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We analyze the moduli space dynamics of domain walls in SUðNÞ QCD at θ̄ ¼ π, by softly breaking
N ¼ 1 SQCD with sfermion mixing. In the supersymmetric limit, BPS domain walls between neighboring
vacua are known to possess nontranslational flavor moduli that form a CPN−1 sigma model. For the
simplest case with gauge group SUð2Þ and Nf ¼ 2, we show that this sigma model also exhibits a Hopf
term descending from the bulk Wess-Zumino term with a quantized coefficient. On soft-breaking of
supersymmetry via sfermion mixing that preserves the flavor symmetry, these walls and their moduli-space
dynamics survives when θ̄ ¼ π so that there are two degenerate vacua.
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I. INTRODUCTION

QCD with gauge group SUðNÞ and Nf massive quark
flavors explicitly violates T-symmetry unless the physical
theta-angle θ̄ ¼ 0 or π. Current evidence suggests that real-
world QCD lies very close to θ̄ ¼ 0, but it is nonetheless
interesting to explore the physics near θ̄ ¼ π. In particular,
at large N the θ̄-dependence of the vacuum energy conje-
cturally takes the form E0ðθ̄Þ ∝ N2mink fððθ̄ þ 2πkÞ=NÞ
for some multi-branched function f [1–4]. This implies that
when θ̄ ¼ π, at large N the T-symmetry is spontaneously
broken and there are two degenerate vacua with k ¼ 0,
N − 1, suggesting the existence of domain walls interpolat-
ing between them.
This vacuum structure has recently been clarified for

finite N by the identification of a mixed discrete ’t Hooft
anomaly for T-symmetry and a 1-form center symmetry [5]
(See also [6–8]). The presence of this anomaly, along
with the assumption of a gapped spectrum, provides a
more general argument for the spontaneous breaking of
T-symmetry and the presence of degenerate vacua at θ̄ ¼ π.
(See also [6,9] for earlier work.) It follows that domain
walls should exist interpolating between these two degen-
erate vacua, and arguments were provided that these walls
should possess nontrivial flavor moduli. Namely, for gauge
group SUðNÞ, it has been argued that the worldvolume

theory should be a 2þ 1D CPNf−1 sigma model with a
Wess-Zumino term [10].
This picture can be made quite concrete inN ¼ 1 SQCD

with Nf ¼ N, albeit in a regime in which the θ-parameter is
no longer physical. This theory has a low energy descrip-
tion on the Higgs branch, in terms of meson and baryon
chiral superfield moduli M, B, and B̃, where it reduces to a
massive perturbation of a Kähler sigma model on the
manifold determined by the quantum constraint [11]

detM − BB̃ ¼ Λ2N
N : ð1Þ

The massive theory possesses N degenerate quantum
vacua (see Fig. 1), consistent with the Witten index, with a
range of interpolating BPS domain walls [12–20]. The
additional supersymmetry ensures that this system can be
studied analytically in the weakly-coupled regime where
one quark flavor is parametrically heavier than the others.
We review this construction in the next section, but an
important conclusion is that the BPS k-walls, connecting

FIG. 1. A schematic representation of the perturbation to the N
degenerate vacua of SQCD (for N ¼ 5), which creates a potential
tilting the plane, and for θ̄ ¼ π results in two degenerate vacua
which allow for interpolating domain walls.
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vacua between which the vacuum value of the super-
potential changes phase by 2πk=N, come in multiplets
associated with the vacua of a world volume sigma model.
In [19,20] it was argued that k-walls exhibit a nontrivial

classical reduced moduli space fMk due to localized
Goldstone modes associated with the flavor symmetries
which are broken by the wall solution. The corresponding
coset is a complex Grassmannian [19],

M̃k ¼ Gðk; NÞ≡ UðNÞ
UðkÞ × UðN − kÞ : ð2Þ

Note that for k ¼ 1, Gð1; NÞ ¼ CPN−1. One can then
formally deduce that the multiplicity of k-walls, νk, is
given by the world volume Witten index for this
Grassmannian sigma model, which depends only on the
topology of the space, and is given by the Euler character-
istic, νk ¼ χðGðk; NÞÞ ¼ N!

k!ðN−kÞ!.
In this paper, we first consider the extension of this

picture due to the presence of a bulk Wess-Zumino term in
the chiral theory describing meson and baryon fields
[21,22]. For the simplest case of gauge group SU(2),
i.e., N ¼ 2, we show that the presence of this term leads
to a parity-odd Hopf term in the moduli space Lagrangian
for the CP1 sigma model. Furthermore, we perturb this
picture by softly breaking N ¼ 1 SUSY by adding an
F-term spurion for the squark mass [23], which renders the
θ-parameter physical once more, and generically lifts the
degeneracy between the vacua. The perturbation is tractable
in the regime Fm ≪ m ≪ Λ and leads to a potential,

ΔV ¼ −ReTrðFmMÞ ¼ −NfjFmjjMj cos
�
θ̄ þ 2πn

N

�
: ð3Þ

This manifests two degenerate vacua at n ¼ 0, N − 1 in the
special case that θ̄ ¼ π, suggesting the possible presence of
a 1-wall (using the terminology of k-walls above) con-
necting them (see also [24] and the recent analysis in [25]).
We use this tractable perturbation to examine the world
volume moduli of this domain wall, that is inherited from
the unperturbed BPS 1-walls in N ¼ 1 SQCD. Most
importantly, this perturbation does not break any of the
residual flavor symmetries if Fm is diagonal, and thus the
domain wall CPN−1 flavor moduli and the associated Hopf
term should persist in this regime.
In the next two sections, we review the analysis of

domain wall moduli arising from broken flavor symmetries
in SQCD, and then show that the presence of a bulk Wess-
Zumino term leads in the SUð2Þ case to a Hopf term in the
moduli space Lagrangian for walls separating neighbouring
vacua. In Sec. IV we turn on the soft-breaking F-term
perturbation and analyze the residual moduli space dynam-
ics for walls connecting the degenerate vacua for θ̄ ¼ π. We
end with some concluding remarks in Sec. V.

