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We find a formulation of N ¼ 2 supersymmetric Yang-Mills theory in projective superspace. In
particular we find an expression for the field strength in terms of an unconstrained prepotential which is
desirable when quantizing the theory. We use this to write the action in terms of the prepotential and show
that it reduces to the known result in the Abelian limit.
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I. INTRODUCTION

Projective superspace [1] is a manifestly supersymmetric
formalism for theories with eight supercharges. The fact
that the projective superspace formalism is closely con-
nected with the twistor space description of hyperkähler
manifolds [2–4] or quaternion Kähler manifolds [5] has led
to many applications in mathematics and physics. For
instance, both the hyperkähler quotient construction [2] and
the physical explanation of the wall crossing phenomenon
[6,7] made use of projective superspace. Moreover, aspects
of gauge theory has been developed [8,9] as well as
propagators and Feynman rules for matter multiplets
[10,11]. More recently, also supergravity has been treated
in the projective superspace formalism [12–16]. For an
introduction we refer to [17].
Alternatively one may use harmonic superspace [18]

which also provides a manifestly supersymmetric forma-
lism for theories with eight supersymmetries. Harmonic
superspace also represents a mature formalism with all the
basic ingredients developed. In particular, non-Abelian
Yang-Mills theory was formulated already some time
ago in [19,20]. A nice introduction to the topic can be
found in the book [21].
In both the projective and harmonic formalism the

superspace R4j8 is appended by the auxiliary factor CP1

where the R-symmetry group SUð2ÞR naturally acts and on
which the superfields depend.1 More precisely, in the
harmonic approach the superfields depend on the full
CP1 factor and can be written in terms of the spinor

harmonic basis of the CP1 ¼ S2 (hence the name). On the
other hand, in the projective case the superfields depend
only holomorphically on the auxiliary CP1 factor. This
difference might seem insignificant and it is interesting to
observe that it leads to quite different properties of the two
formalisms. The fact that in Harmonic superspace the full
superspace integral is over the full volume of the auxiliary
S2 whereas in the projective approach we get contour
integrals over closed contours on CP1 leads to very
different calculational techniques and details of the calcu-
lations. For instance, the close connection between the
Laurent coefficients of the CP1 dependence of the super-
field in Projective superspace and the N ¼ 1 components
makes the projective superspace formalism ideal for dis-
cussing N ¼ 2 supersymmetric sigma models. On the
other hand, until recently, the Harmonic superspace for-
malism has been the only choice when doing quantum
computations in Yang-Mills theory. A careful comparison
between the harmonic and the projective approach can be
found in [23,24].
Recently a hybrid formalism between the projective and

harmonic superspaces has been constructed [25–29] called
hyperspace. Using these new tools the authors were able to
derive several new results for projective superspace, in
particular for non-Abelian Yang-Mills theory formulated in
projective superspace.
In this paper we rederive and extend these results based on

a purely projective superspace formalism. In particular we
derive an expression for the Yang-Mills field strength in
terms of the gauge prepotential superfield and show that it has
the correct properties. We explicitly show that this Yang-
Mills action agrees with the action derived from a one-loop
computation with a hypermultiplet running in the loop. We
furthermore show that in the Abelian limit, our expressions
reduce to known expressions in projective superspace.
The paper is organized as follows: In the next section we

give our conventions and review the basic facts about Yang-
Mills theory in projective superspace. In Sec. III we express
the connection coefficients, and hence the field strength, in
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terms of the gauge prepotential and in Sec. IV we show that
these objects transform correctly. Using these results, in
Sec. V we prove that the one-loop form of the action agrees
with the action constructed using the field strength super-
field and finally in Sec. VI we show that our construction
correctly reduces to known results in the Abelian limit. In
three appendices we review known results that nevertheless
are crucial for this paper; we show how from extracting the
divergent part of a one loop calculation with a hyper-
multiplet coupled to a background gauge field, we can
extract a closed form for the Yang-Mills action expressed in
terms of a projective prepotential. In Appendix B it is
shown that the derived action is gauge invariant. This form
of the action is used in the paper as a check on our
expression for the field strength. In the final appendix we
discuss aspects of the ϵ-prescription introduced in [25]
which is an integral part of the techniques used to prove the
results of this article.

II. SETUP AND CONVENTIONS

The N ¼ 2 algebra of super covariant derivatives is
given by

fDa
α; Db

βg ¼ 0; fDa
α; Db _αg ¼ δabi∂α _α: ð1Þ

In the following we will use the notation D≡D1 and
Q≡D2. In order to be able to construct actions without
higher derivatives we need to define an anticommuting
subalgebra of four supercovariant derivatives which can
then be used to constrain the physical superfields. We do
this by introducing a coordinate on an auxiliary CP1

manifold ζ and using this coordinate we construct the
supercovariant derivatives

∇α ¼ Dα þ ζQα; ∇ _α ¼ Q _α − ζD _α; ð2Þ

from which follows that f∇α;∇βg ¼ 0 ¼ f∇α;∇ _αg. We
may furthermore define a second, linearly independent, set
of supercovariant derivatives

Δα ¼ Qα −
1

ζ
Dα; Δ _α ¼ Dα þ

1

ζ
Q _α; ð3Þ

which also anticommute among themselves. The only
nonzero anti commutators are

f∇α;Δ _αg ¼ fΔα;∇ _αg ¼ 2i∂α _α: ð4Þ

Physical superfields are annihilated by all the ∇ and ∇
derivatives; we call such superfields projective superfields.
By choosing the ζ dependence of the superfields we get
different representations.
Among the matter multiplets we define the OðkÞ

multiplets whose ζ dependence is given by the fact that

they transform as section of the OðkÞ complex line bundle
on CP1.
We also define the Polar multiplet ðϒ;ϒÞ where ϒðζÞ is

analytic around the north pole and hence called “arctic”
whileϒðζÞ is analytic around the south pole and thus called
“antarctic.”
Finally we also consider superfields with ζ dependence

singular both at the north and south pole which we
accordingly call “tropical.”
Conjugation in projective superspace is defined by

combining Hermitian conjugation with the antipodal
map on CP1

fðζÞ ¼ ζpf�
�
−
1

ζ

�
; ð5Þ

where the number p is determined by the representation.

