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We study vacua and walls of mass-deformed Kihler nonlinear sigma models on Sp(N)/U(N). We
identify elementary walls with the simple roots of USp(2N) and discuss compressed walls, penetrable

walls, and multiwalls by using the moduli matrix formalism.
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I. INTRODUCTION

Kéhler and hyper-Kéhler nonlinear sigma models are
studied in Refs. [1-3]. Massive hyper-Kéhler nonlinear
sigma models have a potential that is proportional to the
square of a triholomorphic Killing vector field of the
hyper-Kihler target space [4]. Fixed points of the Killing
vector field are realized as discrete vacua. It was shown
that there exist 1/2 supersymmetric kink solutions
that interpolate the discrete vacua [5]. A more general
potential is possible for a hyper-Kihler target space of
quaternionic dimension 2 or more, and exact nonsingular
solutions representing intersecting domain walls are
constructed in Ref. [6]. Multidomain walls are studied
in Ref. [7].

The moduli matrix formalism [8,9] was proposed to
construct walls systematically in non-Abelian gauge the-
ories with A/ =2 supersymmetry in four-dimensional
spacetime. The model considered in Refs. [8,9]
becomes massive hyper-Kéhler nonlinear sigma models
on the cotangent bundle over the Grassmann manifold
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"Gy, n Cl when the gauge coupling is taken to be infinity.
In this limit, multiwalls are constructed as well as single
walls. Multiwalls are along one spatial direction, and their
positions depend on moduli parameters and mass param-
eters. Walls can be compressed to single walls by changing
moduli parameters in Abelian gauge theories and in non-
Abelian gauge theories. These walls are called compressed
walls. A distinguishing feature in the non-Abelian gauge
theories is that walls can pass through each other [9]. Such
walls are called penetrable walls. It was also shown in
Ref. [9] that there is a bundle structure for nondegenerate
masses so that the vacua and the walls are on the Kihler
manifold.

The walls of Kéhler nonlinear sigma models on
SO(2N)/U(N) are studied in Refs. [10,11]. The
Hermitian symmetric space SO(2N)/U(N) is realized
as a quadric in the Grassmann manifold G,y y in
accordance with Refs. [12,13]. As SO(4)/U(2) ~ CP!
and SO(6)/U(3) ~ CP3 [14], the nonlinear sigma models
on SO(2N)/U(N) with N =2 and N =3 are actually
Abelian gauge theories. The walls of the nonlinear sigma
models on SO(2N)/U(N) with N =2, 3 are studied in
Ref. [10]. The walls of the nonlinear sigma models on
SO(2N)/U(N) for any N are studied in Ref. [11]. Penetrable
walls, which are related to non-Abelian nature, appear in
N > 4 cases. The vacua and the walls of N <7 cases are
presented in pictorial representations in which the vacua and
elementary walls correspond to the vertices and the segments
of the representations. It is shown that there is a recurrence of
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a two-dimensional diagram for each N mod 4 in the vacuum
structures that are connected to the maximum number of
elementary walls. The vacuum structures are proved by
induction.

The purpose of this paper is to construct walls of
mass-deformed Kihler nonlinear sigma models on Sp(N)/
U(N)* Sp(N)=USp(2N) or equivalently Sp(N) =
Sp(N,C) n U(2N). Unlike SU(N) or SO(2N), the lengths
of the simple roots of USp(2N) are different. Therefore, the
operators for the compressed walls of the nonlinear sigma
models on Sp(N)/U(N) should be newly defined. We
discuss the definitions of the operators and show that some
of the multiwalls can be compressed.

Since Sp(1)/U(1) ~CP!' ~ Q! and Sp(2)/U(2) ~ Q*
[14], the nonlinear sigma models on Sp(N)/U(N) with
N =1, 2 are Abelian theories. However, the nonlinear
sigma models on Sp(N)/U(N) with N >3 are non-
Abelian theories, so there exist penetrable walls. We use
the pictorial representations proposed in Ref. [11] to
investigate the vacuum structures and the recurrence of
two-dimensional diagrams to prove the vacuum structures
that are connected to the maximum number of elementary
walls by induction.

