
 

Supersymmetric integrable theories without particle production

Carlos Bercini* and Diego Trancanelli†

Institute of Physics, University of São Paulo, 05314-970 São Paulo, Brazil

(Received 13 March 2018; published 18 May 2018)

We consider a theory of scalar superfields in two dimensions with arbitrary superpotential. By imposing
no particle production in tree-level scattering, we constrain the form of the admissible interactions,
recovering a supersymmetric extension of the sinh-Gordon model.
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I. INTRODUCTION

Recent years have witnessed a revival [1] of the old
S-matrix bootstrap program [2,3], which is the attempt to
solve massive quantum field theories solely from imposing
basic consistency principles, such as analyticity, unitarity,
and crossing symmetry of their scattering matrices. One
very simple arena where this can be carried out is the case
of two-dimensional integrable theories, whose S-matrix is
severely constrained and characterized by factorization and
an absence of particle production; see e.g., the nice reviews
in [4–6].
One can imagine “rediscovering” the existence of such

integrable theories by imposing the absence of particle
production in scattering processes and, thus, checking which
kind of interactions are admissible [7]. The scope of this
short article is to carry out this procedure for a simple
supersymmetric model in two dimensions, the scalar N ¼
ð1; 1Þ superfield. Writing a generic superpotential for this
field and imposing that no particles be produced introduces a
recursion relation among the couplings of generic vertices
and allows to recover the N ¼ 1 supersymmetric sinh-
Gordon model, which is known to be integrable from the
explicit construction of infinite conserved charges [8–11].1
Our starting point is an N ¼ ð1; 1Þ scalar superfield Φ

in two dimensions with generic superpotential WðΦÞ.
This superfield consists of a real scalar field ϕðxÞ, a
two-component Majorana spinor ψðxÞ, and an auxiliary
field FðxÞ; see e.g., [13]. The Lagrangian for these
components is

L ¼ 1

2
∂μϕ∂μϕþ ψ̄i=∂ψ −

1

2
ðW0ðϕÞÞ2 −W00ðϕÞψ̄ψ ; ð1Þ

where the auxiliary field FðxÞ has been eliminated by
imposing its equation of motion, F ¼ −W0ðϕÞ. We take
γμ ¼ fσ2;−iσ1g. In two dimensions, a scalar field has
scaling dimension zero, so that arbitrary powers of ϕ can be
included in WðϕÞ without spoiling renormalizability:

WðϕÞ ¼ 1

2
Mϕ2 þ

X∞
n¼3

λn
n!

ϕn: ð2Þ

This results in the Lagrangian

L ¼ 1

2
∂μϕ∂μϕ −

1

2
M2ϕ2 þ ψ̄i=∂ψ −Mψ̄ψ −

X∞
n¼3

Λn

n!
ϕn

−
X∞
n¼3

λn
ðn − 2Þ!ϕ

n−2ψ̄ψ ; ð3Þ

with scalar couplings

Λn ¼ Mnλn þ
n!
2

Xn
i¼3

Xn
j¼3

λi
ði − 1Þ!

λj
ðj − 1Þ! δiþj−2;n: ð4Þ

We now consider tree-level scattering and impose that
no particles be produced in these processes. This will
introduce recursion relations in the couplings, which can be
solved to find the generic expression for λn and the
potential in (2). It is sufficient to look at scattering
amplitudes with just two initial states: M2→n. Our con-
vention is that all particles are taken to be incoming, with
the understanding that in the end all but two particles are
crossed to outgoing.
It is convenient to go to light-cone coordinates and

write the momentum of the i-th particle ðpþ
i ; p

−
i Þ ¼ ðp0

i þ
p1
i ; p

0
i − p1

i Þ in terms of a single real parameter ai as

pi ¼ ðMai;M=aiÞ; ð5Þ
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1Absence of particle production in the bosonic sine-Gordon
model was proven in [12].
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which guarantees pþ
i p

