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Gravitational radiation from the classical spinning double copy
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We establish a correspondence between perturbative classical gluon and gravitational radiation emitted
by spinning sources, to linear order in spin. This is an extension of the nonspinning classical perturbative
double copy and uses the same color-to-kinematic replacements. The gravitational theory has a scalar
(dilaton) and a 2-form field (the Kalb-Ramond axion) in addition to the graviton. In a preceding paper
[W.D. Goldberger et al., Phys. Rev. D 97, 105018 (2018)], we computed axion radiation in the
gravitational theory to show that the correspondence fixes its action. Here, we present complete details of
the gravitational computation. In particular, we also calculate the graviton and dilaton amplitudes in this
theory and find that they precisely match with the predictions of the double copy. This constitutes a
nontrivial check of the classical double copy correspondence and brings us closer to the goal of simplifying
the calculation of gravitational wave observables for astrophysically relevant sources.
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I. INTRODUCTION

Einstein’s theory of general relativity, one of the most
beautiful triumphs of modern physics, describes classical
gravity to the best of our knowledge. However, the
computational effort required to solve Einstein’s equations,
even perturbatively, is significant. On the other hand, in
recent years, we have seen a series of remarkable develop-
ments in the study of perturbative scattering amplitudes in
quantum field theory with both theoretical and practical
significance. One could ask whether these methods are
useful for the problem of obtaining solutions of classical
gravity.

A recent promising approach in this direction relies on an
idea first discovered in the context of quantum scattering
amplitudes in gauge and gravity theories by Bern,
Carrasco, and Johansson (BCJ) [1-3]. Numerators of gauge
theory Feynman diagrams factorize into color factors
(arising from the gauge group) and kinematic factors (made
up of velocities, polarizations, etc.). Simply put, the BCJ
prescription is to write the gauge theory amplitude in a
certain form and replace every color factor with its
kinematic factor counterpart. This procedure then gives
the corresponding gravity amplitude. This BCJ double copy
was, in turn, motivated by the closed string—open string
amplitude relations due to Kawai, Lewellen, and Tye (KLT)
[4]. KLT showed that the integrands of closed tree-level
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string amplitudes factorize into open string ones. In the
field theory limit, these express gravity tree amplitudes as a
product of two corresponding gauge theory tree ampli-
tudes. The BCJ double copy includes the field theory limit
of the KLT relations as a special case. It has been proven for
all tree-level scattering amplitudes [3] and there is increas-
ing evidence at the loop level in various settings [5]. See [6]
for a recent review.

The question of whether the double copy extends to
classical solutions in gauge theory and general relativity
was first raised in [7]. Their method of obtaining solutions
of general relativity in the Kerr-Schild gauge was extended
and studied in more detail in [8—10]. The BCJ double copy
allows for the calculation of precision observables in
gravity that were previously not amenable to a direct com-
putation, by replacing such a calculation with the analogous
gauge theory computation. Can such an idea be used to
simplify the perturbative expansion of the equations of
general relativity and reduce the computational effort
required for gravitational wave calculations?'

Goldberger and Ridgway probed this question [14] by
starting with a system of well-separated point color
charges coupled to the Yang-Mills field. They calculated
the Yang-Mills radiation that the sources generate, by self-
consistently solving the equations of motion for the sources
and the field perturbatively. Remarkably, they found that a
set of simple color-to-kinematic replacements produces
gravitational radiation emitted by an analogous system of

"It is to be noted that an effective field theory approach to
tackle the binary inspiral problem was introduced in [11]
and extended to include spinning sources in [12]. A recent
comprehensive review can be found in [13].
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point masses. It was shown in [15] that these color-to-
kinematic replacement rules can also be used to generate
Yang-Mills radiation from scalar radiation, thereby com-
pleting a two-fold classical double copy for leading order
radiation. This classical perturbative double copy was
extended to radiation from sources in time-dependent orbits
in [16], such as the bound orbits relevant for gravitational
wave detection [17]. Reference [18] showed that Einstein-
Yang-Mills radiation can be obtained from Yang-Mills
scalar radiation. Another approach to generate spacetime
perturbatively, that is inspired by the double copy, can be
found in [19].

In this paper, we complete the extension of the pertur-
bative classical double copy to the case of radiation from
spinning sources started in [20]. Our goal is to compute the
gravitational radiation emitted from a system of spinning
sources moving on general time-dependent trajectories, that
satisfy the equations of motion, in d dimensions. The
motion of extended objects under a gravitational field has
been approached through a variety of ways [21-25]. The
formalism we use to describe spinning objects is detailed in
the appendixes of [20] and is equivalent to the one used in
[12,26], in the context of effective field theories for
extended gravitational sources.

Instead of attempting to solve Einstein’s equations with
spinning sources, we look to utilize the classical double
copy [14]. To this end, we consider, instead, a system of
point colored charges, with color variable ¢, (z) [27], that
couple to the Yang-Mills field.”> Each point charge pos-
sesses a spin angular momentum S**(z) which couples to
the Yang-Mills field via a chromomagnetic spin dipole
coupling

_ 49K

Sint = 7 dTCaS”DFZD, (l)

with coupling strength x and 7 the worldline coordinate. We
let the particles evolve self-consistently under their equa-
tions of motion and compute, to linear order in spin, the
amplitude of Yang-Mills radiation A% (k) that they gen-
erate. We then employ the simple color-to-kinematics
substitutions [14,16] to get a double copy radiation
amplitude A" (k),

€ (k) Aa(k) > e, (k)& (k) A (k). (2)

Consistency of the double copy amplitude A#*(k) with
gravitational Ward identities sets the chromomagnetic
dipole coupling strength « for each particle to be the same
constant k = —1. The double copy amplitude A*(k) can,
in general, be decomposed into its antisymmetric,

*Finite size corrections are systematically accounted for
by including higher order terms in an effective field theory
framework; see [11].

symmetric-traceless, and trace components. The corre-
sponding radiation fields are also expected by decomposing
products of vector irreducible representations of the mass-
less little group SO(d —2),

n(n+1) nn—1)
oot 0

A/.t ®Au = ¢ @ h/w @ B,uw (4)

n®n=16

where ¢ is a scalar (dilaton), £, the graviton, and B, the
Kalb-Ramond axion [28].3

In the case of nonspinning sources, the double copied
field is symmetric, thereby implying the field content of the
gravitational theory to be (,,. ¢). This can be understood
by noting that one cannot write down a linear interaction of
nonspinning particles with the axion field. Alternately, in
this case, gravitational radiation can be seen as arising as a
two-fold double copy of the biadjoint scalar radiation [15].
The latter theory enjoys a G x G global symmetry and is
invariant under the exchange of these two groups. The
color-kinematic substitution rules, which take an adjoint
index of each group to a Lorentz index, treat both adjoint
indices corresponding to these two groups symmetrically.
Hence, the resulting gravitational radiation is symmetric
under the exchange of the Lorentz indices. The action of the
gravitational theory was shown to be [14]