A. Measures

The fullN ¼ 2 superspace measure is constructed by an
integral over all Grassmann coordinates d8θ ¼ D2Q2D2Q2

as well as an integral over space d4x and a contour integral
on CP1. In this paper the contour integral measure will
always have a factor of 2πi in the denominator which we, to
avoid cluttering, will suppress in all subsequent formulasI

dζ
2πi

→
I

dζ: ð6Þ

To avoid higher derivatives, physical actions will be
constructed using projective superfields and consequently
integrated over only half of the Grassmann coordinates.
Since projective superfields are annihilated by ∇;∇ we
define the measure (up to a ζ dependent factor) as
Δ2Δ2 ¼ Δ4. However, since

Δα ¼
1

ζ
∇α −

2

ζ
Dα; Δα ¼

1

ζ
∇α þ 2Dα; ð7Þ

we may always write Δ4 ∝ D2D2 when acting on a
projective Lagrangian. Therefore we will define the pro-
jective measure asI

dζ
Z

d4x
Z

½d4θ�P ¼
I

dζ
Z

d4xD2D2: ð8Þ

For instance, the action for a polar hypermultiplet is given byZ
d4x

Z
½d4θ�P

I
dζ
ζ
ϒϒ: ð9Þ

Finallywewill also deal withN ¼ 2 chiral fields. A chiral
fieldF satisfies the constraintD _αF ¼ Q _αF ¼ 0which, using
the projective supercovariant derivatives, can be written
∇ _αF ¼ Δ _αF ¼ 0. We may construct N ¼ 2 superpotential
terms using the N ¼ 2 chiral measure as
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I
dζ

Z
d4x

Z
½d4θ�CfðFÞ ¼

I
dζ

Z
d4xD2Q2fðFÞ:

ð10Þ

The chiral field we will deal with in this article is theN ¼ 2

field strengthW which however isN ¼ 2 gauge covariantly
chiral. In that case, the action for superYang-Mills theory can
be written as

1

2

Z
d4x

Z
½d4θ�C

I
dζ
ζ
TrðWWÞ; ð11Þ

where the measure is constructed using the gauge super-
covariant derivatives and the ζ integral is trivial sinceW is ζ
independent.

B. Yang-Mills theory in projective superspace

The N ¼ 2 algebra of super gauge covariant derivatives
is given by2

fDα;Qβg¼ iCαβW; fDα;D _αg¼ i∇α _α; fQα;Q _αg¼ i∇α _α;

ð12Þ

where W is the N ¼ 2 field strength. A Bianchi identity
shows it is antichiral DαW ¼ QαW ¼ 0. The gauge covar-
iant projective superspace derivatives are constructed as

∇α ¼ Dα þ ζQα; ∇ _α ¼ Q _α − ζD _α;

Δα ¼ Qα −
1

ζ
Dα; Δ _α ¼ Dα þ

1

ζ
Q _α; ð13Þ

and it is interesting to notice that the ∇ derivatives
still anticommute among themselves. The field strength
appears only if we anticommute derivatives at different
ζ coordinates

f∇αðζ1Þ;∇βðζ2Þg ¼ iðζ2 − ζ1ÞCαβW; ð14Þ

or by introducing the ζ derivative ∂ζ as

f∇α; ½∂ζ;∇β�g ¼ iCαβW: ð15Þ

By construction ∇αW ¼ 0. Furthermore, using (15)
there is a Bianchi identity that relates W and W as
∇2W ¼ ∇2W.
The polar multiplets can be made to transform under a

gauge transformation as

ϒ → eiΛϒ;

ϒ → ϒe−iΛ: ð16Þ

The gauge parameters areN ¼ 2 superfields but need to be
constrained to respect the constraints of the transforming
field. Thus Λ is arctic projective and Λ is antarctic
projective. Precisely in analogy with N ¼ 1 super Yang-
Mills theory, to make an invariant action we introduce a real
projective superfield V that converts Λ gauge transforma-
tions to Λ gauge transformations (and the reverse). The
simply transforming object is eV with the transformation
properties

eV → eiΛeVe−iΛ: ð17Þ

From the transformation it is clear that V has to have
tropical dependence on ζ.
Using eV as a converter we can make all fields transform

with only the arctic Λ-parameter

ϒ̃≡ϒ → eiΛϒ̃;

ϒ̃≡ϒeV → ϒ̃e−iΛ; ð18Þ

or with the antarctic Λ-parameter

ϒ̃≡ eVϒ → eiΛϒ̃;

ϒ̃≡ϒ → ϒ̃e−iΛ: ð19Þ

These choices will be called the gauge arctic or gauge
antarctic representation, respectively. Note that both ∇ and
∇ are covariant in the arctic and antarctic representations
without any additional connection coefficient since both Λ
and Λ are projective.
We may finally define the gauge vector representation

where the fields transform with a real, ζ-independent
superfield K. We achieve this by splitting eV into its arctic
and antarctic parts

eV ¼ eUeU; ð20Þ

where U is arctic and U is antarctic while neither of them
are projective, and transforming under supergauge trans-
formations as

eU → eiKeUe−iΛ;

eU → eiΛeUe−iK; ð21Þ
and then defining the covariantly transforming superfields as

ϒ̃≡ eUϒ → eiKϒ̃;

ϒ̃≡ϒeU → ϒ̃e−iK: ð22Þ
2Many results in this section have appeared before in

[8,9,30,31].
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They are gauge covariantly projective since they are annihi-
lated by the gauge covariant derivatives

∇α ¼ eU∇αe−U ¼ e−U∇αeU;

∇ _α ¼ eU∇ _αe−U ¼ e−U∇ _αeU: ð23Þ

The fact that ∇α (∇ _α) can be written purely in terms of either
U or U follows from V being projective which allows us to
write

0 ¼ ∇αeV ¼ ð∇αeUÞeU þ eUð∇αeUÞ; ð24Þ

whichwhenmultiplied by e−U from the left and e−U from the
right gives (23) and allows us to identify the spinorial gauge
connection

ΓαðζÞ ¼ eUð∇αe−UÞ ¼ e−Uð∇αeUÞ: ð25Þ

SinceU is arctic, from the first relation we deduce that ΓαðζÞ
contains no negative powers of ζ. At the same time, sinceU is
antarctic, the second relation tells us that ΓαðζÞ contains only
negative powers of ζ as well as a constant term and a linear
term. We conclude that ΓαðζÞ only has a constant and linear
term Γα ¼ Γ1

α þ ζΓ2
α so that

Dα ¼ Dα þ Γ1
α;

Qα ¼ Qα þ Γ2
α: ð26Þ

The field strength can be written

W ¼ i
2
ðDαΓ2

α −QαΓ1
α þ fΓ1α;Γ2

αgÞ: ð27Þ

To find the field strength in the arctic or antarctic
representations we start with relation (15) and conjugate

it with either eU to get the arctic representation or eU to get
the antarctic representation

f∇α; ½e−U∂ζeU;∇β�g ¼ iCαβe−UWeU;

f∇α; ½eU∂ζe−U;∇β�g ¼ iCαβeUWe−U: ð28Þ

In the arctic representation we thus define the gauge
covariant ζ-derivative and the field strength as

Dζ ¼ ∂ζ þ Aζ ¼ e−U∂ζeU;

WðζÞ ¼ e−UWeU; ð29Þ

whereas for the antarctic representation we define

D̃ζ ¼ ∂ζ þ Ãζ ¼ eU∂ζe−U;

fWðζÞ ¼ eUWe−U: ð30Þ

From (28) we find that

W ¼ −i∇2Aζ;

fW ¼ −i∇2Ãζ; ð31Þ

and similarly

W ¼ −i∇2Aζ;fW ¼ −i∇2Ãζ: ð32Þ

We notice that the constraints and Bianchi identity derived
from (15) and rewritten in the arctic (antarctic) representa-
tion are automatically satisfied by these expressions.