L= [ @0@, @0, =1V + [ doreg(@,0,07,) + (He)),

We follow the convention of Refs. [15,16] for the
description of the root systems and corresponding Lie
algebras. We also identify the elementary walls with the
simple roots of USp(2N) as it is done in Ref. [17]. In
Sec. II, we discuss the nonlinear sigma models on
Sp(N)/U(N) and the moduli matrix formalism. In
Sec. III, we study walls of the Ké&hler nonlinear sigma
models on Sp(N)/U(N) with N < 6. In Sec. IV, we study
the vacuum structures that are connected to the maximum
number of elementary walls. In Sec. V, we make
some observations about walls of the nonlinear sigma
model on Sp(5)/U(5). In Sec. VI, we summarize our
results. In the Appendix, we prove the vacuum structures
that are connected to the maximum number of elemen-
tary walls.

II. MODEL

The Kéhler nonlinear sigma models on SO(2N)/U(N)
and Sp(N)/U(N) can be represented as quadrics in the
Grassmann manifold G,y y. The Lagrangian in four
dimensions is written in the A" = 1 superfield formalism
[13,14,18],

(2.1)

where @ is an N x 2N chiral superfield with the flavor indices i, j = 1, ..., 2N and the color indices a,b = 1,--- N, Vis an
N x N matrix vector superfield in the adjoint representation of U(N), and Cbgb is a chiral superfield under a symmetric
representation of U(N). { is the Fayet-Iliopoulos parameter, and we set { = 1. J;; are invariant tensors defined by

. { a'2® Iy, SO(2N)/U(N) (22)
ioc” @ Iy, Sp(N)/U(N).
The superfields are written in terms of component fields:
D, (7.60) = ¢, (y) + V20, (y) + 0OF ().
V' (x.0.0) = 2(06"0)A,," (x) + 1(00)(02)," (x) — i(00)(04)," (x) + (60)(00) D, (x).
DL (y. 0) = P (v) + V20t (y) + 0OF G (y). (2.3)

The mass-deformed Lagrangian is obtained by dimensional reduction [19]. The bosonic part of the Lagrangian in three
dimensions is

L= _|(Du¢)ai|2 - |i¢aiji - izah¢bi|2 + |Fai|2 + (Dahd)bi&ia - Daa)
+ ((Fo)** ¢y J ;™ , + ¢8beiJij¢£j + (¢o)**¢y'J i FT,, + (H.c.)),

where the greek letter g is a three-dimensional spacetime index. The covariant derivative is defined by
(D), = 0,b," — iA,. d,". The last term (H.c.) stands for the Hermitian conjugate.

(2.4)

*The result of this paper is different than the result of Ref. [10]. In Ref. [10], we did not use the root system of USp(2N) to analyze the
vacua and the walls of the nonlinear sigma models on Sp(N)/U(N). In this paper, we identify the elementary wall operators with the
simple root generators of USp(2N) and find that the elementary wall operators in Ref. [10] are not correct. The result of this paper seems
to be consistent with the result of Ref. [15] in which the kink monopoles are studied in similar models with USp(2N) global symmetry.

3 1 SU(N) > SO(2N)
O sutv=)xo and oM = SON=-2)xU(1)"
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The Cartan generators of SO(2N) and USp(2N) are

(I=1,---N), (2.5)

H;y=er;—eyiinir

where ey (ey snis) 18 @ 2N x 2N matrix of which the
(I,I)((N+1,N +1)) component is 1 [15,16]. The mass
matrix can be formulated as

M=m-H, (2.6)
with vectors
m= (my,my - my),
H:=(H, H,,....Hy). (2.7)
The mass matrix in the basis (2.5) is
M = o3 ® diag(m, my, ..., my). (2.8)

Since we are interested in generic mass parameters, we can
set m; > my > --- > my without loss of generality.

Equations of motion for D and F yield the constraints for
the Lagrangian (2.4)

¢ai$ib - 5ab =0,

(Hermitian conjugate) = 0.

(2.9)
¢d' ", =0, (2.10)

We eliminate the auxiliary fields. The potential term of the
model is

V= lig/ My = iZ, '[P + 4l(do) 7. (2.11)
The vacuum conditions are

b/ M — >l =0, (2.12)

(o)) = 0. (2.13)

The condition (2.13) gives ¢y = 0 or ¢p = 0. Since the latter
solution is inconsistent with (2.9), we have ¢y = 0. The
scalar field ¥ can be diagonalized by a U(N) gauge
transformation as

2= diag(Zl, 22, ey ZN) (214)

Since M and X in (2.12) are both diagonal matrices, the
vacuum solutions to (2.12) are labeled by

(ZI,ZZ,...,ZN) == (:I:ml,:tmz,...,:I:mN). (215)

There exist 2V~! vacua in the nonlinear sigma model on
SO(2N)/U(N) since the tensor (2.2) is invariant under
O(2N), which includes a parity transformation. On the
other hand, there exist 2" vacua in the nonlinear sigma
model on Sp(N)/U(N). The numbers are the Euler
characteristics of the spaces [20].