S = —2m=2 / dx /3R — (d - 2)¢*0,$0, 4]

—g:ma/dre‘b. (5)

For spinning sources, we expect the field content of the
gravitational theory to be (h,,.B,,.$). Decomposing the
double copy amplitude lands us at graviton, dilaton, and
axion radiation in this theory. We write down the most
general action with two derivatives using diffeomorphism
invariance and 2-form gauge invariance. Consistency with
the double copy fixes the action to be

S, = —2mi? / dx\/g {R —(d—2)¢" 0,40,

1
+ 12 6_4{/)H#WHW6:| ’ (6)

where H,,, = (dB),,, is the field strength of the 2-form.
This action also describes the BCJ double copy of pure
gluons [3] (see also [19]) and appears in the low energy
effective action of oriented closed strings. Compared to the
nonspinning case, the spinning sources have an additional
interaction, namely, that with the axion field given by

To be explicit, we refer to the 2-form field B,, in any
dimension as the axion.
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1
SHS == Z/dX”Hﬂyo.Syae_2¢. (7)

‘We note that this action differs from the one in [20] as the
“string frame” metric §,, = g,,¢* was used to define spin
there, as opposed to the ordinary metric g, used in this
paper (for more details, refer to Sec. IV).

The rest of the paper is organized as follows. In Sec. II,
we review the computation of classical gluon radiation
from a system of several spinning sources to leading order
in spin that was obtained in [20]. We obtain the double copy
of this radiation amplitude in Sec. III and decompose it into
radiation in the graviton, dilaton, and axion channels. In
Sec. 1V, we calculate the corresponding radiation ampli-
tudes emitted by a collection of several spinning masses in
the gravitational theory given by Egs. (6) and (7). We
discuss our results and further questions raised in Sec. V.

II. YANG-MILLS RADIATION

We begin by reviewing the calculation of Yang-Mills
radiation emitted by a classical system of several spinning
colored particles in d dimensions, presented in [20]. For
each particle, with worldline coordinate s, the degrees of
freedom are a worldline trajectory x*(s), a spin angular
momentum S$*(s), and a color charge c¢“(s) [27] trans-
forming in the adjoint representation of the gauge group G.
We first present some details of the spinning formalism of
[20] that are needed to describe the interactions of such a
system with a gauge field.*

In order to describe the spin degree of freedom, we
endow each worldline with an orthonormal reference frame
el (s) [24]. The spin S%(s) is then introduced as the
variable conjugate to the angular velocity

d
QY = n””e,llgei =-Q/ (8)

whereas the momentum p;(s) is conjugate to x;(s). In d
dimensions, the number of spatial rotational degrees of
freedom is 4 (d — 1)(d — 2). Hence, we need to impose a
constraint on the spin angular momentum to get this
physical number of degrees of freedom. Following
[24,29], this can be done in a number of different ways.
We choose to impose the constraint that the spin is
transverse to the momentum,

$*p, = 0. ©)

We also introduce an einbein e that enforces worldline
reparametrization invariance [e(s)ds is invariant under

4 1 s a a a 5 £aopc c
We usezthe conventions D, =0, +ig,AiT*, [T*,Tb)=ifTe,
and (ngj)c = _lfaln"

s s'(s)], and a Lagrange multiplier 4; that enforces
the spin constraint above.
Each particle is described by the action

1
Spp == [ arrelp 5 [ dselpip! - m(s) 4
1
+§/dsS”Q”+/dse/11S”pJ

_g, / dxc, A +% dsec, " Fe (10)

Hv

where the first line has all the terms that describe a free
particle, and the second line contains the interaction terms
of the particle with the gauge field. Here, g, is the Yang-
Mills coupling constant, and « is the spin dipole coupling
constant. This action, together with the usual Yang-Mills
action in the bulk, constitutes the complete action for the
system of particles interacting with a gauge field.

The resulting equations of motion are the following.
Varying the action with respect to the gauge field, we have
the usual Yang-Mills field equations,

D,Fd'(x) = gyJa(x). (11)
with the color current generated by the particles given by

1 o
By =-—t—2
W= s

o el 5d(x _xa(sa))
> / e

— K, / dse "D, {cg‘sd(x_i\/x;(sm]. (12)

Here, the sum runs over all the particles, indexed by a.
Imposing current conservation covariantly, D,J% =0,
gives the equation of motion in color space,

(k- D)t = % €St [F 1 ). (13)
The energy-momentum tensor for a single spinning particle
comes out to be

2 i)
T'uy X E—_is
(%) VI6G(x) 7

+ / dx$§170,5(x — x(s))

= /dx(”p”>5(x —x(s))

—Kgs/dsé(x_—\/g(s))caF“g(”S”)", (14)

where the brackets () indicate symmetrization of the
corresponding indices. The integral of the divergence of
conserved currents with arbitrary support X should vanish
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on shell: [ d“x\/gX,V, (T + T%5)lon-shen = 0. This
leads to the equations of motion for the momentum and
the spin,

K(lg.i‘ e(l

"o a HY
- Pa = gscaFll Xy —

s Se’ caD'FS,,  (15)

d
HY __ v M v v a Ak Quo a fpav CHo
asa _xapa_-x/l;pa_KagSeacaFG S(l +KagseacaF(r SO! .

(16)

The motion of the particles is thus described by the
system of equations (13), (15), and (16), subject to the
constraint Eq. (9). Alternately, these equations of motion
can also be obtained by varying the action with respect to
(x*, e}, e, p;. ", A;). The constants of the motion are ¢, ¢,
S,,S*, and m? = PupP" + gskc SHFy,.

From the invariance of the spin constraint,

gy =
- (5p,) =0, (17)
we can solve for the velocity v# = X* in terms of the other
variables. In the following, we use reparametrization free-
dom to choose e, such that s, = 7, the proper time for
each particle, whereby ph ~ v} up to O(SY).

In the Lorenz gauge, 0,47 = 0, the Yang-Mills field
equations (11) take the form

DAG = g,Ja(x) = g + g, [ ALY AL = FE). (18)

defining the source current J4(x), which includes contri-
butions from both the point sources as well as the field
configuration. It is conserved, 9,J%(x) = 0, and related to
observables measured at null infinity. The specific relation
between the radiation field at null infinity and the source
current in momentum space J4(k) = [dixe™*T5(x)
depends on the dimension d. For example, in d =4
dimensions, the radiation field is given by

lim A% (x) Js /d—we‘i“”]’é(k), (19)

r—o0 drr | 2m

with & = (w, 12) = w(1,X/r). In any dimensions, the total
energy-momentum radiated out to infinity in polarization
channel r is given by

apt = [ mo)ai e kg Ty k . (20
k

with €f!, (k) being gluon polarization vectors. These are
normalized as €;“(k) - e (k) = —6,,6,y and satisfy the
gauge condition k- ¢?(k) = 0. (The polarization indices
do not play any role in our calculations, so they will be
suppressed from now on.) Suitable integrals of the

Y
A
Y

Y

(a)

Y
\
Y

Y

(b)

FIG. 1. Feynman diagrams for the perturbative expansion of
Jh(k) up to order O(g?) and to linear order in spin. (a) Con-
tribution to the spin-independent color current due to the
equations of motion. (b)—(d) Contributions from a single insertion
of the spin-dependent color current.

momentum space source current J%(k) thus produce
physical observables at null infinity. Hence, in what
follows, our object of interest is J4(k). We compute it
perturbatively in the Yang-Mills coupling constant,” and to
linear order in spin, by consistently solving the system of
equations for the particles and the field.