Notice that WðζÞ depends arctically on ζ whereas fW
depends antarctically. Furthermore Aζ contains all positive
powers of ζ as well as a constant term while Ãζ contains
powers of ζ smaller or equal than −2.
Finally we notice that there is a relation between Aζ and

Ãζ involving only eV since

e−Vð∂ζeVÞ ¼ e−Uð∂ζeUÞ þ e−Ue−Uð∂ζeUÞeU
¼ Aζ − e−VÃζeV: ð33Þ

In the rest of the paper we will be working mainly in the
arctic representation.

III. THE GAUGE POTENTIAL Aζ

What we really would like to do is to express Aζ in terms
of V. One way to do this would be to use (33) to write

∂ζðeV − 1Þ ¼ Aζ − Ãζ þ ðeV − 1ÞAζ − ÃζðeV − 1Þ: ð34Þ

We may now solve this equation recursively in powers of

X ≡ ðeV − 1Þ. We introduce the notation that AðnÞ
ζ is the

part of Aζ proportional to n powers of X. Then we get a
recursion relation

Að1Þ
ζ − Ãð1Þ

ζ ¼ ∂ζX;

Aðnþ1Þ
ζ − Ãðnþ1Þ

ζ ¼ −XAðnÞ
ζ þ ÃðnÞ

ζ Xn ≥ 1: ð35Þ

To find the individual AðnÞ
ζ or ÃðnÞ

ζ one has to project on
positive or negative powers of ζ. Introducing the operators
Π�ð·Þ that project onto positive (including the constant
term) or negative powers of ζ, this leads to the following
solution for Aζ
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Að1Þ
ζ ¼ Πþð∂ζXÞ;

Að2Þ
ζ ¼ −ΠþðXΠþð∂ζXÞ þ Π−ð∂ζXÞXÞ;

Að3Þ
ζ ¼ Πþ½XΠþðXΠþð∂ζXÞÞ þ Π−ðXΠþð∂ζXÞÞX

þXΠþðΠ−ð∂ζXÞXÞÞ þ Π−ðΠ−ð∂ζXÞXÞX�;
Að4Þ
ζ ¼ …; ð36Þ

and for Ãζ

Ãð1Þ
ζ ¼ −Π−ð∂ζXÞ;

Ãð2Þ
ζ ¼ Π−ðXΠþð∂ζXÞ þ Π−ð∂ζXÞXÞ;

Ãð3Þ
ζ ¼ −Π−½XΠþðXΠþð∂ζXÞÞ þ Π−ðXΠþð∂ζXÞÞX

þXΠþðΠ−ð∂ζXÞXÞÞ þ Π−ðΠ−ð∂ζXÞXÞX�;
Ãð4Þ
ζ ¼ …: ð37Þ

From the recursion relation it is easy to see that AðnÞ
ζ − ÃðnÞ

ζ

will have an overall ð−1Þnþ1 sign and will consist of a sum
of all possible terms starting with the ∂ζX which is then
projected either on the positive or negative powers of ζ
followed by a multiplication with X from the left if the
previous projection was on positive powers but from the
right if the projection was on negative powers. This
procedure is continued until we reach n factors of X.
Using the ϵ prescription introduced in [25] and

described in the appendix we can express the projection

operators in terms of contour integrals. In particular
we have

Πþð∂ζXÞðζ0Þ ¼
Z

dζ1
X1

ζ210
; ð38Þ

Π−ð∂ζXÞðζ0Þ ¼ −
Z

dζ1
X1

ζ201
; ð39Þ

we may write the first term in the solution as

Að1Þ
ζ ¼

Z
dζ1

X1

ζ210
; ð40Þ

Ãð1Þ
ζ ¼

Z
dζ1

X1

ζ201
: ð41Þ

For arbitrary n we show that the solution to the recursion
relation is

AðnÞ
ζ ðζ0Þ ¼ ð−1Þnþ1

Z
dζ1…

Z
dζn

X1…Xn

ζ10ζ21…ζn;n−1ζn0
;

ð42Þ
ÃðnÞ
ζ ðζ0Þ ¼ ð−1Þnþ1

Z
dζ1…

Z
dζn

X1…Xn

ζ01ζ21…ζn;n−1ζ0n
;

ð43Þ
by assuming this to be true and then showing that, when

inserted into (35), this implies the same relation for Aðnþ1Þ
ζ .

We have

Aðnþ1Þ
ζ ðζ0Þ ¼ ð−1Þnþ1

Z
dζ1

1

ζ10

�
−X1

Z
dζ2…

Z
dζnþ1

X2…Xnþ1

ζ21ζ32…ζnþ1;nζnþ1;1

þ
Z

dζ2…
Z

dζnþ1

X2…Xnþ1

ζ12ζ32…ζnþ1;nζ1;nþ1

X1

�
: ð44Þ

After relabeling the ζ coordinates we may write this as

Aðnþ1Þ
ζ ðζ0Þ ¼ ð−1Þnþ1

Z
dζ1…

Z
dζnþ1

X1…Xnþ1

ζ21…ζnþ1;n

�
−

1

ζ10ζnþ1;1
þ 1

ζnþ1;1ζnþ1;0

�
; ð45Þ

which, using the ζ identity (C5), can be rewritten as

Aðnþ1Þ
ζ ðζ0Þ ¼ ð−1Þnþ2

Z
dζ1…

Z
dζnþ1

X1…Xnþ1

ζ21…ζnþ1;n

1

ζ10ζnþ1;0
; ð46Þ

which indeed is the correct form.
Notice that the solution forAζ is very close but not identical to the form conjectured in [28]. There the authors remarked that

their solutiondidnot transformcorrectly as a connection.Wenowproceed to show that our solutiondoes transformas expected.