II. DOMAIN WALL MODULI IN N = 1 SQCD

In this section we briefly review the arguments which
determine the topology of the reduced k-wall moduli space
in SUðNÞ SQCD with Nf ¼ N massive flavors [19].

A. Vacuum structure and flavor symmetry

N ¼ 1 SQCD with Nf ¼ N flavors is obtained by
adding N chiral superfields, Qf and Q̃ḡ (f; ḡ ¼ 1;…; N),
transforming respectively in the fundamental and antifun-
damental representations of the gauge group, to the fields of
N ¼ 1 SYMwith gauge group SUðNÞ. This matter content
will ensure that the gauge symmetry is completely broken
in any vacuum in which the matter fields have a nonzero
vacuum expectation value. Provided the mass gap is
sufficiently large, the gauge fields may then be integrated
out, obtaining a low energy effective description in terms
of the meson and baryon moduli Mḡ

f ¼QfQ̃
ḡ, B ¼

ϵf1f2���fNQf1Qf2 � � �QfN , and B̃ ¼ ϵḡ1ḡ2���ḡN Q̃
ḡ1Q̃ḡ2 � � � Q̃ḡN .

The superpotential describing the resulting low energy
dynamics is given by [11]

W ¼ Trðm̂MÞ þ λðdetM − BB̃ − Λ2N
N Þ; ð4Þ

in terms of the meson matrixM, the baryon fields B, B̃, the
dynamical scale ΛN , and a Lagrange multiplier λ. The
Lagrange multiplier is to be understood as a heavy classical
field, for consistency with the nonrenormalization theorem,
which enforces the quantum constraint detM − BB̃ ¼ Λ2N

N
[11] shown in (1) (see also [26,27]).
With degenerate masses, the vacua preserve a maximal

SUðNÞ flavor symmetry. However, to ensure that the vacua
and generic interpolating domain wall trajectories will lie at
weak coupling, the quark mass matrix m̂ needs to be
hierarchical. This ensures that the gauge modes, which
have been integrated out, are indeed heavy relative to the
strong coupling scale ΛN . The choice which retains the
maximal SUðN − 1Þ global symmetry is given by

m̂ ¼ diagfm;m;…; m;mNg; ΛN ≫ mN ≫ m: ð5Þ

This leads to N degenerate vacua, given by diagonal meson
vacuum expectation values (VEVs) with components (no
summation over i),

hMi
iin ¼

�
mN

m

�
1=N

Λ2
Nω

n
N; ωn

N ¼ e2πin=N; ð6Þ

where i ¼ 1;…; N − 1 and n ¼ 0;…; N − 1, while
hBi ¼ hB̃i ¼ 0. The vacua are weakly coupled if the
hierarchy is sufficiently large: i.e., if mN=m ≫ eN .
Restricting attention to energy scales below mN, the
effective dynamical scale is Λ2Nþ1

N−1 ¼ mNΛ2N
N .
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Despite this hierarchical setup, an important observation
of [19,20] that will be relevant here is that we can restore
the full SUðNÞ flavor symmetry in the superpotential by
rescaling fields and, since the breaking of flavor symmetry
is only visible in the Kähler potential, the spectrum of BPS
domain walls will be independent of the rescaling. As
discussed in more detail below, this nonrenormalization
theorem will allow us to effectively focus on the regime
with maximal SUðNÞ flavor symmetry.

B. BPS k-walls and flavor moduli

The N vacua discussed above are conveniently repre-
sented in the complex plane of the superpotentialW, where
they lie on a circle about the origin,

Wjvacua → Wn ¼ Nðdet m̂Þ1=NΛ2
Ne

2πn=N: ð7Þ

The presence of degenerate vacua allows for domain wall
solutions interpolating between them. A class of these
domain walls are 1=2-BPS, preserving half of the super-
symmetry of the vacuum. BPS walls inherit certain non-
renormalization properties, with a tension Tk given by a
central charge in the supersymmetry algebra, Tk ¼ jZknj,
where Zkn ¼ 2ðWnþk −WnÞ. The tension is determined
by the vacuum values of the superpotential only, and
moreover the walls themselves are described by straight
lines between the vacua in theW plane [28,29]. To analyze
the generic features of the wall trajectories, we can set B ¼
B̃ ¼ 0 since they vanish in the vacua, although they will be
relevant when we consider the moduli space dynamics later
on. It is then convenient to define dimensionless fields
X ¼ m̂MðμΛ2

NÞ−1, with μ≡ ðdet m̂Þ1=N , in terms of which
the superpotential exhibits the maximal SUðNÞ flavor
symmetry,

W ¼ μΛ2
N ½TrX þ λðdetX − 1Þ�; ð8Þ

while the hierarchical structure of the mass matrix is now
visible only in the rescaled Kähler potential. The super-
potential depends only on the eigenvalues fηig of X,

W ¼ μΛ2
N

�XN
i¼1

ηi þ λ

�YN
i¼1

ηi − 1

��
; ð9Þ

which exhibits the vacua at hηiik ¼ ωk
N . With k-wall

boundary conditions, so that the wall interpolates between
vacua separated by a phase difference of e2πik=N , the
trajectory of each eigenvalue is determined by its winding
number wðηÞ in the complex W plane, namely either w1 ¼
k=N or w2 ¼ k=N − 1 (see also [30]). The Bogomol’nyi
equations satisfied by 1=2-BPS walls then ensure that
N − k of the eigenvalues carry winding number w1 and
k carry winding number w2.