To study wall solutions, we assume that fields are static
and all the fields depend only on the x; = x coordinate.
We also assume that there is Poincaré invariance on the

two-dimensional world volume of walls so we can set
Ay = A, = 0. The energy density along the x direction is

E= (D), +p/ M =2, by [P + 4 (o) ')
= (|(D¢)al + (¢uJM]l - Zub¢hi)|2 +4|(¢O)ab¢hi|2) +7
> 47, (2.16)

with D = D, and
T:a(gbaiMijéﬁja)’ d=0,

which is the tension density of the wall. The tension is

(2.17)

T— /_ " OTHIMP) = [Tr(pMPT=.  (2.18)

The energy density is constrained by (2.9) and (2.10).

We choose the upper sign for the Bogomol'nyi-Prasad-
Sommerfield (BPS) equation and the lower sign for the
anti-BPS equation in the first squared term in (2.16). Then,
the BPS equation is

(D§),' = (b/M;" =2, ¢,") = 0.

We introduce complex matrix functions S,”(x) and f,/(x),
which are defined by

(2.19)

0 —iAl = (S10S),0. p = (ST),F. (220)
Then, the equation (2.19) is solved by
bi = HObj(eMX)j[. (221)

Therefore, the solution to the BPS equation (2.19) is
bt = (871, Hoy/ (™).

The coefficient matrix H is the moduli matrix. X, A, and ¢
are invariant under the transformations

(2.22)

SSL=v,.c8L Hoy' =V, Hy'. (223)
where V € GL(N, C). The matrix V defines an equivalent
class of (S, Hy). This is named the world volume symmetry
in the moduli matrix formalism [8,9]. Equations (2.9) and
(2.10) correspond to

Ho,'(e2)/Hy ) = (SSY),b = Q. (2.24)

Ho,'J;jH"/,, =0, (Hermitian conjugate) = 0.  (2.25)
From (2.23) and (2.25), we can learn that moduli
matrices H,’s parametrize Sp(N)/U(N). The tension den-

sity (2.17) is
1,
7258 IndetQ. (2.26)

In the moduli matrix formalism, walls are constructed
from elementary walls. The elementary wall operators are
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the simple root generators of the flavor symmetry. So, the
elementary walls can be identified with the simple roots
[17]. We summarize the simple root generators E;, (i =
1,...,N) and the simple roots @; of SO(2N) and USp(2N)
following the convention of Refs. [15,16]. The set of
vectors {¢;} is the standard unit vectors &; - &; = §;;:

(i) SO(2N):

Ei=eiiv1 —einirivn (i=1..N-1),

Ey = en_12onv — enon-1>

A =€ — €41,

ay = ey_1 + en. (2.27)
(i) USp(2N):

Ei=eiij1 — €iNiLitN- (i=1,.. ,N=-1),

Ey = enon.

&i =& —&y1,

ay = 2ey. (2.28)

The Cartan generators (2.5) and the root generators
(2.28) are related and normalized by

Tr(HIHJ):Z(sU, (I,le,...,N),
Tr(HIEi):O,
4
Tr(EE]) = =——=. 2.29
HEE) = == (229)

In this paper, (A) denotes a vacuum, and (A < B)
denotes a wall that connects vacuum (A) and vacuum (B).
The mass matrix M (2.6), which is a linear combination
of the Cartan generators, and elementary wall (A < B),
which is generated by Cartan generator E;, are related by

C[M, EJ = C(I”T’l . &'i)Ei = T<A<—B>Ei’ (230)

where c is a constant and 7 4 g is the tension of wall. The
moduli matrix of elementary wall Hy,p), Which connects
(A) and (B), is

Hoep) = Hopy et

E(r)=¢€"E,, (i=1,..

’

N), (231

where E; is an elementary wall operator and r is a complex
parameter with —oo < Re(r) < +oo.

Unlike SU(N) and SO(2N), the lengths of the simple
roots of USp(2N) are different. Therefore, the constant ¢ in
(2.30) can be different in some vacuum sectors of the
nonlinear sigma models on Sp(N)/U(N).