IV. TRANSFORMATION PROPERTIES OF Aζ UNDER GAUGE TRANSFORMATIONS

We prove that our solution for Aζ transforms correctly under infinitesimal gauge transformations

Aζ → −i∂ζΛþ ½iΛ; Aζ�; Ãζ → −i∂ζΛþ ½iΛ; Ãζ�: ð47Þ
We will organize the proof using induction in powers of X. Under infinitesimal gauge transformations X transforms as

X → iΛ − iΛþ iΛX − XiΛ: ð48Þ
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From the explicit solution (36) we see that

δAð1Þ
ζ ¼ Πþði∂ζΛ − i∂ζΛþ ∂ζðiΛX − XiΛÞÞ ¼ −i∂ζΛþ Πþð∂ζðiΛXÞ − ∂ζðXiΛÞÞ;

δÃð1Þ
ζ ¼ −Π−ði∂ζΛ − i∂ζΛþ ∂ζðiΛX − XiΛÞÞ ¼ −i∂ζΛ − Π−ð∂ζðiΛX − XiΛÞÞ;

δAð2Þ
ζ ¼ −Πþ½ðiΛ − iΛÞAð1Þ − Ãð1Þ

ζ ðiΛ − iΛÞ − Xi∂ζΛþ i∂ζΛX� þOðX2Þ;
δÃð2Þ

ζ ¼ Π−½ðiΛ − iΛÞAð1Þ − Ãð1Þ
ζ ðiΛ − iΛÞ − Xi∂ζΛþ i∂ζΛX� þOðX2Þ; ð49Þ

wherewe have concentrated on terms independent of or linear inX. It is clear that theX independent part of δAð1Þ
ζ and δÃð1Þ

ζ in

(35) gives the−i∂ζΛ and−i∂ζΛ term in the transformation. Furthermore, whenwe add terms linearly dependent onX we find

δAð2Þ
ζ þ δAð1Þ

ζ ¼ ½iΛ; Að1Þ
ζ � þOðX2Þ; δÃð2Þ

ζ þ δÃð1Þ
ζ ¼ ½iΛ; Að1Þ

ζ � þOðX2Þ: ð50Þ
Using the notation that ½…�ðnÞ picks out terms with precisely n powers of X we now assume that

½δAðnÞ
ζ þ δAðn−1Þ

ζ �ðn−1Þ ¼ ½iΛ; Aðn−1Þ
ζ �; ð51Þ

½δÃðnÞ
ζ þ δÃðn−1Þ

ζ �ðn−1Þ ¼ ½iΛ; Ãðn−1Þ
ζ �; ð52Þ

which we just showed is true for n ¼ 2. From the recursion relation for AðnÞ
ζ (35) we have

δAðnÞ
ζ − δÃðnÞ

ζ ¼ −δXAðn−1Þ
ζ − XδAðn−1Þ

ζ þ δÃðn−1Þ
ζ X þ Ãðn−1Þ

ζ δX; ð53Þ
which gives us

½δAðnÞ
ζ − δÃðnÞ

ζ �ðnÞ ¼ −ðiΛX − XiΛÞAðn−1Þ
ζ þ Ãðn−1Þ

ζ ðiΛX − XiΛÞ þ ½−XδAðn−1Þ
ζ þ δÃðn−1Þ

ζ X�ðnÞ; ð54Þ

½δAðnþ1Þ
ζ − δÃðnþ1Þ

ζ �ðnÞ ¼ −ðiΛ − iΛÞAðnÞ
ζ þ ÃðnÞ

ζ ðiΛ − iΛÞ þ ½−XδAðnÞ
ζ þ δÃðnÞ

ζ X�ðnÞ: ð55Þ
This leads to

½δAðnþ1Þ
ζ þδAðnÞ

ζ − δÃðnþ1Þ
ζ − δÃðnÞ

ζ �ðnÞ ¼ −ðiΛX − XiΛÞAðn−1Þ
ζ þ Ãðn−1Þ

ζ ðiΛX − XiΛÞ − ðiΛ − iΛÞAðnÞ
ζ þ ÃðnÞ

ζ ðiΛ − iΛÞ
− X½δAðnÞ

ζ þ δAðn−1Þ
ζ �ðnÞ þ ½δÃðnÞ

ζ þ δÃðn−1Þ
ζ �ðnÞX; ð56Þ

which, after using the assumption (51) can be written as

− ðiΛX − XiΛÞAðn−1Þ
ζ þ Ãðn−1Þ

ζ ðiΛX − XiΛÞ − ðiΛ − iΛÞAðnÞ
ζ þ ÃðnÞ

ζ ðiΛ − iΛÞ − X½iΛ; Aðn−1Þ
ζ � þ ½iΛ; Ãðn−1Þ

ζ �X
¼ fXAðn−1Þ

ζ − Ãðn−1Þ
ζ X − ÃðnÞ

ζ giΛþ iΛf−XAðn−1Þ
ζ þ Ãðn−1Þ

ζ X − AðnÞ
ζ g þ iΛAðnÞ

ζ þ ÃðnÞ
ζ iΛ; ð57Þ

and after using the AðnÞ
ζ recursion relation (35) we get

½δAðnþ1Þ
ζ þδAðnÞ

ζ − δÃðnþ1Þ
ζ − δÃðnÞ

ζ �ðnÞ ¼ ½iΛ; AðnÞ
ζ � − ½iΛ; ÃðnÞ

ζ �: ð58Þ
After projecting on positive and negative powers of ζ we find what we need to prove the recursion relation. Then the full Aζ

transforms as

δAζ ¼
X∞
n¼1

δAðnÞ
ζ ¼

X∞
n¼1

½δAðnÞ
ζ �ðn−1Þ þ

X∞
n¼1

½δAðnÞ
ζ �ðnÞ ¼ ½δAð1Þ

ζ �ð0Þ þ
X∞
n¼1

½δAðnþ1Þ
ζ þ δAðnÞ

ζ �ðnÞ ¼ −i∂ζΛþ ½iΛ; Aζ�; ð59Þ

showing the correct transformation properties.

V. A PROOF OF THE EQUIVALENCE OF THE ACTIONS

We are now in position to show that the standard action agrees with the one-loop calculation derived in the Appendix.

ARIUNZUL DAVGADORJ and RIKARD VON UNGE PHYS. REV. D 97, 105017 (2018)

105017-6



A. Equations of motion

An indirect way of showing this would be to show that the one-loop action (A9) leads to the correct equations of motion

∇2W ¼ 0: ð60Þ
Starting from the variation of the action (A9)

δS ¼
X∞
n¼2

ð−1Þn
Z

d8θ
I

dζ1…dζn
TrðδX1X2…XnÞ
ζ21…ζn;n−1ζ1n

; ð61Þ

we use the identity (C4) on the 1
ζ1n

factor to write

δS¼
X∞
n¼2

ð−1Þn
Z

d8θ
I

dζ1…dζn
TrðδX1X2…XnÞ
ζ21…ζn;n−1

�
δn1−

1

ζn1

�

¼
X∞
n¼2

ð−1Þn
Z

d8θ
I

dζ1…dζn−1
TrðδX1X2…Xn−1X1Þ

ζ21…ζ1;n−1
þ
X∞
n¼2

Z
d8θ

I
dζ1TrðδX1A

ðn−1Þ
1 Þ; ð62Þ

where we introduced the shorthand notation Ai ≡ AζðζiÞ. Repeating the last operation (n − 1) times we find

δS ¼
X∞
n¼2

Z
d8θ

I
dζ1

Xn−1
k¼1

ð−1Þkþ1TrðδX1A
ðn−kÞ
1 Xk−1

1 Þ þ
X∞
n¼2

ð−1Þn
Z

d8θ
I

dζ1dζ2
TrðδX1Xn−1

1 Þ
ζ21

δ12; ð63Þ

where the last term, although singular when doing the remaining ζ integrals, actually vanishes when doing the d8θ integral
since it is projective.
It is possible to switch the order of the sums

