussed their chiral decompositions, how
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they arise from the contractions of relativistic algebras, and
the issue of invariant bilinear forms. In Sec. III, we
explained the obstruction in the chiral decompositions of
nonrelativistic colored gravity and constructed the consis-
tent nonrelativistic colored-gravity algebras using general-
ized İnönü-Wigner contractions. In Sec. IV, we derived the
nonrelativistic colored-gravity actions in the Chern-Simons
formulation using the nonrelativistic algebras constructed
in Sec. III.
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APPENDIX A: ASSOCIATIVE STRUCTURE
OF RELATIVISTIC SYMMETRY

If we identify the identities I and Ĩ with Z and Z̃, the
associative products of glð2Þ ⊕ glð2Þ generators are

J aJ b ¼ −
1

Λ
PaPb ¼ ηabZJ þ ϵab

cJ c; ðA1Þ

J aPb ¼ ηabZP þ ϵab
cPc; ðA2Þ

ZJZJ ¼ ZJ ; ZJZP ¼ ZPZJ ¼ ZP ; ðA3Þ

ZPZP ¼ −ΛZJ ; ðA4Þ

J aZJ ¼ZJJ a ¼J a; J aZP ¼ZPJ a ¼Pa; ðA5Þ

PaZJ ¼ZJPa¼Pa; PaZP ¼ZPPa¼−ΛJ a: ðA6Þ

This associative extension of the relativistic isometry
algebra can be realized as a tensor product,

J a ¼ La ⊗ I; Pa ¼ La ⊗ ψ ;

ZJ ¼ I ⊗ I; ZP ¼ I ⊗ ψ ; ðA7Þ

with

LaLb ¼ ηabI þ ϵab
cLc; I2 ¼ I; ðA8Þ

ψ2 ¼ −ΛI; Iψ ¼ ψI ¼ ψ : ðA9Þ

The chiral decompositions of the relativistic and the non-
relativistic algebras are due to the existence of projectors,

PL ¼
1

2

�
Iþ 1ffiffiffiffiffiffiffi

−Λ
p ψ

�
; PR¼

1

2

�
I−

1ffiffiffiffiffiffiffi
−Λ

p ψ

�
; ðA10Þ

with

P2
L ¼ PL; P2

R ¼ PR; PLPR ¼ PRPL ¼ 0: ðA11Þ

APPENDIX B: CONTRACTION
AT ACTION LEVEL

The 1-form gauge field (117) or (118) of the non-
relativistic colored gravities should match with the relativ-
istic one,

A ¼ ðAZ þ Ã Z̃þωaJ a þ eaPaÞ ⊗ I

þ ðAIZ þ ÃI Z̃þτaIJ a þ χaIPaÞ ⊗ TI: ðB1Þ

In this way, we are able to identify the relations between
relativistic and nonrelativistic fields. The singlet part is

j¼ 1

4
ðAþ ÃÞ þ 1

2
ω0; s¼ c2

2
ðAþ ÃÞ− c2ω0; ðB2Þ

h¼ 1

4
ffiffiffiffiffiffiffi
−Λ

p ðA− ÃÞþ1

2
e0; m¼ c2

2
ffiffiffiffiffiffiffi
−Λ

p ðA− ÃÞ−c2e0;

ðB3Þ

Ωi ¼ cωi; Ei ¼ cei: ðB4Þ

The nonrelativistic suðNÞ gauge fields are

σI ¼
1

2
ðAI þ ÃIÞ; ςI ¼

c2

2
ffiffiffiffiffiffiffi
−Λ

p ðAI − ÃIÞ; ðB5Þ

and the spatial components of the matter fields are

θiI ¼ cτiI; πiI ¼ cχiI: ðB6Þ

Finally, the temporal components of the matter fields are
defined as

TypeA∶ ϑI ¼ τ0I ; ϖI ¼ c2χ0I ; ðB7Þ

TypeB∶ ϑI ¼ c2τ0I ; ϖI ¼ χ0I : ðB8Þ

Substituting the relativistic fields with the nonrelativistic
ones, we can derive the nonrelativistic actions in Sec. IV B
from the relativistic colored-gravity action by multiplying
the action with c2 and taking the limit c → ∞.