We first review the formalism for the walls of the
nonlinear sigma models on Gy, y. and SO(2N)/U(N).
In this case, c is the same in all the sectors of the vacuum

structure. Given the aim of the work [11], it can be fixed as
¢ =1 for convenience. Elementary walls can be com-
pressed to single walls. In the nonlinear sigma models on
Gy,n. and on SO(2N)/U(N), a compressed wall of level
n that connects (A) and (A’) is

HO(A«—A’) — H0<A>6[E'1 J[Eiy [Eiy [ [Ei, ’Ein+]m”'”(r)’

(in=1,...Nyom=1,...n+1). (2.32)

A double-wall moduli matrix is constructed by multiplying
a single-wall operator to a single-wall moduli matrix.
By repeating it, we get a triple wall, a quadruple wall,
and so on. A multiwall, which interpolates (A), (A’),- -,
and (B), is

eEin(n) pEin(ra) . eEi,,(rn)’

HO<A<—A'<—-~-<—B> - H()<A>
(im=1,...N;m=1,....,n), (2.33)

where parameters r; (i =1,2,...) are complex para-
meters ranging —oo < Re(r;) < oo. Elementary walls pass
through each other if

[Eimin ] = 0’

n

(2.34)

and these walls are named penetrable walls [9].

Elementary walls can be identified with simple roots by
(2.30) [17]. Let root vector §<A|‘—Az> denote the wall that
connects vacuum (A;) and vacuum (A,). The correspond-
ing tension of the wallis T4, _a,) = 7 - G(a,a,)- Then, the
elementary wall of (2.31) is

§<A<—B> = C&i. (235)
The compressed wall of (2.32) is
§<A<—A'> = C(—x)i] + C&iz + C(—X)l'3 + e C&in + C&inﬂ' (236)

The root vectors of the two penetrable elementary walls of
(2.34) are orthogonal,

(2.37)

Now, we study walls of the nonlinear sigma models on
Sp(N)/U(N). In this case, c =2 fori = 1,...,N — 1, and
¢ = 1fori = N in (2.30). An elementary wall (A < B') is

§<A<—B'> = 051‘- (2-38)
The moduli matrix of (A « A”), which is a compressed
wall of level n, is
lEin By [Eig [ Ei, B ()

s

Hoacary = Hoa
1

(in=1,...N=1ym=1,...,n+1). (2.39)

The moduli matrices and the operators are the same as
(2.32) for i =1, ...,N — 1. However, the formula should
change for operator E. As an example, an elementary wall

105012-4
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Hypepy = Hype™1 ) and an  clementary  wall
Hoppry = Hopye En(r) are compressed to

Hoygepy = Hyp elEn-1:[En-1.En]I(r) (2.40)
or

HO(B<—B”> = H0<B>e[[EN~EN—l]’EN—l](r)‘ (2.4])

The formulas for multiwalls (2.33) and for penetrable walls
(2.34) hold for walls of nonlinear sigma models on

Sp(N)/U(N).

The compressed wall of (2.39) in terms of root vectors is

§<A<—A”> = 2&1'1 + 2&1‘2 + 2&,'3 + A Z&i,, + 2(—1)1"1+1, (242)

whereas the compressed wall of (2.40) and (2.41) is
Jipepry = 20y_1 + ay. (2.43)

In this paper, we label the moduli matrices of vacua in
descending order as

(X1, 2, By, Zy) = (my my, ... omy_y my),

(Z1. 2, Eyog Zy) = (my my, ...omy_y,—my),
(X1, 2, By Zy) = (my my, ... —my_y,my),
(21,2, Eyog Zy) = (my my, ..o —my_y,—my),
(Z1. 20 Iy Zy) = (my,—my, oo —my_y —my),
(Z1. 2, By Zy) = (=mymy, ... omy_y my),
(21,22,...,21\/_1,2[\]):(—ml,—mz,...,—mN_l,—mN).

(2.44)

ITI. NONLINEAR SIGMA MODELS
ON Sp(N)/U(N) WITHN <6

There are two vacua in the nonlinear sigma model on

Sp(1)/U(1),

@ = (1,0), X =m,

@ = (0,1), X=- (3.1)
The moduli matrices of the vacua are

Hyy = (1,0), T =m,

Hypy = (0,1), X=- (3.2)

There is only one wall, which is an elementary wall. The

elementary wall operator is
Ey =ep, (3.3)

and the moduli matrix of the elementary wall is

Hy(c) = HopyeP = (1,€"). (3.4)
The tension of the wall is

The diagram of the elementary wall is depicted in Fig. 1(a).