In the following, we employ the same notation as in [20],

Sa' py = (Sa A )" (21)
k,Se' py = (kA p)gs (22)

to denote contractions of the spin angular momentum with
any Lorentz vectors k and p. We also use O(...) notation to
denote contributions at a particular order.

The leading order current can be seen as the contribu-
tions of the Feynman diagrams in Figs. 1(a) and 1(b) to
lowest order in the coupling constant. Following the results
in [16], we can work with particles traveling along general
time-dependent (possibly bound) orbits, say x4 (z,), pa(7,),
c4(z,), and S’ (7). In the following, we drop the explicit
dependence on 7, so that, for example, x4 = x,(z, ). Then to
all orders in perturbation, the contribution from the sum of
these diagrams can be written as

See [14-16] for a detailed discussion of the explicit small
expansion parameter that suppresses higher order contributions.

105019-4



GRAVITATIONAL RADIATION FROM THE CLASSICAL ... PHYS. REV. D 97, 105019 (2018)

0l vy = 3 [ el i (5. ) 23)

At leading order, this gives rise to the field®

di¢ e—ifx~ ddf € —if(x—x4)
AWlowy =9 [ fga 7 T Olown =03 [ dn 5 clhtindSon eyl (24)

This lowest order field then induces corrections in color, position, momentum, and spin of the particles, which causes the
particle to radiate at the next order in perturbation.

The first contribution to radiation comes from gluons emitted directly by the particles. This is the O(g?) contribution to
Eq. (23), given by

~ j k-v
Jﬂ . § d ik- x,, ! b -« /(; 25
( )|F1g 1(a a.8") / Ta€ . |:ca7] + Ca{ k- Uy v }:| 025" ( a)
T : k- b,
- E Ky | drye™® e ——14(S, A k) + 8] (S, A k) — (Sy A k) , (25b)
a k- Va k- Va O(g5.8")

where the first line corresponds to inserting the spin-dependent solutions [20], while the second line corresponds to
inserting spin-independent solutions [14]. The explicit expressions are given by Eqs. (A1) and (A2) in Appendix A 1, where
we have introduced an integration measure over worldline parameters and momenta given by

ddfa eifa'xa] [ddfﬂ eizf’/,.x/;

o) £ |len! 4 kzﬂ)d&d(k_f“_fﬁ)' 2

dp (k) = dz,dry [

At this order O(g?) in perturbation, there are two contributions from diagrams without deflections in the particle
trajectories. The first of these is from Fig. 1(c),

T4 g o) = RS / ditay(K)[car c5°C2(Su A p)P. 27)

afp
a#f

The second of the zero deflection contributions is from the diagram with the triple vertex in Fig. 1(d),

jZ(k)h:ig. l(d);O(gf,Sl) = _lgSZ/dlua/} Ca’c/}} [ (k pﬂ)(S NE ) (fa A p/)')a(fa - l’ﬂﬁ)” + 2(l’ﬂa A f/)’)apg]

u;e/i

(28)

We can write down the total expression for the leading order radiation (as written in [20]) coming from spinning particles
in general orbits consistent with the equations of motion. The result is a sum of two color structures:

H©logesy = i€y / g (B)(Ca - cp)chl + e cs Ay, (29)

ap
a#p

with

®As we are in a classical setug our propagators, here and in the rest of the paper, are assumed to be defined with retarded boundary
conditions 1/k* = 1/((k® +ie)*> — k") and 1/k-p =1/(k- p + ic).
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2

Ly = (o D)l o = 5Oy N )= T N 4 62, 1 Y
=26 py) (8, £t =0 ] 5, 30
and
At = e po{ 5. m mr = E2 22 b, {5, m -2 ]
— Kkpla [(S/, N Ep)H — %pﬁ}
e O (I e R R e

2

2

k-¢ ‘s k-¢
a s s
+Kak pu (Zp N P/s)a{f;; . D, P’é} + (k- pg)(Sy A k)”} + Kﬂk 'y (Zp N Pa)p {f T b, P’é}
I/ﬂZ
— — (py - k-25)(Sq A k). 31
Ko (k : Pa)2 (pa pﬂ)( ﬂ)( a ) ( )
|
It is easy to check that this result satisfies the Ward identity =~ We also identify the respective coupling constants,
k,Ji(k) = 0 even off shell.
o (34
gs F> =1.
2@

II1. DOUBLE COPY

As in the spinless case [14,16], we transform the Yang-
Mills radiation by the following set of color-kinematic
substitution rules:

c(t) > Pla(7). (32)

[C(I(T)’ c/}(T)]a = ]"ﬂl’/)(_k’ l’ﬂm f/)’)putl(T)p/)/f(T)’ (33)

where I'"*?(—k, £,,, £) is the kinematic part of the 3-point
gluon vertex Feynman rule, defined as

TV (—k, 4, )

(5 = 2a) 0" + (La+ kY0 = (€5 + k).

N[ =

A’w(k) |O(n3 s —

ap
a#p

where Al
respectively.

We see that k,J*(k) =0 automatically guarantees
k, A" (k) =0 because the color-kinematic substitution

and A§ are given in Egs. (30) and (31),

In the nonspinning case, the momenta remained unchanged
under the double copy ph(z) > ph(z). Similarly, in the
spinning case, we use the substitution Sy (7) — S5’ (7).
We use the above substitution rules to transform the
Yang-Mills radiation amplitude Az (k), defined as Aq (k) =
gsJ%(k)|;2—o, and obtain the double copy radiation ampli-
tude A (k), with k> = 0, as

€ (k) Aa(k) > e, (k)& (k) A (k). (35)

where the on-shell gluon polarization €,“(k) has been
formally replaced by a product of on-shell independent
polarizations €}, (k)&; (k). Thus, the double copy amplitude
A# (k) is defined up to terms that vanish when dotted into

these polarization vectors. Explicitly, it is given by

s 2/22/dﬂaﬂ(k [( Pa Pp)(€p—Ca) + (k- pp)pe— (k- pa)pﬂ>A —(Pa - Pp)PRAS |

(36)

rules do not affect this Lorentz index. For A/ (k) to define
the radiation amplitudes consistently in a gravitational
theory, we also need it to satisfy the Ward identity in
the second Lorentz index k, A" (k)= 0. Unlike the
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nonspinning case, this now imposes an extra constraint on
the Yang-Mills theory [20], namely, that

ke = —1. (37)