This structure implies that k-walls fall into multiplets,
corresponding to the various winding trajectories of the
eigenvalues. One way to understand this structure, devel-
oped in [19,20], is to consider the moduli space of the wall
configurations associated with symmetries that are sponta-
neously broken by the wall configuration. On the general
grounds that a k-wall spontaneously breaks translational
invariance, the moduli space can be decomposed as
follows,

M ¼ R × fM; ð10Þ

where the factor R reflects the center of mass position z0,

while fM denotes the reduced moduli space. Furthermore, it
follows from the constraints on the eigenvalues that the
maximal flavor symmetry the k-wall can preserve is

SUðkÞ × SUðN − kÞ × Uð1Þ; ð11Þ

which is a subgroup of the full flavor symmetry SUðNÞ.
Consequently, accounting for discrete symmetries, there
must be localized Goldstone modes on the wall para-

metrizing the Grassmannian coset fMk ¼ Gðk; NÞ≡
UðNÞ=ðUðkÞ × UðN − kÞÞ [19,20], shown in (2). In par-
ticular, for minimal 1-walls between neighboring vacua, we
have

M̃1 ¼ CPN−1; ð12Þ

associated with the flavor symmetries broken by the wall.
This moduli space will be the focus of the next section.

For completeness, we recall that the nonrenormalization
properties of BPS states mean that the k-wall multiplicity is
given by an index, specifically the CFIV index [29,31] that
counts shortened 1=2-BPS multiplets. It is defined as the
following trace, suitably regularized, over the Hilbert space
with boundary conditions appropriate to a k-wall [29,31],
νk ≡ TrFð−1ÞF, where F is the fermion number operator.
This index reduces to the world volume Witten index
Trð−1ÞF [32] of the Grassmannian sigma model, which is
given by the Euler characteristic. Thus, in the presence of a
suitable infrared regulator, the multiplicity of k-walls is
given by [19,20],

νk ¼ χðGðk; NÞÞ ¼ N!

k!ðN − kÞ! : ð13Þ

This result is fully consistent with the number of permu-
tations of the eigenvalues ηi, given the constraints on the
winding number discussed above [19]. Moreover, it shows
that the result depends only on the topology of the reduced
moduli space of BPS walls. In particular, it is only the
induced metric on this space which is sensitive to the
precise specification of quark masses; the topology is
invariant. Since the index is independent of smooth
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diffeomorphisms of the Kähler potential [31], we can restore
its symmetry by such a diffeomorphism if so desired. The
world volume theory can be analyzed more explicitly for
N ¼ Nf ¼ 2, as we discuss in the next section.

III. DYNAMICS OF 1-WALL MODULI
FOR N =Nf = 2

This structure can be verified explicitly for the gauge
group SU(2), where the reduced meson constraint detM ¼
Λ4
2 defines the 6-dimensional manifold T�ðS3Þ, and the two

vacua lie at the poles of the base S3. Direct analysis of the
BPS equations then shows [19,20] that the wall profile lies
entirely within an S1 fibre of the S3, allowing fluctuations
of the remaining meson fields parametrizing the S2 ¼ CP1

to form the world volume flavor moduli, consistent with the
symmetry argument above.
We will utilize the Kähler deformation argument above

in order to work within the fully flavor symmetric regime.1

However, we will need to retain the full space of moduli
including the baryonic directions,

detM − BB̃ ¼ Λ4
2; ð14Þ

for reasons that will become clear when we consider the
presence of a bulk Wess-Zumino term. For completeness,
we recall that the meson matrixMa

b̄
¼ QaQ̃b̄, whereQ

a and
Q̃b̄ are the quark and anti-quark fields respectively. The
baryon and anti-baryon fields are B ¼ ϵabQaQb and
B̃ ¼ ϵā b̄Q̃āQ̃b̄. Note that since we are working with
Nf ¼ Nc ¼ 2, we have a; ā ¼ 1, 2 etc.
We can rewrite the constraint Eq. (14) in terms of six

complex scalar fields X1;…X6 as

X6
i¼1

X2
i ¼ 1; ð15Þ

with the identifications M11 ¼ Λ2
2ðX1 þ iX2Þ, M22 ¼

Λ2
2ðX1 − iX2Þ, M12¼Λ2

2ðiX3þX4Þ, M21 ¼ Λ2
2ðiX3 − X4Þ,

B ¼ Λ2
2ðiX5 þ X6Þ, and B̃ ¼ Λ2

2ðiX5 − X6Þ.
BPS walls also satisfy first order Bogomol’nyi equations

[28,29],

gīj∂zXj ¼ e−iγ∂ īW̄; ð16Þ

where the Kähler metric is given by gīj ¼ ∂ ī∂jK, while
∂ ī ¼ ∂=∂X̄ī, ∂j ¼ ∂=∂Xj, and γ is the phase of the central
charge Zkn.
The Kähler metric on the space spanned by the mesonic

and baryonic moduli is unknown, except at weak coupling

where it is inherited from the canonical kinetic terms for the
squark fields. As discussed above, the vacua and wall
trajectories lie at weak coupling with Mḡ

f ≫ Λ2
2 only if the

(s)quark mass matrix is hierarchical. To preserve the full
flavor symmetry in the superpotential, we have rescaled the
fields, reducing the symmetry of the Kähler metric.
However, as reviewed above, the domain wall moduli
are determined topologically, and are largely independent
of the choice of the Kähler metric, provided that it is
nonsingular. In the equal mass regime with m1 ¼ m2 ¼ μ,
the two vacua now lie at the poles of the S3 which forms the
real section of the surface

P
4
i¼1X

2
i ¼ 1 (with X5¼X6 ¼ 0).