−
i ¼ M2. From now on we setM ¼ 1

without loss of generality. Conservation of energy and
momentum is expressed as

X
i

ai ¼
X
i

1

ai
¼ 0: ð6Þ

The scalar and fermion propagators carrying momentum
p ¼ P

ipi are given, respectively, by

GðpÞ ¼ 1

p2 − 1
¼ 1

ðPiaiÞð
P

j1=ajÞ − 1
; ð7Þ

and

=GðpÞ≡ =pþ 1

p2 − 1
¼ GðpÞ

0
B@

1 −i
P
i
1=ai

i
P
i
ai 1

1
CA: ð8Þ

II. THE BOSONIC SECTOR

Let us focus for the moment on the purely bosonic case,
which is also studied in [7]. The simplest scattering process
with particle production is M2b→3b, which is evaluated at
tree level by computing the diagrams in Fig. 1.
The key observation [4] is that if one could set the sum of

the first two diagrams in the figure to be constant, for
arbitrary configurations of momenta obeying (6), these first
two diagrams could be eliminated by the third one, by
simply tuning Λ5 to minus that constant. One can check
that this strategy can indeed be implemented! Imposing
Λ4 ¼ 3Λ2

3 guarantees that the sum of the first two diagrams
be a constant, which happens to be equal to −5Λ3

3. This
process of particle creation can then be eliminated by
tuning Λ5 ¼ 5Λ3

3.
Of course, the next step would be to generalize this

procedure for amplitudes with an arbitrary number of
final bosons, in order to find expressions for all the
couplings in terms of Λ3. This can be done recursively,
using the factorization of the amplitudes and a clever choice
of momenta. Note, in fact, that all tree-level diagrams for n
particles, except for the constant one equal to Λn, can be
factorized in a left blob and a right blob connected by a
propagator:

GL→R ¼ 1

ðPi∈LaiÞð
P

j∈L1=ajÞ − 1
: ð9Þ

One can also show from the analyticity properties of the
amplitudes [7] that the sum of all diagrams remains
constant, even for a generic number of external particles.
This allows us to pick a convenient choice of momenta
which simplifies the evaluation of the recursive relations
among the Λn’s. This convenient choice turns out to be [7]

a ¼ fa1ðxÞ; 1; x; x2;…; xn−3; anðxÞg; ð10Þ

with aiðxÞ and anðxÞ being determined by (6). In the limit
of x → ∞,

a1ðxÞ ¼ −1þOð1=xÞ; anðxÞ ¼ −xn−3ð1þOð1=xÞÞ;
ð11Þ

and one can check that

GL→R

¼
�
−1; if aLj ¼ða1;a2;…;akÞ;aRj ¼ðakþ1;akþ2;…;anÞ
0; otherwise

;

ð12Þ

that is, only the diagrams where the particles are ordered
contribute. To see this, it is sufficient to evaluate a few
cases. For example, the set aLj ¼ fa2; a3g gives a vanishing
propagator, and it is easy to see that any other set of two or
more momenta, not including a1, goes to zero as well.
Similarly, the set aLj ¼ fa1; ai≥3g also gives zero. On the
other hand, the set aLj ¼ fa1; a2g yields−1. By adding ai≥4
to this set, we get zero again. The only case left to analyze is
if an ordered set of any size continues to converge to −1,
which it does.
An important consequence of (12) is that only ordered

line-type diagrams survive, as shown pictorially in Fig. 2
for the case of six particles.
After these considerations, one is ready to compute the

amplitude M2b→ðn−2Þb, schematically shown in Fig. 3. It is
useful to start thinking about the diagram that has Λn−k as
its rightmost vertex. This diagram factorizes into the form
M2b→kb · Λn−k. Imposing M2b→kb to vanish, one gets the
recursion relation

M2b→ðn−2Þb ¼ −Λ3Λn−1 þ ðΛ3Þ2Λn−2 −Λ4Λn−2 þΛn ¼ 0:

ð13Þ

FIG. 1. Tree-level diagrams contributing to M2b→3b.
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This can be solved by setting Λn ¼ γn, writing a generic
combination of the two roots, and imposing consistency
with Λ4 ¼ 3Λ2

3. One finds

Λn ¼
Λn−2
3

6
ð2ð−1Þn þ 2nÞ: ð14Þ

Plugging this in the potential in (3) and resumming, one
ends up with the Bullough-Dodd potential [14–16], a
known integrable model in two dimensions:

L ¼ 1

2
∂μϕ∂μϕ −

1

6Λ2
3

ð2e−Λ3ϕ þ e2Λ3ϕ − 3Þ: ð15Þ

One can repeat this exercise, imposing extra symmetries,
for example invariance under ϕ → −ϕ. Odd powers of the
expansion must vanish, so that Λodd ¼ 0. The amplitude
M2b→3b is now trivially zero, the first nontrivial process
being M2b→4b, shown in Fig. 4. This amplitude vanishes
provided Λ6 ¼ Λ2

4. Going through the same steps as above
for generic diagrams, one finds the recursion

−Λn−2Λ4 þ Λn ¼ 0; ð16Þ

which is solved by

Λn ¼ Λ
n−2
2

4 : ð17Þ

Resumming the potential results in the sinh-Gordon
potential,

L ¼ 1

2
∂μϕ∂μϕ −

1

Λ4

ðcosh ð
ffiffiffiffiffiffi
Λ4

p
ϕÞ − 1Þ; ð18Þ

another known integrable model in two dimensions.