We study walls of the nonlinear sigma model on
Sp(2)/U(2). The Cartan generators H;, (I =1, 2), the
simple root generators E;, (i = 1, 2), and the simple roots
of USp(4) are

Hy=ey,—e44,
E, = eyy,
&2 - 2@2

(3.6)

For N = 2, the vacuum condition (2.12) gives rise to four
vacua, which have the following form:

B 1000 (5.5 = ( )
= 100) 1,42 nmy,my
00
:< 00 1)7 (Z1,%) = (my,—my),
0= (o | g o) EZ=Cmm)
= 100) 1,42)=(—my,my),
10
( ) (Z1.%) =(=my,—my).  (3.7)
001
The moduli matrices of (3.7) are
1000
H - 5 E 92 - ) )
0(1) <O 10 0> (21,2) = (my,my)
1000
H - 5 Z 72 == s )
0(2) <0 00 1) (Z1,%y) = (my,—my)
g 0010 (2.5) = ( )
0(3) = 0100/ 1s&0) =(—My,my),
How= (0 0P O) (e = ) (38)
0(4) = 0001 1,&2) = =My, —Nny). .
1 2 1 2
1 2> > D> 3> @
(a) (b)
3 2 3 2
Ay 2> 3D 6> 7> B
4>
(©) ()

FIG. 1. Elementary walls of the nonlinear sigma models on
Sp(N)/U(N). (@ N=1,(b) N=2,(c) N=3, and (d) N = 4.
The numbers indicate the subscript i’s of roots @;. The left-hand
side is the limit as x — +o0, and the right-hand side is the limit
as x - —oo.
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The moduli matrices of elementary walls that connect the
vacua (3.8) are

em2x+rA1—l/2

em,xAl—l/2
hn =
0 0

Al — p2mx 4 62m2x+2Re(r),

AZ — e—2m,x+2Re(r) + e~2max

The wall (3.12) has the limits

X = 400,

3 — Dy,
0 1

) ( 00)
X = —0o, - .
0 27\0 01 0

Here, ¢hy3(x = —o0) is related to vacuum @3 by a U(N)
gauge transformation. Therefore, ¢3(x - —oo) and @5 are
the same vacuum. We can also see this by making use of the
world volume symmetry. The moduli matrix of ¢,3(x —

—00) is
, 010 0
Bow =0 0 1 o)

which is related to H3y by the world volume symmetry

, 0 1
H0(3>: 1 0 Ho).

Therefore, Eq. (3.12) is the elementary wall that connects
vacuum (2) and vacuum (3). The wall solution (2.22) with
H(3<—4> is

(3.13)

(3.14)

(3.15)

0 0 1 0
¢34_ 0 emzxA—l/Z 0 e—m2x+rA—1/2 ’

A = g2max + e—2m2x+2Re(r)

(3.16)

The wall solution (3.16) has the limits

The wall solution (2.22) with H ;5 is

1 0 0 0
i = 0 e™m*A-2 (0 e—maxtrpa-l/2 )’
A = e2m2x + e—2m2x+2Re(r) . (3 10)

All the phases, which appear due to the U(1) gauge
symmetry, are fixed to zero. The wall (3.10) has the limits

1 — Dy,
P12 = Dy,

as expected. The wall solution (2.22) with H ;.3 is

X = 400,

X = —00,

(3.11)

0 0
_e—m|x+rA;1/2 e—mzxAgl/z ’

(3.12)

X = +oo, 3y — (I)<3>,

X = —o0, $3s = Dpyy. (3.17)
Tension 7' 4_p) of the wall that connects vacuum @,
and vacuum @ ) is obtained from (3.7). The tensions of the

elementary walls are

T i1y = M- 0, (3.18)
T o3y = 2m-ay, (3.19)
Tiaeqy =m-a,. (3.20)
Therefore, the elementary walls are identified with
G2y = G3esy = o,
Joes) = 2a (3.21)

The diagram of the elementary walls are depicted in Fig. 1(b).
We omit the coefficients of the simple roots in elementary
wall diagrams in this paper. From the diagram in Fig. 1(b),
one can see how a compressed walls is constructed. From
(2.39), the compressed wall that interpolates (1) and (3) is

1 0 2" 0
Ho<1<_3>_H0<1>eHEZ’E‘]’E‘Kr)_(01 0 O>’

(3.22)

and the compressed wall that interpolates (2) and (4) is

105012-6
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1 0 2 0
H0<2<—4> - H0<2>6[E1’[E1~E2H(r) — ( )

00 0 1
(3.23)

These are the compressed walls of level 1.