Thus, while the Yang-Mills theory is consistent for any
value of the chromomagnetic coupling constant k,, we find

a(Pa - Pp)P4

that the double copy procedure only works when all the
particles couple to the gauge field with this special value of
the coupling constant. As was noted in [20], in d = 4, this
value corresponds to the so-called “natural” value [30,31]
of the gyromagnetic ratio g = 2. For this special value of
the coupling constant, we can write the double copy
amplitude as

k-t

A () ogp sty = —

-2 /22/‘1““/3 [

ap
a#p

= (€5 A Pa)g)) -

k- pq

(k- £3)(Sa A sV +5 (b= E(Eu A 2)y + (5 A i),

ko p. ((Pa - Pp)(Sa A KV + pal(€5 A pp),

- p’é(fa A l’pﬂ)ﬁ

PAEa A 2p), — (k- p)(Sa A £+ (k- p)(Sy A fﬁv} i {pzuc o) = Pk )

L= cra p {12

\o} \

((pa : p/})(Sa A k)” - pg[(l’ﬂﬁ A pa)/}

— (€5 N pp)y))

+ 465 A Pa)y+ (Ca A Pp)) = 2P(Ca A Cp)a+ 2(k- pa)(Sp A Ep)t + E5(Su A Pﬂ)"H, (38)

where we have used the gauge freedom to add a term
proportional to k¥, so that, on shell, the double copy
satisfies the Ward identity in both indices.

We can use the double copy to obtain radiation ampli-
tudes in various channels, by decomposing the product of
polarizations in Eq. (35) into irreducible representations of
the massless little group SO(d —2) as

€6, =€, +a, +—- (39)

d 2"”’

—1( = . I —1(s = P
where €, =5 (6,6, +€,6,) = 55T, a, =5(€,6, —€,E,),
and <% 1, are the symmetric-traceless, the antisymmetric,

d=2 "
. Ky, +k
and the trace parts, respectively. Here 7, = 17,,, — (“%q”q")

is the projector onto the (d — 2)-dimensional space spanned
by the polarization vectors orthogonal to both the external
momentum k and an arbitrary reference vector ¢, satisfy-
ing ¢*> = 0.

In the nonspinning case, it was shown, by an explicit
computation, that the double copy produces nonvanishing
radiation amplitudes in the dilaton and graviton channels of
a gravitational theory whose action is § = §, + S, ,, with

S, = -amig? [ aix GIR - (d-2)0,60,4]. ()

and

Spp ==Y _my, / dr,e?. (41)

In d = 4, for example, this means that the radiation fields at
null infinity calculated in this dilaton gravity theory can be
reproduced with the double copy, by writing

.. 4G dw v
hy(t,n) = rN/zﬂ —iot g (k) A, (k),  (42)
.. G do _,
D7) == / W o AR, (43)

Here 71 = l?/ |l;|, and o = k° is the frequency of radiation
(ind =4, Gy = 1/32zm}).

As discussed in the Introduction, we expect the double
copy amplitude to also have a nonvanishing antisymmetric
component. This corresponds to the Kalb-Ramond axion
B,,(x) in the gravitational theory. Hence, our purported
gravitational theory has the field content (h,,., B, ¢). We
now write down the radiation amplitudes in this theory, as
predicted by the double copy.

The axion amplitude is defined to be

Ap (k) = ag, (k) A (k). (44)

2-form gauge invariance implies that the polarization tensor
is defined up to gauge transformations a,, (k) — a,, (k) +
k,¢,(k) = k,C,(k) for an arbitrary gauge parameter ¢, (k).

Hence, the axion amplitude is predicted to be

105019-7
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y la*u(k) f{% pa p[)’) Pa - Pp
Ag(©)logp.st) = —WZ/ ap(k K o k-2g k- p (Sa A K = (Sa A pp)
Pl “f

— (ke pp)(Sa A K = (k) (Sa A £+ % (€5 = E000 A pa), = Py(Ca ), ) )

=5 P P = CH (S A RY ) Bl P P(SH A 0+ DS, A Y

DUy 1 £3),) = PPy A D)y = (6 A )]

+ (P ) = itk )+ 365 = )0 ) )20k )5y A )

+ Ca(Sa A pp)') + (k- pp)pt = (k- ) PY(Ca A Pp)y+ (€5 A Pa)g) = {1 < 1} (45)
Similarly, the graviton amplitude is given by

A (k) = €5, A (k) (46)

where the polarization tensor €, (k) is defined up to gauge transformations €,, (k) — €, (k) + k,(, (k) + k,C, (k) for an
arbitrary gauge parameter ¢, (k). The explicit prediction is

. PRV
A®lows.s) =~z Z / dptap (k) {(pa 21(72)-(112 )iﬁ)f“ {((fp A Pa)y— (€5 N Pp)o) Pl

= (o= Pp)(Su ARY P} + 3 {;fﬂpa-pﬂ)(sa NRH(Ep = )" + 2k py)(Sa A Ea)'p

+ f%z(k : pﬁ)(Sa A k)ﬂpg + I/ﬂg(k : fﬁ)(sa A p/}’)ﬂp(yl + f{%(fa A fﬂ)apgp; + f%l(f(l A f/})/}pgpl(;

1 H
= () N PR V= EA0 A D) 57 oA (E N o= C 1 paly | (260 54) 2}

+ %{(fﬂ A Ppla= (€5 N Pa)ptPapic+ % (Pa pﬁ){—b’i(sa A k) plh = Ca(Sp A Ep) Dl

(06 PoSa At =525 A )+ (CanCg)aty 5 (Ca a1 ) (€= L0}
=21 = G pybotos + {6 (S A CF =388 Y

s tan ety Conmi(Ca=34) H part= @ prp) 4 )] )

Finally, the dilaton amplitude is defined to be

~ 1

As(k) = m’?WAW(k)~ (48)

This predicts the total dilaton amplitude as

A

As(k)|o(;73.sl) :_8 (d— /2 (d-2)V2 %5 / paplk

a#f

{(pa-pp)k A Ep)y+ (k- pp)(€p A Ppla— (k- Pp)(€p A Do)y} +2(k - pp)(Ca N Eplp|- (49)

|:pa pﬂ)(k fﬂ>l’ﬂ2

(k pa) {(fﬁ A pa)ﬂ - (f/i A pﬁ)a}

2

a
+k'pa
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IV. THE GRAVITATIONAL THEORY

In this section, we calculate the amplitudes for dilaton,
graviton, and axion radiation emitted by a set of spinning
sources coupled to gravity. We note that the color-kin-
ematic substitution only contributes to additional powers of
momenta in the numerators so it can only improve the
analyticity of the amplitude. Hence, we expect the resulting
gravitational theory to be local. The most general action in
the bulk, up to two derivatives, with field content
(hyy. B,,. @) that preserves the symmetries, namely, diffeo-
morphism invariance and 2-form gauge invariance, is

S, = —2mi> / dix\/q [R —(d=2)g"0,40,¢

1

+ Ef(d))H;waH/wo—] ’ (50)
where H,,, = (dB),,, is the field strength corresponding
to the 2-form field and f(¢) =1+ f/(0)p + - -.