Moreover, as discussed in [19,20], the full wall trajectory
lies within this S3 subspace, and in the limit that the (s)
quark mass perturbation is switched off, the enhanced
SUð2Þ × SUð2Þ flavor symmetry implies that the leading
dependence on a non-canonical Kähler metric can be
reabsorbed within the Bogomol’nyi equations into a
rescaling of the transverse coordinate z. The reintroduction
of a hierarchical (s)quark mass matrix was shown to lead to
a potential in the domain wall moduli space which will not
concern us here.
With these arguments in mind, we now proceed to study

the domain wall moduli space while making use of a
canonical Kähler metric for the meson and baryon moduli
fXi¼1…6g, subject to the constraint (15). In practice, the
wall trajectories only involve the real section of this
constraint which is an S5, for which a simple hyperspherical
coordinate system will be convenient to use,

X1 ¼ cosψ

X2 ¼ sinψ cos ξ

X3 ¼ sinψ sin ξ cosϕ

X4 ¼ sinψ sin ξ sinϕ cos α

X5 ¼ sinψ sin ξ sinϕ sin α cos θ

X6 ¼ sinψ sin ξ sinϕ sin α sin θ; ð17Þ

where all angles other than θ run from 0 to π, while
0 < θ ≤ 2π. Notice that on setting α ¼ 0, the parametriza-
tion (17) reduces to a coordinatization of an S3=Z2

submanifold,

X1 ¼ cosψ

X2 ¼ sinψ cos ξ

X3 ¼ sinψ sin ξ cosϕ

X4 ¼ sinψ sin ξ sinϕ

X5 ¼ X6 ¼ 0; ð18Þ

with the metric

1The impact of the hierarchical structure of the mass matrix is
discussed in [19,20], and amounts to the generation of a potential
on the moduli space.
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ds2S3=Z2
¼ dψ2 þ sin2 ψðdξ2 þ sin2 ξdϕ2Þ: ð19Þ

In practice, after setting the baryon fields to zero, the real
section of

P
4
i¼1 X

2
i ¼ 1 is a full S3. It is an artefact of the

hyperspherical coordinate system that only S3=Z2 is
covered by setting α ¼ 0. This feature of the coordinates
(17) will not play a significant role in the present sub-
section, as it only impacts global properties of the moduli
space, but it will be important when we consider the Wess-
Zumino term below. Note that the other half of the full
meson field space, a second S3=Z2 submanifold, is
obtained by setting α ¼ π.
The S3=Z2 submanifold at α ¼ 0 covered by the coor-

dinate system above will be sufficient to (locally) construct
the geometry of the wall moduli space. The superpotential
reduces to

W ¼ Trðm̂MÞ ¼ 2μΛ2
2X1 → 2μΛ2

2 cosψ ; ð20Þ
with the vacua at the poles ψ ¼ 0; π of the 3-sphere. Within
this coordinate system, the Bogomol’nyi equations take the
form

∂zψ ¼ −2μ sinψ ; ∂zξ ¼ ∂zϕ ¼ 0; ð21Þ
which can be solved by the sine-Gordon soliton [19,20],

ψ solðzÞ ¼ 2 arctanðe−2μðz−z0ÞÞ;
ξsol ¼ ξ0; ϕsol ¼ ϕ0: ð22Þ

We can now compute the bosonic moduli space explic-
itly, by integrating the meson and baryon kinetic terms
1
2
Λ2
2∂μXi∂μXi over the transverse direction z to the wall.

Setting α ¼ 0 to remain in the S3=Z2 subspace, the result is
a world volume action for the wall moduli [19,20]

SM ¼ 1

2

Z
d3x½T1∂μz0∂μz0 þ hij∂μxi∂μxj�; ð23Þ

where T1 ¼ 4μΛ2
2 is the 1-wall tension, and hij is the metric

on the flavor moduli space, given by [19,20],

ds2M ¼ T1dz20 þ hijdxidxj

¼ T1dz20 þ RM̃ðdξ20 þ sin2ξ0dϕ2
0Þ; ð24Þ

with ReM ¼ Λ2
2

μ the scale of the flavor moduli space. It

follows thatMN¼2 ¼ R × CP1, consistent with the general
symmetry arguments above, although our coordinates only
cover half the flavor moduli space CP1=Z2.

A. Wess-Zumino term in SUð2Þ SQCD

As in QCD, SQCD with Nf ¼ N has a low energy
symmetry realization that requires the presence of a Wess-
Zumino term in the chiral Lagrangian describing meson

and baryon moduli. The real section of the moduli space
constraint detM − BB̃ ¼ Λ4

2 topologically describes a 5-
sphere S5, and so following Witten [33] a Wess-Zumino
term can be written down to ensure the correct symmetry
under parity, that has a quantized coefficient which follows
by considering this term as a map from a 5D-disk with 4D
spacetime as the boundary to S5.
The relevant Wess-Zumino term was first written down

for gauge group SUð2Þwith Nf ¼ 2 by Manohar [21], with
an extension to gauge group SUðNÞ proposed in [22],2