III. INCLUDING THE FERMIONS

We now move on to the supersymmetric case. We can
extend the considerations above to the fermionic propaga-
tor in (8). In the limit x → ∞ for the momenta in (10), this
is such that

=GL→Rðp1;…Þ →
� −1 0

−ixmaxfi∈Lg−2 −1

�
; ð19Þ

when the particles are ordered and

=GL→Rðp1;…Þ → =q; ð20Þ

with q ¼ ð−1; 0Þ, otherwise. Ordered diagrams involving
=GL→R do not appear at tree level, so that (19) will not be
necessary.
Initially, we restrict our attention to theories preserving

a Z2 symmetry. These are invariant under ϕ → −ϕ and
have λodd ¼ 0, which implies Λodd ¼ 0. The processes
which involve bosons only are the same as the real scalar
theories studied above. One finds the recursion relation (17)
for the scalar couplings, which, using Eq. (4), translates
into an identical relation for the λn’s appearing in the
superpotential

λn ¼ λ
n−2
2

4 : ð21Þ

Performing the sum, one finds that

WðϕÞ ¼ 1

λ4
ðcosh

ffiffiffiffiffi
λ4

p
ϕ − 1Þ; ð22Þ

which is the superpotential of the N ¼ 1 supersymmetric
sinh-Gordon model [8–11].
In order to complete the derivation, one must prove that

this particular choice of couplings implies no particle
production in the processes which include fermions.

FIG. 2. This diagram seems to be nonvanishing since it is ordered
for the cuts A and B. However, for the cut C it is aLj ¼ fa3; a4g,
which implies that this diagram does in fact vanish. In general, only
(ordered) line-type diagrams survive the large x limit.

FIG. 3. The M2b→ðn−2Þb scattering. The sum is over all ordered line-typed diagrams.

FIG. 4. Tree-level diagrams contributing to M2b→4b in a
Z2-invariant theory.
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A. Two fermions into four bosons?

First, we consider the simplest possible scattering
process where particle production could occur, namely
ψ̄ψ → ϕ4, and show that the corresponding amplitude
M2f→4b is zero, independently of the choice of momenta.
The three diagrams in Fig. 5 contribute to this process.
Their evaluation is simplified enormously by considering
the choice of momenta in (10) above.
The process has only two fermions, with associated

momenta p1 and p2. Since the diagrams are evaluated at
tree level, the fermionic propagator will never be ordered.
Whenever a fermionic propagator appears in a diagram, it
can be replaced by =q. The amplitude M2f→4b will never
display any divergence in this limit: the fermionic propa-
gator cannot diverge and the bosonic propagator goes to
zero or −1. If any term of a given diagram goes to zero, it
can be discarded from the very beginning.
In the limit x → ∞, we evaluate the three classes of

diagrams in Fig. 5 as

ðaÞ → v̄2ð6λ24=qÞu1;
ðbÞ → v̄2ð−λ4Λ4Þu1 ¼ v̄2ð−4λ24Þu1;
ðcÞ → v̄2ðλ6Þu1: ð23Þ

Here, we employ the usual conventions for the external
fermionic particles: u (ū) denotes the initial (final) fer-
mions, whereas v (v̄) is for the final (initial) antifermions.
Diagram (c) is trivially evaluated, diagram (b) has only

one nonvanishing configuration, whereas diagram (a) has
six contributing configurations, resulting in the amplitude

M2f→4b → v̄2ðλ246=qþ λ6 − 4λ24Þu1 ¼ λ24v̄2ð6=qþ βÞu1;
ð24Þ

with β ¼ 1
λ2
4

ðλ6 − 4λ24Þ. In order for the average modulus

square jM2f→4bj2 to vanish, it must be β ¼ −3, which gives
the correct constraint for the couplings: λ6 ¼ λ24, consis-
tently with (21).