APPENDIX C: OTHER CONTRACTIONS
OF COLORED-GRAVITY ALGEBRA

In Sec. III C, we mentioned two other cases of non-
relativistic limits of the colored-gravity algebra. In the first
case, we treat all the nonsinglet generators as the level-1
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elements, whereas in the second case, we have additional
level-0 and level-2 elements, Eqs. (85) and (86).
In the first case, the nonrelativistic colored generators are

defined as

CI ¼ 1

c
ZJ ⊗ T I; DI ¼ 1

c
ZP ⊗ T I; ðC1Þ

JI ¼ 1

c
J 0 ⊗ T I; HI ¼ 1

c
P0 ⊗ T I; ðC2Þ

GI
i ¼

1

c
J i ⊗ T I; PI

i ¼
1

c
Pi ⊗ T I: ðC3Þ

In the nonrelativistic limit, the nonzero commutators
involving colored generators are

½J;GI
i � ¼ −

1

Λ
½H;PI

i � ¼ 2ϵijGI
j; ðC4Þ

½J;PI
i � ¼ ½H;GI

i � ¼ 2ϵijPI
j; ðC5Þ

½GI
i ;G

J
j � ¼ −

1

Λ
½PI

i ;P
J
j � ¼

2

N
ϵijδ

IJS; ðC6Þ

½GI
i ;P

J
j � ¼

2

N
ϵijδ

IJM: ðC7Þ

The relations between relativistic and nonrelativistic fields
are

σI ¼
c
2
ðAI þ ÃIÞ; ςI ¼

c

2
ffiffiffiffiffiffiffi
−Λ

p ðAI − ÃIÞ; ðC8Þ

ϑI ¼ cτ0I ; ϖI ¼ cχ0I ; θiI ¼ cτiI ; πiI ¼ cχiI: ðC9Þ

The nonrelativistic action is again given as Eq. (120).
Sgravity is the same as Eq. (121), whereas Sgauge and Smatter

are given by

Sgauge ¼
κ

2π

Z
Trðς ∧ dσÞ; ðC10Þ

Smatter ¼
κ

2π

Z
Tr½−ϑ ∧ dϖ þ θi ∧ ∇πi

þ ϵijh ∧ ðθi ∧ θj − Λπi ∧ πjÞ�: ðC11Þ

In the second case, the level-0 and level-2 sectors contain
ZJ ⊗ T I and ZP ⊗ T I, respectively. The nonrelativistic
generators are defined as

CI ¼ ZJ ⊗ T I; DI ¼ 1

c2
ZP ⊗ T I; ðC12Þ

JI ¼ 1

c
J 0 ⊗ T I; HI ¼ 1

c
P0 ⊗ T I: ðC13Þ

GI
i ¼

1

c
J i ⊗ T I; PI

i ¼
1

c
Pi ⊗ T I: ðC14Þ

The nonzero Lie brackets involving the colored gener-
ators are

½J;GI
i � ¼ −

1

Λ
½H;PI

i � ¼ 2ϵijGI
j; ðC15Þ

½J;PI
i � ¼ ½H;GI

i � ¼ 2ϵijPI
j; ðC16Þ

½CI;CJ� ¼ 2ifIJKCK; ½CI;DJ� ¼ 2ifIJKDK; ðC17Þ

½CI; JJ� ¼ 2ifIJKJK; ½CI;HJ� ¼ 2ifIJKHK; ðC18Þ

½CI;GJ
i � ¼ 2ifIJKGK

i ; ½CI;PJ
i � ¼ 2ifIJKPK

i ; ðC19Þ

½JI;HJ� ¼ −2ifIJKDK; ðC20Þ

½GI
i ;G

J
j � ¼ −

1

Λ
½PI

i ;P
J
j � ¼

2

N
ϵijδ

IJS; ðC21Þ

½GI
i ;P

J
j � ¼

2

N
ϵijδ

IJM þ 2iδijfIJKDK: ðC22Þ

The nonrelativistic fields are related to the relativistic
fields by

σI ¼
1

2
ðAI þ ÃIÞ; ςI ¼

c2

2
ffiffiffiffiffiffiffi
−Λ

p ðAI − ÃIÞ; ðC23Þ

ϑI ¼ cτ0I ; ϖI ¼ cχ0I ; θiI ¼ cτiI ; πiI ¼ cχiI : ðC24Þ

Again, the action is given by Eq. (120), where Sgravity and
Sgauge correspond to Eqs. (121) and (124), while Smatter

coincides with Smatter;0 in Eq. (126).
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