ΓSUð2Þ ¼ −
1

12π2Λ8
2

Im
Z
Σ5

dΩ detMϵμνλρσ∂μB∂νB̃

× TrðM−1∂λMM−1∂ρMM−1∂σMÞ: ð25Þ

Note that the coefficient is fixed by quantization, while
μ; ν;… run over ðt; x; y; z; wÞ, where ðt; x; y; zÞ are the
usual 4D spacetime coordinates and w denotes an addi-
tional coordinate on the 5D disk used to define the Wess-
Zumino term.
Transforming fromM, B and B̃ to the fields X1;…X6, as

defined above, we will be interested in the real section of
the constraint Eq. (15), obtained by demanding that
X1;…X6 are real scalars. We will utilize the hyperspherical
parametrization (17), with spacetime coordinate depend-
ence adapted to the wall configuration and moduli, namely
ψ ¼ ψðzÞ is a function of the transverse coordinate only
while ðξ;ϕ; θÞ will be taken as functions of the wall
worldvolume coordinates ðt; x; yÞ. Recalling that the wall
flavor moduli arise from the S3 submanifold, we will define
the remaining angle α ¼ αðwÞ, a function only of the fifth
dimensional coordinate running from w ¼ 0 to the 4D
spacetime boundary at w ¼ 1. Requiring that αðw¼ 1Þ¼ 0
in 4D spacetime ensures that only the meson moduli
X1;…X4 are excited along the wall, consistent with the
discussion in the previous subsection. However, with α ≠ 0
within the bulk of the 5D disk, the nonvanishing baryon
moduli effectively support the Wess-Zumino term.
Substituting the parametrization (17) into the meson/

baryon kinetic terms with the above coordinate dependence
(including αðw ¼ 1Þ ¼ 0) and integrating over z leads
again to the moduli space Lagrangian (23), while the
Wess-Zumino term (25) reduces to

ΓðwallÞ
SUð2Þ ¼ −

2

π2

Z
Σ5

dΩsin4ψ∂zψ sin α∂wα

× sin3ξsin2ϕϵμνρ∂μθ∂νϕ∂ρξ: ð26Þ

Note that the integral over the additional disk coordinate w
takes the form

R
dα sin α, with the integrand being

2The representation here follows [22]. It matches with the
original expression given by Manohar [21] up to an overall sign
within the coordinate parametrization (17).
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symmetric about the midpoint where α ¼ π=2. Since the
coordinates only cover half the mesonic subspace at α ¼ 0
(or at α ¼ π), for consistency we only integrate over half
the disk,

R π=2
0 dα sin α ¼ 1. On carrying out the remaining

integral over z, the Wess-Zumino term becomes

ΓðwallÞ
SUð2Þ → SH ¼ −

3

4π

Z
d3x

ffiffiffiffi
G

p
ϵμνρ∂μθ0∂νϕ0∂ρξ0; ð27Þ

where ffiffiffiffi
G

p
¼ sin3ξ0sin2ϕ0 ð28Þ

defines the restriction of the S5 volume measure to the
compact 3D submanifold M3 spanned by fξ;ϕ; θg ¼
fξ0;ϕ0; θ0g, which are moduli for the wall solution. M3

is a fibration of S1 parametrized by θ over the base CP1

associated with the wall flavor moduli. This is consistent
with the conventional structure of the CP1 linear sigma
model, in which the reduction from a round S3 to CP1 is
achieved by gauging the Uð1Þ fibre.
The structure of (27) is recognizable as the Hopf term for

theCP1 sigmamodel [34–36] (as reviewed in theAppendix).
Rotating toEuclidean space, and compactifying spacetime to
an S3, we can identify the (Euclidean) spacetime coordinates
with the target space coordinates fξ;ϕ; θg as the simplest
embedding, and integrate the Hopfmeasure over the S3. This
leads to a quantization condition for theHopfmapS3 → CP1

in the form − 3i
4π

R
S3

ffiffiffiffi
G

p
dξdϕdθ ¼ −iπ. As reviewed in the

Appendix, the quantization condition on the right hand side
has the generic form iΘH × Z, where ΘH (which has period
2π) is the coefficient of the normalized Hopf term. We
conclude that in this model

ΘH ¼ π; ð29Þ

reflecting the underlying breaking of parity associated with
the bulk Wess-Zumino term. Interestingly, while ΘH is
naively a periodic real parameter, it has recently been argued
that there is a further quantization condition, such that only
ΘH ¼ 0 and π are consistent at the quantum level [37]. We
will comment on this in the final Sec. V.

IV. SOFT BREAKING TO QCD

One of our primary goals was to understand how the
moduli space structure of domain walls elaborated above
responds under soft breaking of supersymmetry. A con-
venient perturbation to turn on is the F-term component of
the squark mass matrix m̂, treating the mass as a back-
ground superfield [23],

ΔV ¼ −ReTrðFmMÞ: ð30Þ
This correction to the scalar potential is a perturbation
provided that jFmj ≪ m ≪ ΛN , and importantly will not

modify the flavor symmetry if we assume that Fm is aligned
in flavor space with the (s)quark mass matrix m̂. Making
this assumption, so that as complex matrices Fm ¼ ϵm̂, for
gauge group SUðNÞ with Nf ¼ N we have

ΔV ¼ −Re½ϵμΛ2
NTrðXÞ�; ð31Þ

where X is again the rescaled meson matrix. As shown in
(6), the meson vevs prior to the perturbation take the form
hXin ∝ e2πn=N . The introduction of the spurion Fm explic-
itly breaks the Uð1ÞR symmetry, rendering the SUðNÞ θ-
parameter physical. The physical value θ̄ is a linear
combination of the bare parameter θ0, which multiplies
the trðGG̃Þ term in the action, and the phases of m̂ and Fm
[23]. We can use the anomalous Uð1ÞA symmetry and the
brokenUð1ÞR symmetry to rotate all these into the phase of
Fm. As a perturbation to the potential V, it follows that in
vacuum,