B. Two fermions into n bosons?

The result above can be generalized to a general process
involving two fermions going into n bosons: ψψ̄ → ϕn,
where n is even by symmetry. All the diagrams are divided
into three groups, schematically shown in Fig. 6.
Diagrams in group 1 are essentially bosonic diagrams

with an extra fermionic vertex attached to the first boson.
They will always be vanishing, by the constraint imposed
on bosonic diagrams above. Group 3 consists of two
diagrams, which can be trivially evaluated to

v̄2ðλnþ2Þu1þ v̄2ðλnð−1ÞΛ4Þu1¼ v̄2ðλnþ2−4λn=24 Þu1: ð25Þ

Finally, group 2 is divided into three types of diagrams,
which we dub of the A-type, B-type, and C-type. A-type
diagrams have two or more fermionic propagators that will
not be ordered, implying that the only surviving contribu-
tion will be proportional to =q=q…=q. In the evaluation of

jM2f→nbj2 however, anything with at least two =q’s will be
proportional to q · q ¼ 0. Therefore, these diagrams do not
contribute.

FIG. 5. Diagrams contributing to the process ψ̄ψ → ϕϕϕϕ. Solid lines represent bosons and dashed lines represent fermions.

FIG. 6. Diagrams contributing to the process ψψ̄ → ϕn.

CARLOS BERCINI and DIEGO TRANCANELLI PHYS. REV. D 97, 105013 (2018)

105013-4



B-type diagrams are detailed in Fig. 7 and start appearing
when n ¼ 6. They have only one fermionic propagator.
Looking for example at the case n ¼ 8, it is easy to see that
a cancellation takes place between the last terms due to the
constraint imposed on the bosonic scattering, Λ6 ¼ Λ2

4.
This can be checked to happen also at arbitrary n, resulting
in an effective expression given in the last line of Fig. 7.
The factor of 2 comes from an exchange of the fermions
that can always be made in this kind of diagrams. Anything
with a different arrangement of the right-most legs will
contribute to the bosonic scattering (of n − 2 bosons),
already shown to be zero. In the end, the contribution of
these diagrams to the amplitude is

BðnÞ → 2
Xn−4
i¼2
i even

λiþ2λn−ið−1ÞΛ4v̄2bðn; iÞ=qu1: ð26Þ

The minus sign comes from the ordered bosonic propagator
and bðn; iÞ is the number of permutations which leave
the last three legs with momenta (nþ 2; nþ 1; n) and
give an ordered bosonic propagator. For each particular
configuration, a propagator will depend on the ith

momentum, but since the last three must be fixed to get
a nonzero contribution, bðn; iÞ is the ways we can arrange
n − 3 objects into i slots, without worrying about their
order, so that

BðnÞ → −8λn=24

Xn−4
i¼2
i even

v̄2
ðn − 3Þ!

i!ðn − 3 − iÞ!=qu1: ð27Þ

The general form of a C-type diagram is shown in Fig. 8,
remembering that only line-type diagrams will have an
ordered bosonic propagator, potentially contributing to the
amplitude. Each fermionic propagator can be split into a
diagonal and off-diagonal part. Since the momenta are
always out of order, the diagonal part will go to zero, and
the off-diagonal one will go to =q. This will happen for every
permutation in the diagram, each one contributing in the
same manner. The expression for CðnÞ can be written as
follows:

CðnÞ →
Xn−2
i¼2
i even

λiþ2λn−iþ2v̄2cðn; iÞ=qu1: ð28Þ

FIG. 7. B-type diagrams for n ¼ 6, 8 and also a generalization for any n. The numbers between the external legs represent the number
of bosons in the vertex.

FIG. 8. C-type diagrams for n ¼ 4, 6, 8 and also a generalization for any n. The numbers between the external legs represent the
number of bosons in the vertex.
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The number of permutations cðn; iÞ is associated with the
diagram of i bosonic legs in the first vertex and n − i
bosonic legs in the second vertex. The amplitude associated
with one configuration has a propagator that depends on the
ith momentum, so that cðn; iÞ is the number of ways we can
arrange n objects into i slots, irrespective of their order:

CðnÞ → λn=24

Xn−2
i¼2
i even

v̄2
n!

i!ðn − iÞ!Þ=qu1: ð29Þ

To write this expression, we used a recursion, by assuming
that the relation is satisfied to λn in order to check if the
result is correct for λnþ2.
Summing B-type and C-type diagrams, we end up with

the full contribution to the group 2 diagrams

BðnÞ þ CðnÞ ¼ λn=24 v̄2α=qu1; ð30Þ

where

α ¼
Xn−2
i¼2
i even

n!
i!ðn − iÞ!Þ − 8

Xn−4
i¼2
i even

ðn − 3Þ!
i!ðn − 3 − iÞ! ¼ 6: ð31Þ

The amplitude of the process of two fermions going to n
bosons is given by the sum of these groups:

M2f→nb ¼ v̄2ðλn=24 6=qþ λnþ2 − 4λn=24 Þu1
¼ λn=24 v̄2ð6=qþ βÞu1; ð32Þ

where

β ¼ 1

λn=24

ðλnþ2 − 4λn=24 Þ: ð33Þ

This amplitude is zero only if β ¼ −3, which implies the
same recursive relation as in (21). Note that, for the
fermions, the cancellation is at the level of the squared
amplitude, not just at the level of the sum of the diagrams,
as in the bosonic case.

C. Two bosons into n fermions?

The next class of diagrams left to be checked is two
bosons going into four or more fermions. As explicitly
show in [11], the process of two bosons going into four
fermions is given by one diagram that vanishes trivially. To
extend this to n fermions, we need to pick the set of
momenta (10) and note that in the large x limit we have

jM2b→nf j2 ∼ xðn−2Þ!−ððn−2Þ!!Þ2 → 0: ð34Þ

This happens just by the conservations laws (6) and does
not impose new constraints on the coupling constants.

D. Two particles into n particles?

Finally, with the ingredients derived so far, it is possible
to show that all other processes in the theory involving two
initial particles and more than two final particles are zero.
To show this, one can think recursively and use the
following facts:

(i) One can flip signs in the set of momenta in (10) and
exchangewhat we call ingoing and outgoing particles.

(ii) In the limit of x going to infinity, only line-type
diagrams will contribute and one can factorize the
new cases into the cases which have already been
shown to vanish.

Since we showed that ψψ̄ → ϕ4 has vanishing amplitude,
by (i) we are automatically guaranteed that ϕϕ → ϕ2ψψ̄
also vanishes, just like ϕψ → ϕ3ψ̄ , and so on. There is only
one eight-particle process that is not related by (i) to old
cases. Working in the x going to infinity limit, it is possible,
however, to factorize this diagram into terms always
containing some vanishing M2→4. One can go on recur-
sevely to higher point amplitudes, which will all vanish
without imposing new constraints on the λn’s.
In conclusion, we see that the choice of couplings in (21)

guarantees that no particles are produced in any process
involving either bosons or fermions. The N ¼ 1 super-
symmetric sinh-Gordon potential (and its analytic continu-
ation to sine-Gordon) is then the only supersymmetric
model of a single scalar superfield with two supercharges
and a Z2 symmetry that exists in two dimensions and
does not produce particles. It would be interesting to extend
this analysis to theories with more than one superfield and
also to N ¼ ð2; 2Þ multiplets.
We relax now the assumption of Z2 invariance. We

discover that particle production does necessarily take
place and apparently no supersymmetric extension of the
Bullough-Dodd model exists. First of all, making use of (4)
in (14), one can compute the first few λn’s:

λ4 ¼ 6λ23; λ5 ¼ 15λ33: ð35Þ

In the fermionic sector, the simplest process is two fermions
going into three bosons: ψ̄ψ → ϕ3. There are six diagrams,

FIG. 9. Diagrams contributing to the process ψ̄ψ → ϕϕϕ.
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contributing to the amplitude of this process, as shown in Fig. 9. In the limit of interest for the momenta, all diagrams can be
easily evaluated

Group 1 → v̄2ðλ3ð−1ÞΛ3ð−1ÞΛ3Þ þ λ3ð−1ÞΛ4Þu1 ¼ v̄2ð−18λ33Þu1;
Group 2 → 2v̄2ð3λ3λ4=qÞu1 ¼ v̄2ð36λ33=qÞu1;
Group 3 → v̄2ðλ4ð−1ÞΛ3 þ λ5Þu1 ¼ v̄2ðλ5 − 18λ33Þu1: ð36Þ

The amplitude of this process is

M2f→3b → v̄2ð36λ33=qþ λ5 − 36λ33Þu1
¼ 6λ33v̄2ð6=qþ βÞu1; ð37Þ

where

β ¼ 1

6λ33
ðλ5 − 36λ33Þ: ð38Þ

This amplitude will be zero when β ¼ −3, or

λ5 ¼ 18λ33; ð39Þ

which is a different choice than the one in the bosonic case
in (35). Therefore, the bosonic and fermionic processes

cannot be set to zero simultaneously with the same choice
of couplings.
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