Next, we move to the point particle action. We calculate
Yang-Mills radiation to linear order in spin, whereas, on the
gravitational side, it is easy to see that the leading order
interaction of gravitons with the spin is second order in
spin. However, the double copy predicts a nonvanishing
axion amplitude linear in spin. This suggests that the
corresponding gravity theory has a linear interaction of
the spin with the 2-form field. In [20], we wrote this unique
leading order interaction term as

SHS:/dxﬂk(¢)Hﬂuagya7 (51)

for an arbitrary function k(¢p) =k +«K'¢p + ---. We used
Srv=Sghey, with & being the vielbeins defined with res-
pect to the string frame metric, i.e., 7,,2.2] = §,, = g, €*’.
The double copied field does not have any free parameters.
This means that consistency with the double copy should
fix all the unknown parameters on the gravitational side.
Indeed, comparing the axion radiation amplitude in this
theory to the double copy prediction, these parameters were
fixed to be [20]

The bulk action is then given by

S, = —2mi> / dix\/q [R —(d=2)g"0,40,¢

e~
T

mw} (53)
In this paper, we define the spin via S* = S ¢/e}, where

the vielbeins e{l are defined with respect to the ordinary

metric, n77ele] = g,,. Then, the complete worldline action
for a single particle is

1 1
Sy —/ds [—X”e,’,p,ed’+§S”Q”+§e(p’p,—mz)e¢

1
+ el SYp, + 1 SHX°H,, e |. (54)

Here, the angular velocity is defined with a covariant
derivative, Q;; = g,,¢ 5-e¢4 = €/x,V’e. Note that
though the unknown dilaton dependent functions in the
action above have been written as exponentials, our
computation only really fixes these functions to linear
order in the dilaton. We expect the complete bulk action to
be given by Eq. (53) as it describes the BCJ double copy of
pure Yang-Mills [32]. It also arises as the leading low
energy effective theory of the common sector of oriented
string theories [33,34].

In the next subsection, we find the equations of motion
for the system of fields and particles. We work with the
ordinary metric and, later, fix the worldline parameter s to
be the proper time per unit mass, s = 7. This ensures that
we get the nonspinning action and equations of motion in
[14] when the spin is set to zero and particle masses are
restored. To get the relevant results in [20], we only need to
switch back to the conformally rescaled metric g,, =
gﬂyew and reparametrize the worldline coordinate to be

the conformal proper time per unit mass, s = ze~?. Of
course, worldline reparametrization invariance ensures the
invariance of the total amplitude. In Sec. IV B, we work out
the leading order fields and the changes they induce in the
momenta, color, and spin of the particles. We use these field
values and particle deflections to calculate the leading order
axion, graviton, and dilaton radiation in Secs. IV C, IV D,
and IV E, respectively.

A. Equations of motion and solutions
The equation of motion for the dilaton is
e~ 1

ViV, — 6d=2) H,,,H"" = — WJ, (55)

where we have defined the source term on the rhs to be

5d(x_xa) )

77 (56)

7=y / ds(Xapa,e? + Sk 3GH 00 7)
a

We also derive the equation of motion of the axion to be

e, (57)

whose source term is defined to be
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1
JH = Za:Z / ds(S¥52 + SUhsh + SV,
« |:€—2¢ 8(x — xa):| '
V9
We now find the equations of motion for the particles

using the same method as in [20]. First, we write down the
energy-momentum tensor for the point particles as

2
o 2 : u v
TPP \/—59 ()C pp /d-xa Pa

+ / dx¥'sy) v, [‘Sd(xi\/_gxq (59)

(58)

d(x —x >e‘/’

5 (x — x4)

where the first line is the result for dilaton gravity, and the
second line includes the contribution of the axion. We can
also write down the contributions to the energy-momentum
tensor from the axion and the dilaton, respectively, as

1 Y
-3 / dAXGH ;g ¥ Se e (60)

d2

Ty = =m0 oo H'TH ™ + 2 e H g (61)

and

T’”’ = (d=2)m{ 2 (404 0" — 29" ¢7° 0,0, ). (62)

Using the equations of motion for the axion and the dilaton,
we see that

V,,T’l‘;” = Jo, H"? (63)
and
VﬂTf;)” = Jo"¢. (64)

Now, we obtain the particle equations of motion by
integrating V,(Tp, + Ty + 7)) =0 with an arbitrary
vector X*(x), to get

/ dx\JGX N, (Tl + T +Th) = / dx\/GX,(V, T, — J ., H* — J&" )

- / ds [v,,xy <_

(5

V(phet) — 5 Ry ST~

l 1 vlp . . v
S V(SE) + ~H,,,d WS 55672 + il p e¢)

2

plo” & auqﬁ()‘d;‘paﬂe(p + SgprHypae_zqs)

1
_ cha . V(HM,,g”’ISZ”e‘M))] )

Since the vector X*(x) is arbitrary, we can equate the coefficients of X*(x) and V, X, to zero, to get the exact equations for

spin and momentum,

dsty

ds
dp 1 ~ 1 )
ds c= = PaXa0'p — Paxa s — Faﬂxapa + 2Rw10 DSgAE ¢ +Zxa )

We rewrite the dilaton equation of motion (55) as

Cp(x) = -

Amd?(d - 2)

1 1
= phite? — phibe? — 5,80 x5 — Ty, S x5 — EHﬂgpgA”S””xa e 4 2H g S xGe™?, (65)

1
V(¢ H 5, S7 e2?) e — 3 SEiGH e Hp.  (66)

L . (67)

where [1 = »**0,0,, and we have defined J(x) to include axion and graviton contributions from the lhs of Eq. (55). With the

dilaton propagator

(p(k)p(=k)) =

4mi=2(d = 2)I2

i

(68)
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we can formally write the solution as

1 €—1k~x
- A (k), (69
2m]2‘f‘2>/2(d—2)1/2l gl )

thereby defining a canonically normalized dilaton radiation
amplitude A (k) = — J(k) for on-shell

momentum k> = 0.
Choosing the gauge d,B* = 0, we rewrite the equation
of motion for the axion, Eq. (57) as

(#)(x) =

1
2m{2 (a-2)172

OB (x) = — J*(x). (70)

Mp

The gauge condition ensures that the classical axion current
j’”“(x), so defined, satisfies the conservation equation
8M.7””(x) = 0. In this gauge, the propagator for the axion
field is
<B/w(k)B/m(_k)> =

[’7/4/)7711(7 - 77;4{7771//)] . (71)

i
d-272
2mg“k

Then, the formal solution to Eq. (70) is

e—ik-x~
EY0) ==y [ ST, ()