ΔV ¼ −NjϵμΛ2
N j cos

�
θ̄ þ 2πn

N

�
; ð32Þ

which generically lifts the vacuum degeneracy, leaving a
unique vacuum state for one value of n. However, in the
special case that θ̄ ¼ π as noted in the Introduction (and
shown in Fig. 1), the system manifests degenerate (neigh-
bouring) vacua. Although supersymmetry is broken, it
follows on general topological grounds that the SQCD
1-walls between these vacua will survive the perturbation.
Moreover, since this F-term perturbation does not break
any further flavor symmetries, the wall will continue to
inherit CPN−1 flavor moduli. Thus, in the regime
jFmj ≪ m ≪ ΛN , the full structure of the bosonic moduli
space dynamics for 1-walls, as discussed in the previous
sections, should translate directly to this softly broken
regime. In contrast, the domain walls between other vacua
will be metastable once the relevant vacuum states are split.
Although softly broken SQCD in the confining phase is

expected to be continuously connected to QCD, it is
important to keep in mind that the degrees of freedom
are distinct. In the QCD regime, jFmj ≫ ΛN , the flavor
moduli are presumably realized differently. Moreover, we
anticipate that the fermionic moduli discussed in [20] will
be lifted by this perturbation as they are no longer protected
by the presence of spontaneously broken supercharges.
However, their mass should be parametrically low in this
limit, so that the world volume theory would be distinct
from the one for domain walls in pure QCD at θ ¼ π.

V. CONCLUDING REMARKS

In this short paper, we have presented a concrete test of
the recently discussed discrete symmetry realization in
QCD at θ̄ ¼ π [5,10]. Spontaneous breaking of T-
symmetry allows for domain walls interpolating between
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two degenerate vacua, and moreover the worldvolume
dynamics of these walls should break parity via the
presence of a Wess-Zumino term. We have approached
this question in the present paper by considering N ¼ 1
SQCD, which possesses a spectrum of BPS domain wall
solutions between degenerate vacua, with world volume
moduli associated with broken flavor symmetries. We have
argued that for SQCD with gauge group SUð2Þ and
Nf ¼ 2, the worldvolume theory for walls connecting
neighbouring vacua, a CP1 sigma model in 2þ 1D, also
exhibits a Hopf term which descends from the bulk Wess-
Zumino term. When N ¼ 1 supersymmetry is softly
broken by an F-term deformation that preserves the same
flavor symmetry, the worldvolume theory for 1-walls is
preserved at θ̄ ¼ π, providing a concrete, and positive, test
of the expected structure in the QCD limit.
In the remainder of this section, we comment on some

implications of these results, and potential extensions.
(i) Quantization conditions:—The quantization of the

4D Wess-Zumino term in SQCD translates to a
specific quantization condition for the coefficient
ΘH of the Hopf term on the wall world volume. As
shown in Sec. III, we obtain ΘH ¼ π in the SUð2Þ
case with Nf ¼ 2. Recently, such a quantization
condition has been considered in [37], where it was
argued that under certain conditions the only con-
sistent values of ΘH are 0 and π. The present
example with an explicit microscopic realization
apparently satisfies this more restrictive criterion.

(ii) Extension to SUðNÞ:—We have analyzed the sim-
plest scenario with gauge group SUð2Þ, but the result
should generalize to higher rank gauge groups as
well. For SQCD with gauge group SUðNÞ the
spectrum of k-walls expands, but it is clear that
on soft-breaking of supersymmetry, only the 1-walls
between neighboring vacua can survive the pertur-
bation when there are two degenerate vacua at
θ̄ ¼ π. The wall flavor moduli space then becomes
CPN−1, for which a Hopf term also exists. The linear
sigma model Lagrangian, generalizing the discus-
sion in the Appendix, takes the form

LCPN−1 ¼ 1

f
ð∂μZ�

α∂μZα − ðZ�
α∂μZαÞðZβ∂μZ�

βÞÞ

þ λ

�XN
α¼1

jZαj2 − 1

�
−

Θ
4π2

ϵμνρAμ∂νAρ;

ð33Þ

where Zα, α ¼ 1;…; N, defines a complex N-vector
of fields, while the Uð1Þ gauge field takes the form
Aμ ¼ 1

2
ðZ�

α∂μZα − Zα∂μZ�
αÞ. It would be interesting

to verify whether this term arises from the reduction
of the proposedSUðNÞWess-Zumino term [12] to the

wall world volume. This would be consistentwith the
proposed structure in QCD for Nf ¼ N [10].

(iii) Wall world volume supersymmetry:—As a final
comment, we note that within SQCD itself the
presence of the higher-derivative Hopf term on
the wall world volume may also clarify the world
volume realization of supersymmetry. As discussed
in [20], the Kähler structure of the flavor moduli
space leads to an enhanced N ¼ 2 supersymmetry.
Although this does not extend to the full moduli
space including the translational coordinate, this
extended supersymmetry is surprising as it is not
protected by the BPS structure of these states. The
appearance of the Hopf term suggests that this
symmetry enhancement is accidental at the two-
derivative level, and not preserved at higher-derivative
order. The Hopf term can be realized within the
supersymmetric CP1 model [38], so it would be
interesting to verify this explicitly.