δS ¼
X∞
k¼1

X∞
n¼kþ1

Z
d8θ

I
dζ1ð−1Þkþ1TrðδX1A

ðn−kÞ
1 Xk−1

1 Þ

¼
X∞
k¼0

X∞
n¼1

Z
d8θ

I
dζ1ð−1ÞkTrðδX1A

ðnÞ
1 Xk

1Þ ¼
Z

d8θ
I

dζ1TrðδX1A1ð1þ X1Þ−1Þ: ð64Þ

Since ð1þ XÞ−1 ¼ e−V we get the final result

δS ¼
Z

d8θ
I

dζ1Trðe−V1δeV1A1Þ: ð65Þ

This is in fact precisely what we need since in distinction to the variation δV, the expression e−VδeV is gauge covariant and
leads to covariant field equations. However, it is still constrained since V is a projective superfield. We know that a
projective superfield can be written in terms of a potential X as ∇2∇2X and thus using integration by parts we derive the
covariant field equations (60).

B. A direct proof

The Yang-Mills action is given by (11). It is not obvious how it is related to the one-loop action (A9) although we know
this has to be the case. We will now present a direct proof of this fact. The N ¼ 2 Yang-Mills theory action is

S ¼ 1

2

Z
½d4θ�CTrðWWÞ ¼ 1

2

Z
½d4θ�C

Z
dζ0

TrðW0W0Þ
ζ0

¼ −
1

2

Z
½d4θ�C

Z
dζ0

Trð∇2
0A0∇2

0A0Þ
ζ0

¼ 1

4

Z
½d4θ�C

Z
dζ0∇2

0

Trð∇α
0A0∇0αA0Þ
ζ0

¼ 1

4

X∞
n¼2

Xn−1
k¼1

Z
½d4θ�C

Z
dζ0∇2

0

Trð∇α
0A

ðkÞ
0 ∇0αA

ðn−kÞ
0 Þ

ζ0
; ð66Þ

where we have written the action as an expansion in terms of powers of X ¼ ðeV − 1Þ. To show that this is the same action as
the action (A9) that we got from the one-loop calculation, we will reduce both to a convenient form.
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We start with (66). Apart from the explicit 1
ζ0
factor there are only positive powers of ζ0 in the action. Thus the ζ0 integral

can be trivially performed with the result

1

4

X∞
n¼2

ð−1Þn
Xn−1
k¼1

Z
½d4θ�C

I
dζ1…dζnD2Tr

�
DαðX1…XkÞ

ζ1ζ21…ζk;k−1ζk

DαðXkþ1…XnÞ
ζkþ1ζkþ2;kþ1…ζn;n−1ζn

�
; ð67Þ

where we have also expressed AðnÞ in terms of X using (42). Acting with the D derivatives and collecting terms of the same
type (that is where the two supercovariant D derivatives act on the same two X) we find that terms proportional to
TrðX1…DαXk…DαXmþk−1…XnÞ come with a ζ dependence of

1

ζ21…ζn;n−1ζ1n

ðζ1 − ζnÞ
ζ1ζn

Xmþk−2

r¼k

ðζrþ1 − ζrÞ
ζrþ1ζr

¼ 1

ζ21…ζn;n−1ζ1n

ðζ1 − ζnÞ
ζ1ζn

ðζmþk−1 − ζkÞ
ζmþk−1ζk

: ð68Þ

When we finally use the cyclicity of the trace and relabel the ζ coordinates such that the Dα always act on X1 and sum over
all terms of the same type we reach the final form

S ¼ −
1

4

X∞
n¼2

ð−1Þn
Xn
m¼2

Z
½d4θ�C

I
dζ1…dζnD2

TrðDαX1…DαXm…XnÞÞ
ζ21…ζn;n−1ζ1n

ðζ1 − ζmÞ2
ζ21ζ

2
m

; ð69Þ

which is the final expression we would like to use for comparison.
If we on the other hand start with the one-loop action (A9) we begin by pushing in part of the fermionic measure and

using the cyclicity of the trace to write

X∞
n¼2

ð−1Þn
n

Z
½d4θ�C

I
dζ1…dζnD2Q2

TrðX1…XnÞ
ζ21…ζ1n

¼
X∞
n¼2

ð−1Þn
Z

½d4θ�C
I

dζ1…dζn
D2

ζ21…ζ1n

�
TrðQ2X1…XnÞ

þ
Xn
m¼2

n −mþ 1

n
TrðQαX1…QαXm…XnÞ

�
: ð70Þ

We convert all Q derivatives to D derivatives using that the X fields are projective

X∞
n¼2

ð−1Þn
Z

½d4θ�C
I

dζ1…dζn
D2

ζ21…ζ1n

�
1

ζ21
TrðD2X1…XnÞþ

Xn
m¼2

n −mþ 1

n
1

ζ1ζm
TrðDαX1…DαXm…XnÞ

�
: ð71Þ

In the first term we integrate one of the Dα by parts

X∞
n¼2

ð−1Þn
Z

½d4θ�C
I

dζ1…dζn
D2

ζ21…ζ1n

Xn
m¼2

2ðn −mþ 1Þζ1 − nζm
2n

1

ζ21ζm
TrðDαX1…DαXm…XnÞ: ð72Þ

Two different terms where theDα derivative acts on Xm or Xm0 respectively, in the case whenmþm0 ¼ nþ 2, can be made
of the same type by using the cyclicity of the trace and cyclic relabeling of the ζ coordinates. Using this identification to
“symmetrize” the coefficients we get

−
1

4

X∞
n¼2

ð−1Þn
Xn
m¼2

Z
½d4θ�C

I
dζ1…dζn

D2

ζ21…ζ1n

ðζ1 − ζmÞ2
ζ21ζ

2
m

TrðDαX1…DαXm…XnÞ; ð73Þ

which completely agrees with the expression (69) derived from (66).

VI. THE ABELIAN LIMIT

A simple consistency check on the result is to go to the Abelian limit and compare with the known form [9]. In the case
where the gauge group is Abelian the recursion relation (35) can be written as
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Að1Þ
ζ − Ãð1Þ

ζ ¼ ∂ζX;

Aðnþ1Þ
ζ − Ãðnþ1Þ

ζ ¼ −XðAðnÞ
ζ − ÃðnÞ

ζ Þ n ≥ 1; ð74Þ

with the simple solution

Aðnþ1Þ
ζ − Ãðnþ1Þ

ζ ¼ ð−1ÞnXn∂ζX; ð75Þ

which directly sums to

Aζ − Ãζ ¼ ð1þ XÞ−1∂ζX ¼ ∂ζ lnð1þ XÞ ¼ ∂ζV; ð76Þ

where we used that X ¼ eV − 1.
Starting from the action (A9) and using relation (65) we

find

S ¼
X
n

ð−1Þn
n

Z
d8θ

I
dζ1…dζn

ðX1…XnÞ
ζ21…ζ1n

¼
Z

½d4θ�C
I

dζ1
1

2
D2QαðA1ðe−VQαeVÞ1Þ

¼
Z

½d4θ�C
I

dζ1dζ2
1

2
D2Qα V2QαV1

ζ221

¼
Z

½d4θ�C
I

dζ1dζ2
1

2
D2Qα V2QαV1

ζ21

�
δ12 −

1

ζ12

�

¼
Z

½d4θ�C
I

dζ1dζ2
1

2
D2Q2

V2
1

ζ21
δ12

−
Z

½d4θ�C
I

dζ1dζ2
1

2
D2Qα V2QαV1

ζ21ζ12
: ð77Þ

The first term vanishes since one can write 4D2Q2 ¼ Δ2
1∇2

1

which gives zero when acting on the projective field V2
1.