Mpy

which defines an axion radiation amplitude Az =
Wa;jﬂ””(k) for on-shell momentum k% = 0.
Pl

Finally, we get to the gravitational field. We expand the
metric perturbatively about flat space g,, = 1, + h,,. We
choose the de-Donder gauge d,h* = 39,h%, in which we
have the propagator

<h;w (k) hpa(_k)>

i 2
= W |:77;4p77vo' + NucMup — mrluyr]pa] > (73)

and the solution for /,,(x) can be written formally as

_ ! / T Wy —t ey el ()
Tom&?) K UV T a=ate

Here, Tﬂy(k) is the energy-momentum pseudotensor that
includes contributions from the sources as well as all the
fields. It is (noncovariantly) conserved, 8MT/“’ =0, and
coordinate dependent, and hence it is nonunique. However,
quantities such as energy-momentum or angular momen-
tum can be defined as suitable integrals of 7" over
spacetime. As in [11], we compute the background field
gauge effective action [35], expressed as

(P ) (%)

1 -
[(h,¢,B) = -5 / d'xT"h,,, (75)
so that the energy-momentum pseudotensor is related to the
coefficient of the graviton one-point function. It is also directly

related to the graviton amplitude by A, = — @ (,, 57260 T (k).

Observables at infinity are obtained in a manner similar
to Eq. (20) by replacing the gluon source current and
polarization vectors with the corresponding gravity ones.
Hence, in the following, we solve for these sources T+ (k),
J#(k), and J(k), in a perturbative expansion in powers of 7,
defined in Eq. (34), and to linear order in spin.

B. Leading order results

We now find the leading order solutions to the fields and
the particle equations of motion. At leading order in
perturbation, the axion field only gets a contribution from
Fig. 2(a),

<B””>(X)|o 2)
¢ e—lf X—X,)
4mg1 2 Z /

X [(S(l A f)ﬂpa - (Sa A l’ﬁ) pa - S}:/(f ' pa)]’ (76)
Sa
> > r >
|
|
| X
f% |
/l 14 | /I,V
|
|
> $ >
1]

Sﬂ

J
_k
v

!

Zn

[

> > ¢ >
3

FIG.2. Feynman diagrams for the perturbative expansion of the
axion source current J* (k) up to O(5?) and to linear order in
spin. Here, wavy lines, curvy lines and dashed lines respectively
represent gravitons, axions and dilatons. Diagrams (a),(b) re-
present contributions to axion radiation coming directly o the
worldline. Diagrams (c),(d) represent contributions to axion
radiation via 3-point vertices involving the dilaton and graviton.
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for general time-dependent dynamical variables pf and S~ that satisfy the equations of motion.
The leading order metric perturbation contains a spinning and a nonspinning contribution sourced by Figs. 2(a) and 2(b),
respectively. Their sum is given by

di¢ e"f X=Xq) m2 i
(1) ()| o) Tl Z/ {papa T 2;7/w _ E{pﬁ(Sa ANEVY + ph(Se A O} . (77)
The leading order dilaton solution has no spin-dependent contribution, so it is the same as in the nonspinning case [14],

1 dé¢ —if-(x—x,)
(@) (X)]ogp) :Wzmg/ (zﬂ)deT- (78)

Next, we calculate the corrections in spin and momentum that these leading order fields induce. First, let us write the
equations of motion for the particle up to linear order in spin,

d

%Sgy‘O(SOHO(S‘) = plavie? — phvge? —T5,85 vy —T,5¢ v5, (79)
d o o P 1 oY oA ,—¢
ds pa‘@ S0 +O(S') - p(ll/v(la ¢ pll (lao'¢ Fﬂpv(tpa + 2Ry,10- S(l e . (80)

Inserting the leading order fields into the above equations gives the leading order changes in momenta and spin. First, for
the momenta, we have

2

d , dit it [ m3
— Palonr 0y = ‘- 2 ‘- . 2pv|, 81
dTa P |O(;1 S0 4m gl 2 /}Zﬁ;/ T/} 77: d f2 |: d— 2( p(l)p(l + (pa pﬂ)( pa) (pa p/f) :| ( )

d di¢ e [ mj
-~ Pa n = ‘- a Sa A
o, o) = g2 [ 46 s e (¢ PGS 0
+ (€A Ppla= (€ A P& Pa) P = (Pa* Pp)E] + (€ Pa) (P Pp)(Sp A EN (82)
From this, we have the position equations of motion
U’é = p’é + Wg|o(}72’sl), (83)
ddl/ﬂ e—zfx,,ﬂ
Whloge.s) = - g]_ ﬁ;mﬂ / dty—— G (S, A O (84)

Similarly, the spin equation of motion is given by

d
I S logp sty = PZWZ|O(;72,S1) — Piwaloge s
a

d —itx,
> [an 55 ”{w P PH(Sa A P — P(Sa A o))
4mPl e (2r)4

+ (pa . pﬂ){pﬂ(sa A f)” - pZ(Sa A f)y =+ ﬂl(sa A pﬂ)y - ﬂ/(Sa A pﬂ)ﬂ}
2

d 2 {pa(Sa A Z’ﬂ) - pZ(Sa A l’ﬂ)ﬂ - l’ﬂ”(Sa A pu)y + l’ﬂy(sa A pa)ﬂ - 2(f : pa)Slﬂlty} . (85)
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C. Axion radiation

The leading order radiation has contributions from Figs. 2(a)—(d). The contribution from Fig. 2(a) is due to deflections in
the position and spin of the particles, induced by the leading order fields. It is given by

. ki
T () eig. 2(ay:002.51) = Z/dfaelkx“‘— [ rZaSﬁ”vZ + S (86a)

(86b)

+ SHv% + cyclic permutations (u, v, /U} :
(9(172,5')

We can explicitly evaluate these expressions by substituting the leading order changes in particle spins and momenta,
derived in Sec. IV B. The resulting expressions are given by Eqs. (A3) and (A4) in Appendix A 2.

The other contributions to the axion amplitude, at this order in perturbation, come from diagrams with no deflections in
the trajectories of the particles. Figure 2(b), with an intermediate dilaton, corresponds to

'ﬂw(k)h:ig. 2(b);0(2.8") — 16mgl_ d— 2 Zmﬂ / d/"a[)’ a[(k pa)Sﬂy (Sa A k)”PZ - (/’l < 1/)] (87)

ap
aff

The two three-point vertex diagrams in Figs. 2(c) and 2(d) contribute

jﬂy(k)lFig‘ 2(c);0(?,8") — 4mgl 2 Zm/} / d/"aﬂ {(k : fa)(Sa A fa)ﬂplo/r

ap
atp

= (k- pa)(Sa A C)'Co+ (kA Ca)oPata} = (1 < V)], (83)

~ i
I (K)Fig. 2(a00p.51) = _Wz / it (k) [(Pa pp)(k-Co)(Sa A Co)! Pl — (k- pp)(Sa A o)
Pl afp
ap
- (k A f{l)allép;} + (k : p/)’)z(sa A l’ﬂa)”p(yl - (k ’ pa)(k ) p/})(S(l A fa)ﬂp;
+ (k- pp)(k A Co)oPably + (k- pp)(€a A Pp)alaPe = (k- Do) (Ca N Pp)alall

(k- €0)(a A P)aPly =l (- £3) (Su A )t = (k- p) (Su A £2)1E%
+ (kA L) Pals} — (u < v)|. (89)

We notice that the Yang-Mills amplitude has no explicit dependence on the spacetime dimension, whereas some of the
contributions to the axion amplitude above do. This means that terms involving the dimension of spacetime should cancel
with each other. In addition, each diagram satisfies the Ward identity kﬂjﬂ”(k) = (0 and so does the total amplitude, collected
in Eq. (B1) of Appendix B. The total amplitude is in agreement with the calculation in the string frame metric, presented in
[20]. We find that it matches the double copy result, Eq. (45).