ACKNOWLEDGMENTS

We would like to thank M. Shifman and A. Vainshtein
for many helpful discussions over the years about BPS
states in supersymmetric gauge theories. This work was
supported in part by NSERC, Canada.

APPENDIX: THE HOPF TERM IN
THE CP1 SIGMA MODEL

In this appendix, we briefly review some features of the
CP1 model with a Hopf term [34–36,39]). The model is
defined in 2þ 1 spacetime dimensions, with a Lagrangian
density given by

L ¼ LCP1 þ LH; ðA1Þ
where

LCP1 ¼ 1

f
ð∂μZ�

α∂μZα − ðZ�
α∂μZαÞðZβ∂μZ�

βÞÞ

þ λðjZ1j2 þ jZ2j2 − 1Þ; ðA2Þ
where α ¼ 1, 2, λ is a Lagrange multiplier whose equation
of motion ensures the constraint jZ1j2 þ jZ2j2 ¼ 1, and f is
a dimensionful coupling that sets the scale of CP1. The
Hopf term is conveniently viewed as a Chern-Simons
Lagrangian for the nondynamical Uð1Þ vector field
Aμ ¼ 1

2
ðZ�

α∂μZα − Zα∂μZ�
αÞ,

LH ¼ −
Θ
4π2

ϵμνρAμ∂νAρ

¼ −
Θ
8π2

ϵμνρðZ�
α∂μZα − Zα∂μZ�

αÞ∂νZ�
β∂ρZβ: ðA3Þ

A parametrization for the complex fields Zα that auto-
matically meets the constraint is
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Z1 ¼ eiðθþϕÞ=2 sin
�
ξ

2

�
; Z2 ¼ eiðθ−ϕÞ=2 cos

�
ξ

2

�
: ðA4Þ

Here θ;ϕ; ξ are functions of ðt; x; yÞ such that θ ∈
½0; 4πÞ;ϕ ∈ ½0; 2πÞ and ξ ∈ ½0; π�.
Substituting this parametrization into (A2) we find a

2þ 1D sigma model on CP1,

LCP1 ¼ 1

4f
½∂μξ∂μξþ sin2ξ∂μϕ∂μϕ�; ðA5Þ

where μ ¼ ðt; x; yÞ, and we note that there is no dependence
on θ in (A5). Similarly, substituting the parametrization
(A4) into the Hopf term (A3) gives

LH ¼ −
Θ
2π2

ffiffiffiffi
G

p
ϵμνρ∂μθ∂νϕ∂ρξ; ðA6Þ

where
ffiffiffiffi
G

p
is the volume measure for the 3-manifold with

coordinates fξ;ϕ; θg,

ffiffiffiffi
G

p
¼ 1

8
sin ξ: ðA7Þ

Rotating toEuclidean space, and compactifying spacetime
to an S3, we can identify the (Euclidean) spacetime coor-
dinates with the target space coordinates fξ;ϕ; θg as the
simplest embedding, and integrate theHopfmeasure over the
S3. This leads to a quantization condition for the Hopf map
S3→CP1 in the form− iΘ

2π2

R
S3

ffiffiffiffi
G

p
dξdϕdθ¼−iΘ, indicating

that 0 ≤ Θ < 2π is a periodic angle. Recent work [37]
suggests that in fact only Θ ¼ 0 and Θ ¼ π are fully
consistent at the quantum level.

[1] E. Witten, Ann. Phys. (N.Y.) 128, 363 (1980).
[2] P.DiVecchia andG.Veneziano,Nucl. Phys.B171, 253 (1980).
[3] N. Ohta, Prog. Theor. Phys. 66, 1408 (1981); 67, 993(E)

(1982).
[4] E. Witten, Phys. Rev. Lett. 81, 2862 (1998).
[5] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg, J.

High Energy Phys. 05 (2017) 091.
[6] D. Gaiotto, Z. Komargodski, and N. Seiberg, J. High Energy

Phys. 01 (2018) 110.
[7] P. Di Vecchia, G. Rossi, G. Veneziano, and S. Yankielowicz,

J. High Energy Phys. 12 (2017) 104.
[8] Y. Tanizaki and Y. Kikuchi, J. High Energy Phys. 06 (2017)

102.
[9] M. Creutz, Phys. Rev. D 52, 2951 (1995).

[10] A. V. Smilga, Phys. Rev. D 59, 114021 (1999).
[11] N. Seiberg, Phys. Rev. D 49, 6857 (1994).
[12] G. R. Dvali and M. A. Shifman, Phys. Lett. B 396, 64

(1997); 407, 452(E) (1997).
[13] A. Kovner, M. A. Shifman, and A. V. Smilga, Phys. Rev. D

56, 7978 (1997).
[14] A. V. Smilga and A. I. Veselov, Nucl. Phys. B515, 163

(1998).
[15] V. S. Kaplunovsky, J. Sonnenschein, and S. Yankielowicz,

Nucl. Phys. B552, 209 (1999).
[16] B. de Carlos and J. M. Moreno, Phys. Rev. Lett. 83, 2120

(1999).
[17] G. R.Dvali and Z.Kakushadze,Nucl. Phys.B537, 297 (1999).
[18] B. S. Acharya and C. Vafa, arXiv:hep-th/0103011.
[19] A. Ritz, M. Shifman, and A. Vainshtein, Phys. Rev. D 66,

065015 (2002).
[20] A. Ritz, M. Shifman, and A. Vainshtein, Phys. Rev. D 70,

095003 (2004).
[21] A. V. Manohar, Phys. Rev. Lett. 81, 1558 (1998).