The second term can be symmetrized in ζ1 and ζ2 to give

−
1

4

Z
½d4θ�C

I
dζ1dζ2D2Qα V2QαV1 þ V1QαV2

ζ21ζ12
; ð78Þ

which gives

−
1

2

Z
½d4θ�C

I
dζ1dζ2D2Q2

V1V2

ζ21ζ12
; ð79Þ

which agrees with the known action in the Abelian case [9].

VII. DISCUSSION

We have found the kinetic term and interaction vertices
forN ¼ 2 supersymmetric Yang-Mills theory in projective
superspace written in terms of the prepotential. Many of
these results were already known but derived in a hybrid
formalism between projective and harmonic superspace
[25]. Here all calculations have been performed purely in
projective superspace. We have also derived several new
results including the construction of the connection

coefficient Aζ (and thus the field strength W ¼ −i∇2Aζ)
in terms of V. As a consistency check we showed that our
solution transforms correctly as a connection. We then used
our solution in a direct proof that the action constructed
from the divergent part of a one-loop calculation with a
hypermultiplet running in the loop is equivalent to the
action constructed using the field strength. As a check we
showed that the action reduces to the known form in the
Abelian limit, something which is not at all obvious
without using our solution.
Although the proofs in this paper were quite technical in

nature the results themselves are simple and straightfor-
ward. We are convinced that the results and the techniques
developed to prove them will be useful in the further
development of gauge theory in projective superspace.
More concretely, with these new results it is now possible to
continue with the quantization of the theory. We will
continue the work started in [9] for the Abelian theory
by investigating the gauge fixing and the derivation of the
propagator and interaction terms for the full non-Abelian
theory.
We believe it to be of great importance to further develop

Yang-Mills theory in projective superspace as a compli-
mentary tool for manifest N ¼ 2 calculations. The ϵ
prescription introduced in [25] gives an unambiguous
method for how to deal with the CP1 integrals as compared
with the treacherous coinciding harmonic singularities
encountered in harmonic superspace [32]. The methods
developed in this paper will allow us to independently
check results derived in harmonic superspace where it is
possible that problems of the type described above have led
to erroneous results. We will also be able to proceed in
situations where the harmonic formalism is too complicated
and where projective superspace offers a simpler descrip-
tion. One such example is given by superconformal models
of tensor multiplets where the projective superspace for-
malism is clearly superior. The results of this paper will also
be necessary for studying gauge theories with eight super-
charges in other dimensions. We are planning to apply our
formalism to the six dimensional case as well as the case of
ð4; pÞ supersymmetry in two dimensions.
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APPENDIX A: THE KINETIC TERM FROM A
ONE-LOOP CALCULATION

One way to identify the kinetic term of the theory is to
compute the contribution to the Yang-Mills effective action

N ¼ 2 SUPER YANG-MILLS THEORY IN … PHYS. REV. D 97, 105017 (2018)

105017-9



from a matter multiplet. The divergent part of the one-loop
contribution has to be gauge invariant and proportional to
the kinetic term for the result to be absorbed in a
renormalization of the gauge coupling constant.
In projective superspace the interaction between a vector

multiplet and a hypermultiplet is through the term

Z
½d4θ�P

dζ
ζ
ϒeVϒ ¼

Z
½d4θ�P

dζ
ζ
ðϒϒþϒðeV − 1ÞϒÞ:

ðA1Þ

This gives rise to an interaction vertex

where we need to remember that the vertex comes with a
½d4θ�P integral.
The polar propagator is [10]

< ϒð1Þϒð2Þ >

¼ −
1

ζ21

X∞
n¼0

�
ζ2
ζ1

�
n ∇4

1∇4
2

ðζ1 − ζ2Þ2□
δ4ðx1 − x2Þδ8ðθ1 − θ2Þ;

ðA2Þ

< ϒð1Þϒð2Þ >

¼ −
1

ζ22

X∞
n¼0

�
ζ1
ζ2

�
n ∇4

1∇4
2

ðζ1 − ζ2Þ2□
δ4ðx1 − x2Þδ8ðθ1 − θ2Þ;

ðA3Þ

where we will denote the direction of a propagator with an
arrow. Using this we can compute the one loop Feynman
diagram with a hypermultiplet in the loop and factors of
ðeV − 1Þ as external lines.

For a diagram with k vertices we begin by performing the
D-algebra. First we need to complete the ½d4θ�P measure of
each vertex into a full superspace measure. This is done by
absorbing a ∇4 from the propagator. Using that
½d4θ�P∇4 ¼ d8θζ2. The ζ2 factor will cancel the 1

ζ2
in each

propagator.
If we are looking for the most divergent contribution, as

many ∇ derivatives as possible have to stay inside the loop
to cancel as many 1

□
operators as possible. Using the

identity

δ8ðθ12Þ∇4
1…∇4

kδ
8ðθ21Þ

¼ □
k−2ðζ1 − ζ2Þ2…ðζk − ζ1Þ2δ8ðθ1 − θ2Þ; ðA4Þ

all the ðζi − ζiþ1Þ2 cancel against the corresponding factors
in the propagators. What is left is

1

□
2

ð−1Þn
n

Z
d8θ

dζ1
ζ1

…
dζn
ζn

X∞
k1¼0

�
ζ1
ζ2

�
k1
…

X∞
kn¼0

�
ζn
ζ1

�
kn
TrððeV − 1Þ1…ðeV − 1ÞnÞ; ðA5Þ

where the index k in ðeV − 1Þk indicates that the superfield
depends on ζk (all the x and θ dependence is the same).
In the case that jζ1j < jζ2j we can explicitly do the

first sum

1

ζ2

X∞
k1¼0

�
ζ1
ζ2

�
k1 ¼ 1

ζ2 − ζ1
: ðA6Þ

Assuming that jζij < jζiþ1j is always fulfilled we may
continue to do the sums until we get to the final one where
we have to assume that jζnj < jζ1j which is clearly
impossible. In order to write all the sums as factors of
the type 1