D. Graviton radiation

Similarly, at the next to leading order in perturbation, the energy-momentum pseudotensor receives contributions from
Figs. 3(a)-3(d). The contribution from Figs. 3(a) and 3(b) come from deflections to the particle spin and trajectory due to the
leading order fields. This comes out to be

_ 1 B A O
Tﬂy(k)lFig‘ 3(b);0(2.8") — EZ / draelk.xa |:k v {k v UI&Pa - Uﬁpa - nga} (908.)

k k-v
P a uqup
oo {k- o VaSd — Ve Sd } (n <~ v)}

O(i*.s")
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These contributions are explicitly given by Egs. (A5) and (A6).
There are two contributions from emission off bulk vertices with the particles not suffering any deflections. The first of

these is from Fig. 3(c) with an intermediate graviton. This contributes

4 d—ZZ / d/"a/} |: Pa- p[)’){(sa A p/i)ﬂz’ﬂ,l[/} - (Sa A Z’ﬂﬁ)ﬂp;}}

ap
a#p

Tﬂb(k”Fig. 3(c);:0(2.8") —
z

= (k- pe)(Sa A PP+ 55

L (S A LY Pl (e V)| (91)

The final contribution is from the graviton triple vertex diagram in Fig. 3(d). As in [14], in computing this contribution
we use the background field gauge three-point vertex, written, for example, in [11,36]. This gives

T””(k)|1:ig.3<d);o(q2.sl)—WZ/dﬂaﬂ [(Pa Pﬁ){(f £p)(Sa AN Ea)' P+ (k- pp)(Sa A Co)'

@’A@M#%HﬂAmhﬁﬂ—yﬂ&Am%W%—%Jw%%A&Vm

+ (k : pa)(k ! pﬂ)(Sa A fa)”p;/} + (k : pa)("ﬁa A pﬁ)apﬁfp - (k : pﬂ)(f(x A pﬂ)apaf”
- (fa : fﬂ)(’/ﬁa N pﬂ)apapﬁ

- (k : pﬁ)(fa A fﬂ)aplép/l; + (k : pa)(fa A fﬂ)ap/jp/}
(92)

2
m/}

d—

£ (Sun oww)}

The total canonically normalized graviton amplitude is Eq. (B2) in Appendix B. It is easy to show that the on-shell

difference between this and the double copy prediction in Eq. (47) is

R e e RO L R e

"zlg(k) _Ag(k>|(9(i73 sty — /22

rz/)‘

1
—*fz{(fﬁ APpla—(Cp A Pa)p}k”PZ} +§(Pa : Pﬁ){(k'Pﬁ)(Sa AN EC )k +§f§(5a A pp)ik

1
(f A fﬂ)akypz - E (fa A pﬂ)akukb + Z(I/ﬂa N pﬂ)al/ﬁgkl/ - fg(la A pﬁ)a’]ﬂy}

-5 K PP = (- PP+ (1 )], (53)
We then use the de Donder gauge condition to write this as
A,(0) = Ay(Blogp sty =~ > [ e p{ (2524 20, O ) 0 A )
= SO N pgla=(En A 2y = (A 23)) + (K- ) (KA Calut (€0 A 031}
(94)

+w94,
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T (k) |ig. 42100251

. i
=3 [ drgeitr
/ “ k- Dy
a

Y

k-v . .
X —ava'pa_va'pa_va'pa (95)
k- Vy 0(,,2751)
> 3 > This expression can be computed using the leading order
() © changes in momenta derived in Sec. IV B. The result is

displayed as Eq. (A7) in Appendix A 2.

The other two contributions are calculated at zero
deflections in the particle trajectories. Figure 4(b) involving
an intermediate graviton contributes

Y

j(k) ‘Fig. 4(b);0(n%.S")
i

% / dtap(K) 2P Pp)(E5 A Pa)y. (96)
2mp af

‘1 Finally, we have Fig. 4(c) involving the three-point
(b) (d) . . : s
graviton-dilaton vertex in the bulk, contributing
FIG. 3. Feynman diagrams that contribute to the energy-
momentum pseudotensor 7#/(k) at O(5?) and to linear order

T (K)|Eie. 4(c):0075!
in spin. (a) Contribution from the spin-independent part due to the (k) ‘Flg - He)Olr.S)

equations of motion. (b)—(d) Contributions from a single insertion _ i 2 [ 4 O (k - LA 97
of the spin-dependent piece of the point-particle energy-momen- 2mg1—2 Z/}m” Hap (k) (k- p P ) b )ﬁ ) 97)
tum pseudotensor. a#p

These individual contributions can be summed up to give

which can be easily shown to vanish on shell. Thus, we ~ the total dilaton amplitude, presented as Eq. (B3) in
have verified that the graviton amplitude is as predicted up ~ /PPendix B. This agrees with the double copy prediction

to gauge terms. in Eq. (49).
E. Dilaton radiation V. DISCUSSIONS AND CONCLUSIONS
In this subsection, we calculate the leading order dilaton Lessons learned from the study of scattering amplitudes
radiation amplitude. Figure 4(a) gives contributions to the  in quantum field theory and string theory are proving useful
dilaton amplitude from trajectory deflections, in the study of classical gravity. Some examples of this are
« Sry
> — > — > >

Y
Y
Y

4

3 S
(@) (b) ()

FIG. 4. Feynman diagrams contributing to the dilaton source J (k) at O(5?) and to linear order in spin. As earlier, the dashed lines and
the wavy lines represent the dilaton and the graviton respectively. (a) Contribution to the spin-independent piece of J(k) due to the
equations of motion. (b),(c) Contributions from a single insertion of the spin dependent piece.
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the use of on-shell methods [37,38], leading singularities
[39], and soft theorems [40]. In this paper, we continued
exploring the idea of using the BCJ double copy to
obtain perturbative classical gravitational radiation [14].
Specifically, we have established a complete correspon-
dence between perturbative classical Yang-Mills and gravi-
tational radiation, emitted by spinning sources, up to linear
order in spin. Consistency with the double copy fixes the
couplings of the spinning sources to the Yang-Mills field.
The double copied field is decomposed into its antisym-
metric, symmetric-traceless, and trace components. These
are the predictions of the double copy for the axion,
graviton, and dilaton radiation fields emitted by spinning
sources in a gravitational theory. The double copy also fixes
the gravitational action in the bulk to be the same as the low
energy effective action of oriented closed strings in Eq. (6)
and predicts a linear interaction of the spins with the axion
in Eq. (7). We explicitly calculated the graviton, dilaton,
and axion radiation amplitudes in this theory (see [41] for
analogous pure gravity results), to linear order in spin,
and showed that they are exactly as predicted from the
double copy.