[22] S. L. Dubovsky and D. S. Gorbunov, Phys. Rev. D 61,
085016 (2000).

[23] N. J. Evans, S. D. H. Hsu, and M. Schwetz, Phys. Lett. B
404, 77 (1997).

[24] M.M. Forbes and A. R. Zhitnitsky, J. High Energy Phys. 10
(2001) 013.

[25] P. Draper, Phys. Rev. D 97, 085003 (2018).
[26] K. A. Intriligator and N. Seiberg, Nucl. Phys. B, Proc.

Suppl. 45, 1 (1996).
[27] M. A. Shifman and A. I. Vainshtein, in ITEP lectures on

particle physics and field theory. Vol. 1, 2, World Scientific
Lecture Notes in Physics, Vol. 62 (World Scientific Publish-
ing Co. Pte. Ltd., Singapore, 1999), p. 485, ISBN: 978-981-
02-2639-8.

[28] P. Fendley, S. D. Mathur, C. Vafa, and N. P. Warner, Phys.
Lett. B 243, 257 (1990).

[29] S. Cecotti and C. Vafa, Commun. Math. Phys. 158, 569
(1993).

[30] K. Hori, A. Iqbal, and C. Vafa, arXiv:hep-th/0005247.
[31] S. Cecotti, P. Fendley, K. A. Intriligator, and C. Vafa, Nucl.

Phys. B386, 405 (1992).
[32] E. Witten, Nucl. Phys. B202, 253 (1982).
[33] E. Witten, Nucl. Phys. B223, 422 (1983).
[34] F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983).
[35] P. K. Panigrahi, S. Roy, and W. Scherer, Phys. Rev. Lett. 61,

2827 (1988).
[36] M. Bergeron, R. R. Douglas, and G.W. Semenoff, Int. J.

Mod. Phys. A 07, 2417 (1992).
[37] D. S. Freed, Z. Komargodski, and N. Seiberg, arXiv:

1707.05448.
[38] Z. Hlousek and D. Spector, Nucl. Phys. B344, 763

(1990).
[39] S.-T. Hong, B.-H. Lee, and Y.-J. Park, Mod. Phys. Lett. A

17, 103 (2002).

ADAM RITZ and ASHISH SHUKLA PHYS. REV. D 97, 105015 (2018)

105015-8

https://doi.org/10.1016/0003-4916(80)90325-5
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1143/PTP.66.1408
https://doi.org/10.1143/PTP.67.993
https://doi.org/10.1143/PTP.67.993
https://doi.org/10.1103/PhysRevLett.81.2862
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.1007/JHEP12(2017)104
https://doi.org/10.1007/JHEP06(2017)102
https://doi.org/10.1007/JHEP06(2017)102
https://doi.org/10.1103/PhysRevD.52.2951
https://doi.org/10.1103/PhysRevD.59.114021
https://doi.org/10.1103/PhysRevD.49.6857
https://doi.org/10.1016/S0370-2693(97)00131-7
https://doi.org/10.1016/S0370-2693(97)00131-7
https://doi.org/10.1016/S0370-2693(97)00808-3
https://doi.org/10.1103/PhysRevD.56.7978
https://doi.org/10.1103/PhysRevD.56.7978
https://doi.org/10.1016/S0550-3213(97)00832-8
https://doi.org/10.1016/S0550-3213(97)00832-8
https://doi.org/10.1016/S0550-3213(99)00203-5
https://doi.org/10.1103/PhysRevLett.83.2120
https://doi.org/10.1103/PhysRevLett.83.2120
https://doi.org/10.1016/S0550-3213(98)00683-X
http://arXiv.org/abs/hep-th/0103011
https://doi.org/10.1103/PhysRevD.66.065015
https://doi.org/10.1103/PhysRevD.66.065015
https://doi.org/10.1103/PhysRevD.70.095003
https://doi.org/10.1103/PhysRevD.70.095003
https://doi.org/10.1103/PhysRevLett.81.1558
https://doi.org/10.1103/PhysRevD.61.085016
https://doi.org/10.1103/PhysRevD.61.085016
https://doi.org/10.1016/S0370-2693(97)00541-8
https://doi.org/10.1016/S0370-2693(97)00541-8
https://doi.org/10.1088/1126-6708/2001/10/013
https://doi.org/10.1088/1126-6708/2001/10/013
https://doi.org/10.1103/PhysRevD.97.085003
https://doi.org/10.1016/0920-5632(95)00626-5
https://doi.org/10.1016/0920-5632(95)00626-5
https://doi.org/10.1016/0370-2693(90)90848-Z
https://doi.org/10.1016/0370-2693(90)90848-Z
https://doi.org/10.1007/BF02096804
https://doi.org/10.1007/BF02096804
http://arXiv.org/abs/hep-th/0005247
https://doi.org/10.1016/0550-3213(92)90572-S
https://doi.org/10.1016/0550-3213(92)90572-S
https://doi.org/10.1016/0550-3213(82)90071-2
https://doi.org/10.1016/0550-3213(83)90063-9
https://doi.org/10.1103/PhysRevLett.51.2250
https://doi.org/10.1103/PhysRevLett.61.2827
https://doi.org/10.1103/PhysRevLett.61.2827
https://doi.org/10.1142/S0217751X92001071
https://doi.org/10.1142/S0217751X92001071
http://arXiv.org/abs/1707.05448
http://arXiv.org/abs/1707.05448
https://doi.org/10.1016/0550-3213(90)90678-7
https://doi.org/10.1016/0550-3213(90)90678-7
https://doi.org/10.1142/S0217732302006242
https://doi.org/10.1142/S0217732302006242