ζiþ1−ζi
Jain and Siegel invented a prescription to

perturb the ζ-coordinates in such a way that the factor
“remembers” from which sum it came [25]. To do this we
think of all ζ-coordinates to be at the same distance from
the origin (take the unit circle for simplicity). Then
we introduce an infinitesimal parameter ϵ that separates
the ζ-coordinates in the required way. We define

1

ζ12
≡ 1

ζ1−ζ2þ ϵðζ1þζ2Þ
¼ 1

ð1þ ϵÞζ1− ð1− ϵÞζ2
¼ 1

ð1þ ϵÞζ1
X∞
n¼0

�ð1−ϵÞζ2
ð1þ ϵÞζ1

�
n
→

1

ζ1

X∞
n¼0

�
ζ2
ζ1

�
n
;

1

ζ21
≡ 1

ζ2−ζ1þ ϵðζ2þζ1Þ
¼ 1

ð1þ ϵÞζ2− ð1− ϵÞζ1
¼ 1

ð1þ ϵÞζ2
X∞
n¼0

�ð1−ϵÞζ1
ð1þ ϵÞζ2

�
n
→

1

ζ2

X∞
n¼0

�
ζ1
ζ2

�
n
: ðA7Þ
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This allows us to keep track of from which type of sum the
factors of 1

ζiþ1−ζi
came from which turns out to be essential

for the calculations. A more thorough discussion of the ϵ
prescription can be found in Appendix C.
Using the ϵ prescription we may write the contribution

concisely as

1

□2

ð−1Þn
n

Z
d8θ

dζ1…dζn
ζ21…ζ1n

TrððeV − 1Þ1…ðeV − 1ÞnÞ:

ðA8Þ
All the fields are at the same x and θ coordinate but at
different ζ coordinates as indicated by the index.
The momentum space integration gives an ultraviolet

divergence through the 1
□

2 term and we draw the conclusion
that the action of the gauge field can be written as

S ¼
X∞
n¼2

ð−1Þn
n

Z
d8θ

dζ1…dζn
ζ21…ζ1n

TrððeV − 1Þ1…ðeV − 1ÞnÞ:

ðA9Þ
This result was first given in [25].
We may equivalently begin withZ

½d4θ�P
dζ
ζ
ϒe−Vϒ; ðA10Þ

where e−V takes values in the complex conjugate repre-
sentation (where the generators are −T⋆

A). Then the propa-
gators will have the ζ-coordinates in the opposite order so
the result becomes

S¼
X∞
n¼2

ð−1Þn
n

Z
d8θ

dζ1…dζn
ζ12…ζn1

Trððe−V −1Þ1…ðe−V−1ÞnÞ:

ðA11Þ

APPENDIX B: GAUGE INVARIANCE
OF THE ACTION

As a further check on the result we may show that the
action computed through the one-loop calculation is gauge
invariant. We will see that the ϵ prescription is essential in
deriving this result.
Starting from the action (A9) where ðeV − 1Þ transforms

under infinitesimal gauge transformations as3

δðeV − 1Þ ¼ iΛ − iΛþ iΛðeV − 1Þ − ðeV − 1ÞiΛ: ðB1Þ

Focusing on the term with n factors of ðeV − 1Þ and using
the cyclicity of the trace as well as relabeling the
ζ-coordinates we can write the gauge transformation as

ð−1ÞnTr
Yn
i¼1

I
dζi

ðiΛ1 − iΛ1ÞðeV − 1Þ2 ·… · ðeV − 1Þn
ζ21 ·… · ζ1n

þ ð−1ÞnTr
Yn
i¼1

I
dζi

ðiΛ1ðeV − 1Þ1 − ðeV − 1Þ1iΛ1ÞðeV − 1Þ2 ·… · ðeV − 1Þn
ζ21 ·… · ζ1n

: ðB2Þ

Starting with the first term we perform the ζ1 contour integral using the ϵ prescription. Since

−
iΛ1ðeV − 1Þ2 ·… · ðeV − 1Þn

ζ21 ·… · ζn;n−1
; ðB3Þ

contains only positive powers of ζ1 (as dictated by the ϵ prescription), we can do the
H
dζ1

1
ζ1n

integral which will just replace
ζ1 with ζn in (B3). Similarly, the term

iΛ1ðeV − 1Þ2 ·… · ðeV − 1Þn
ζ32 ·… · ζ1n

; ðB4Þ

contains only negative powers of ζ1 so we can do the
H
dζ1

1
ζ21

integral which will replace ζ1 with ζ2 in the rest of the
expression. After using the cyclicity of the trace and relabeling the ζ’s the full contribution of the first term in (B2) is

ð−1Þn−1Tr
Yn−1
i¼1

I
dζi

ððeV − 1Þ1iΛ1 − iΛ1ðeV − 1Þ1ÞðeV − 1Þ2 ·… · ðeV − 1Þn−1
ζ21 ·… · ζ1;n−1

: ðB5Þ

3This section reviews results that originally appeared in [25].
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This has the form of the second term in (B2) but with the
opposite sign and one less power of ðeV − 1Þ so these two
contributions will always cancel.
The only piece which does not cancel through

this mechanism comes from the transformation of the
quadratic term

Tr
Z

d8θ
I

dζ1dζ2
ðiΛ1 − iΛ1ÞðeV − 1Þ2

ζ21ζ12
: ðB6Þ

We show that this vanish on each term separately. For
instance, using (C4) on the Λ term we get

Tr
Z

d8θ
I

dζ1dζ2
iΛ1ðeV −1Þ2

ζ21ζ12

¼Tr
Z

d8θ
I

dζ1dζ2
iΛ1ðeV −1Þ2

ζ21

�
δ12−

1

ζ21

�
: ðB7Þ

The first term looks singular when doing the ζ integrals but
vanishes since the integrand can be written as a projective
superfield at a single ζ coordinate. The second term
vanishes when doing the ζ1 integral since it contains only
positive powers of ζ1. There is an analog argument for the
term containing Λ.