By including spin as a dynamical degree of freedom for
our sources, we have brought the classical double copy
closer to being useful for the computation of gravitational
radiation from astrophysically relevant sources. Our cal-
culation can be used to generate gravitational radiation
from sources along arbitrary trajectories. Hence, they can
be used to compute gravitational scattering as well as
radiation from objects in bound orbits. However, the
gravitational radiation so obtained is in a theory which
includes the dilaton and the axion, in addition to the
graviton. In order to arrive at the corresponding results
in pure gravity, we need a systematic method that cancels
out the effect of these extra degrees of freedom. For spinless
sources, Ref. [42] proposed a way of removing the
contribution of the dilaton at leading order in perturbation,
by adding an appropriate ghost scalar to the Yang-Mills
side, in a manner similar to [43]. Once we find a method of
obtaining pure gravity results, it would be useful to write
down an effective theory for the Yang-Mills sources that,
upon double copying, directly reproduces the effective field
theory in [11,12], which treats the binary inspiral problem
in a post-Newtonian expansion.

For d = 4, the leading order metric sourced by a single,
static particle at the origin, with angular momentum

J about the z-axis, has a spin-dependent piece given by
h,¢\0< == Mfmze. We recall that the nonspinning part
of the metric at this order in perturbation matches with the
Schwarzschild solution [14]. At leading order in perturba-
tion, there are no contributions from the dilaton or the axion
to the metric. Hence, as expected, we find that the static,

single particle limit of the metric matches the Kerr metric at
this order. This indicates that the gravitational solutions are
spinning black holes or naked singularities [42], albeit with
dilatonic and axionic hair. It would be very interesting to
see if they are related to black hole solutions in string
theory.

In order to be relevant for gravitational wave detectors,
the double copy correspondence needs to be extended to
higher orders, both in the coupling strength and in spin.
We would also need to include finite size corrections to the
sources by including higher order operators on the world-
line that are allowed by the symmetries. The correspon-
dence can be extended to charged, spinning sources. A
further simplification of the results in this paper can be
achieved by finding the analogous biadjoint scalar theory
[15,44,45], the double copy of whose solution would
produce the Yang-Mills radiation calculated here. A
different approach to simplifying the perturbative expan-
sion of the Einstein-Hilbert Lagrangian is by direct
factorization of the action [46,47]. It would be interesting
to see if it is related to the classical double copy as
described here. Another direction for future research is to
explore the class of solutions of Einstein’s equations that
can be generated by this correspondence. Finally, the
theoretical significance of the classical double copy for
Einstein’s general relativity remains an exciting and open
question.

ACKNOWLEDGMENTS

We gratefully acknowledge Walter Goldberger for sug-
gesting this problem, for many valuable discussions and
collaboration, and also for comments on this manuscript.
S. P. also thanks Ghanashyam Date, Brian Henning, Dileep
Jatkar, Alok Laddha, R. Loganayagam, Shiraz Minwalla,
Ashoke Sen, and Junpu Wang for useful discussions, as
well as Brian Henning for a careful reading of an earlier
version of this manuscript.

APPENDIX A: WORLDLINE GRAPHS

In these appendixes, we collect some expressions that
were omitted from the main body of this paper. This
section has those contributions to the total amplitudes
that are due to radiation coming directly off the world-
line. The next two subsections present the relevant
contributions in the gauge and gravitational theories,
respectively.

1. Gauge theory

The relevant contributions are from Figs. 1(a) and 1(b)
and are given by Egs. (25a) and (25b). These can be written
down explicitly as
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‘a
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2. Gravitational theory

First, we look at the axion current. This receives contributions from the worldline diagram in Fig. 2(a), given by
Eqgs. (86a) and (86b). These compute to

. 2(f .
(862) — - QZ/dﬂaﬁ(k)fg {_ (Pa - Pp)*(k-Zp) (S, A Kt

w7 (k : pa)2
a#f
pa ' p v v v L
o, (P P =20k p)p + 20k )P} (Sa AR = (0 V)} (A3)
Pa" P v L4 Y
(86b) = ~ 6 Z [ dugtios {k-—paﬁ{(k ) Sa A pp) Py = (K Pp) (S A 29" Py = (K A Ep)aplap

arp

+ (kA pplalals} + (Pa - Pp){(Sa A Ep) Dy — (Sa A pp)'Es} + (k- pa)(Sa A Pp) P
2
p v
= (k= pp)(Sa A pp)' Pl = (kA pplapary + == fz {2(Se AKY = (k- pa)Sa’} = (n < v)} : (Ad)

Next, we move on to graviton radiation. Worldline contributions to the energy-momentum pseudotensor are from Figs. 3(a)
and 3(b). The corresponding expressions in Eqs. (90a) and (90b) are, respectively, given by

000 = 1Y [ du0a| PP 2y 1 )= 0 o

" 1 v kp/j "
k- Pa {((fﬁ A pﬂ)a - (fﬂ A pa)ﬂ>p/;fﬁ +§(f(x A fﬁ)ﬂp/;pa} - m{(f/j A pﬁ)a - (fﬂ A p“)ﬂ}pgpa

2

m
+ (Pa* Pp)(Sp A Ep)' Pl +{(€5 A Ppla— (€5 A Pa)ptPab + (4

2(d 2) (S(l A l’ﬂ/}) pa (/’4 < l/) ’ (AS)
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Finally, the dilaton worldline graph in Fig. 4(a) gives rise to the contribution in Eq. (95) and can be computed explicitly to be

95):#; [ 6163 | T k- £)106 A s = 6 )

Pa Pp k-p
+ k- p/ 2(f(l A fﬂ) k- pﬁ pg{(fﬁ A pﬁ)a - (f/f A p(l)ﬂ} + 2(pa . pﬁ)(fﬂ A pa)/}:| . (A7)

APPENDIX B: TOTAL AMPLITUDES IN THE GRAVITATIONAL THEORY

In Sec. IV, we computed all the contributions to the leading order radiation amplitudes on the gravitational side. Here, we
assemble these contributions and write down the final expressions for these amplitudes.
First, the axion amplitude is given by

pa pi) (kf )Z(ZI v (pap})f(% v
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The leading order graviton amplitude is given by
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and finally, we have the leading order dilaton amplitude,

l
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