APPENDIX C: THE ϵ PRESCRIPTION

The ϵ prescription was introduced in [25] as a way of
remembering where certain factors of 1

ζ12
actually came

from. The notation is the following

1

ζ1

X∞
n¼0

�
ζ2
ζ1

�
n
→

1

ζ12
: ðC1Þ

Conversely we may define

1

ζ12
¼ 1

ζ1 − ζ2 þ ϵðζ1 þ ζ2Þ
: ðC2Þ

When 1
ζ12

appears in a contour integral where all contours
are taken at the same distance from the origin jζ1j ¼ jζ2j,
the ϵ scales the ζ1 → ð1þ ϵÞζ1 and ζ2 → ð1 − ϵÞζ2 so that
1
ζ12

has to be expanded as in (C1) and not the other way

around. In a contour integral the 1
ζ12

factors effectively
function as projection operators on the positive or negative
ζ powers in a projective superfield. For example, if X ¼P∞

n¼−∞ Xnζ
n is a tropical superfield, we may use the above

definition to show that

X∞
n¼0

Xnζ
n
2 ¼

I
dζ1

Xðζ1Þ
ζ12

;

X−1
n¼−∞

Xnζ
n
2 ¼

I
dζ1

Xðζ1Þ
ζ21

: ðC3Þ

There are two relations that we are using repeatedly in
this paper

δ12 ¼
1

ζ12
þ 1

ζ21
; ðC4Þ

1

ζ12ζ23
¼ 1

ζ13ζ23
þ 1

ζ12ζ13
; ðC5Þ

where we again have suppressed a factor 2πi in the delta
function corresponding to the suppressed 1

2πi in the mea-
sure. The relations are most easily proven by inserting them
in a contour integral.
To illustrate how the ϵ prescription works we calculate a

simple example. From the example we also learn that the 1
ζ12

factors depending nontrivially on ϵ can be simply canceled
by non ϵ dependent factors of ðζ1 − ζ2Þ in the numerator. In
this appendix we will indicate the ζ dependence by two
integer upper indices so that

Tðp;qÞ ¼
Xq
k¼p

Tkζ
k; ðC6Þ

whereas a lower integer index will denote the particular
coefficient in the ζ expansion. In general we have

I
dζ1

1

ζ12
Tð0;∞Þðζ1Þ ¼

1

1þ ϵ
Tð0;∞Þ

�
ζ2

1 − ϵ

1þ ϵ

�
; ðC7Þ

I
dζ1

1

ζ21
Tð−∞;−1Þðζ1Þ¼

1

1− ϵ
Tð−∞;−1Þ

�
ζ2
1þ ϵ

1− ϵ

�
: ðC8Þ

Let XðζÞ and YðζÞ be superfields with an arbitrary ζ
dependence. Consider a termI

dζ1dζ2
1

ζ12ζ21
ðζ1 − ζ2Þ2Xðζ1ÞYðζ2Þ: ðC9Þ

Let us do the ζ1 integral. In order to use the relations (C7)
and (C8) we first divide the integrand as

ðζ1 − ζ2Þ2Xðζ1Þ ¼ ½ζ21ðXð−∞;−3Þðζ1Þ þ Xð−2;∞Þðζ1ÞÞ
− 2ζ1ζ2ðXð−∞;−2Þðζ1Þ þ Xð−1;∞Þðζ1ÞÞ
þ ζ22ðXð−∞;−1Þðζ1Þ þ Xð0;∞Þðζ1ÞÞ�:

ðC10Þ

The term with only positive powers (including the constant
term) of ζ1 is

Tð0;∞Þ ¼ 1

ζ21
½ζ21Xð−2;∞Þðζ1Þ − 2ζ1ζ2Xð−1;∞Þðζ1Þ

þ ζ22X
ð0;∞Þðζ1Þ�; ðC11Þ
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and what is left contains only negative powers

Tð−∞;−2Þ ¼ 1

ζ12
½ζ21Xð−∞;−3Þðζ1Þ − 2ζ1ζ2Xð−∞;−2Þðζ1Þ þ ζ22X

ð−∞;−1Þðζ1Þ�: ðC12Þ

Using (C7) and (C8) we do the integral over ζ1. In particular we have

1

ζ21
→

1

ζ2 − ζ2
1−ϵ
1þϵ þ ϵðζ2 þ ζ2

1−ϵ
1þϵÞ

¼ 1þ ϵ

4ϵζ2
; ðC13Þ

1

ζ12
→

1

ζ2
1þϵ
1−ϵ − ζ2 þ ϵðζ2 þ ζ2

1þϵ
1−ϵÞ

¼ 1 − ϵ

4ϵζ2
; ðC14Þ

so that the integral of the term with positive powers give

1

4ϵζ2

��
ζ2

1 − ϵ

1þ ϵ

�
2

Xð−2;∞Þ
�
ζ2

1 − ϵ

1þ ϵ

�
−2

�
ζ2

1 − ϵ

1þ ϵ

�
ζ2Xð−1;∞Þ

�
ζ2

1 − ϵ

1þ ϵ

�
þζ22X

ð0;∞Þ
�
ζ2

1 − ϵ

1þ ϵ

��

¼ ζ2
4ϵ

��
2ϵ

1þ ϵ

�
2

Xð0;∞Þ
�
ζ2

1 − ϵ

1þ ϵ

�
þ X−2

1

ζ22
−
1þ 3ϵ

1þ ϵ
X−1

1

ζ2

�
; ðC15Þ

and for the negative powers we have

1

4ϵζ2

��
ζ2

1þ ϵ

1 − ϵ

�
2

Xð−∞;−3Þ
�
ζ2

1þ ϵ

1 − ϵ

�
− 2

�
ζ2

1þ ϵ

1 − ϵ

�
ζ2Xð−∞;−2Þ

�
ζ2

1þ ϵ

1 − ϵ

�
þζ22X

ð−∞;−1Þ
�
ζ2

1þ ϵ

1 − ϵ

��

¼ ζ2
4ϵ

��
2ϵ

1 − ϵ

�
2

Xð−∞;−3Þ
�
ζ2

1þ ϵ

1 − ϵ

�
−
1þ 2ϵ − 3ϵ2

ð1þ ϵÞ2 X−2
1

ζ22
þ 1 − ϵ

1þ ϵ
X−1

1

ζ2

�
: ðC16Þ

Adding things up we get

ζ2
4ϵ

��
2ϵ

1− ϵ

�
2

Xð−∞;−3Þ
�
ζ2

1− ϵ

1þ ϵ

�
þ
�

2ϵ

1þ ϵ

�
2

Xð0;∞Þ
�
ζ2

1− ϵ

1þ ϵ

�
þ
�
1−

1þ2ϵ−3ϵ2

ð1þ ϵÞ2
�
X−2

1

ζ22
þ
�
1− ϵ

1þ ϵ
−
1þ3ϵ

1þ ϵ

�
X−1

1

ζ2

�

¼ ζ2
4ϵ

��
2ϵ

1− ϵ

�
2

Xð−∞;−3Þ
�
ζ2

1− ϵ

1þ ϵ

�
þ
�

2ϵ

1þ ϵ

�
2

Xð0;∞Þ
�
ζ2

1− ϵ

1þ ϵ

�
þ
�

2ϵ

1þ ϵ

�
2

X−2
1

ζ22
−

4ϵ

1þ ϵ
X−1

1

ζ2

�
: ðC17Þ

We find that all inverse powers of ϵ cancel and the limit ϵ → 0 is smooth

I
dζ1dζ2

1

ζ12ζ21
ðζ1 − ζ2Þ2Xðζ1ÞYðζ2Þ ¼ −

I
dζ2X−1Yðζ2Þ ¼ −X−1Y−1; ðC18Þ

which is the same result we would have gotten if we naively would have cancelled the ðζ1 − ζ2Þ2 factor against the 1
ζ12ζ21

denominator.
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