It can be shown that these compressed walls can be
obtained from double walls. Moduli matrices of double
walls (1 « 2 « 3) and (2 « 3 < 4) are

by (L€ 00
Hopoos) = Hopegpe™™ =\ o _ 4 1 )

Ey(r) 1 el 0 er1+r2
Hopsen = Hopepe™™ =g o 0 1 )
(3.24)

Hy(—23) can be transformed as

Y 1 —e2\/le> 0 0
0(1e2¢3) = e2n 1 0 1 —elttr2 en

1 0 er+ln2 _er—r2+ln2
- o2 14e —el—rtIn2  ,r=2r+In2 ’
(3.25)

where r == r; + 2r, — In2. The limit of Ho; 5.3 in (3.25)
as r, - +oo with finite r equals Hy 3y in (3.22), or
equivalently,

H0<1<—2<—3> :H0<1>6E2(r1)eE1(72)
~Hyy B2 (1) plEVEs)(ri+ra+in) o [Er[Er Ea]] (1427, —In2)

— H0<1>eEz(r—2r2+ln2)e[El,Ez](r_r2+1n2+iﬂ>

w elEVIEE) () (3.26)

where 7:=r; +2r, —In2 and ~ means the following
world volume symmetry transformation:

e

B = ()
H0<1>e el = 0 1 H()(l)zHO(l)- (327)

As ry — 400 with finite r, H0<1<_2(_3> d H0<1‘_3>.
Hy(p34) transforms as

" (1 —e"*“) <1 e 0 er'“Z)
34y ™
03" o 1 0 0 —en 1
1 e er+ln2 0
a (0 0 —en 1)’
where r := 2r; + r, — In2. The limit of Hy;.34) in (3.28)

as r; — —oo with finite r equals Hg; g in (3.23), or
equivalently,

(3.28)

H0(2<—3<—4) = H0<2> eEl (rl)eEz(rz)

= H0<2>eE2(r2)eE1(rl)e[El.EZ](rlJrrz)
% e[EvErEa]](2r +r,—In2+ix)

= H0<2>6[E]'EZ](r]+r2)eE](r])+[E1’[E17E2]](2r|+r2)
% elEv[EvE]|(2r +ry—In2-+ir)

=~ Hyp e E1(r)+{EL BB (2r+12)

E||E|.E]](2 —In2+i
x elEnELE]](2r+r—In +l7f)’

(3.29)

where 7r:=2r;+r,—In2 and ~ means the following
world volume symmetry transformation:

1 er1+r2

H, [E\.E))(r+r) — <
0(2)€ 0 1

>H0<2> >~ HO(Z)' (330)

As ry > —oo with finite r, H0<2<_3<_4> - H0<2(_4>.
The triple wall Hy(jp34) 18

H0<l<—2<—3<—4> = H0<l<_2(_3>eE2(r3)

1 e~ 0
- 0 1 —elitn

which consists of three elementary walls (1 « 2), (2 « 3),
and (3 « 4). Since [E,, [E, [E}, E5]]] = 0 or equivalently
a - (2a; + a,) = 0, the triple wall (I « 2 « 3 « 4) can-
not be compressed to a compressed wall of level 2.
Instead, the elementary wall (I < 2) and compressed
wall (2 « 4) are penetrable each other. Compressed wall
(1 « 3) and elementary wall (3 « 4) are also penetrable
each other.(2 < 4) and (I « 3) are compressed walls of
level 1.

We study walls of the nonlinear sigma model on
Sp(3)/U(3). The simple root generators and the simple
roots of USp(6) are

er2+r3

), (3.31)

e’ e

Ey=e15—es54.

E, = €23~ €65,

E3 == 63,6’ (332)
and
al = é1 - éZ?
_'2 = éz - é'%

The eight vacua of the nonlinear sigma model on
Sp(3)/U(3) are labeled in the descending order of (2.44):
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(1)1 (21,29, %3) = (my, my, m3),

(2)1 (21,22, 53) = (my, my, —m3),

(3)1 (21,22, 55) = (my, —my, m3),

(4): (21,52, 23) = (my, —my, —m3),

()t (Z1. 52, %3) = (—=my, my, m3),

(6): (X1, 55, %3) = (—=my,my, —m3),

(7)1 (21,52, %3) = (=my, —my, m3),

(8)1 (Z1.29,53) = (=my, —my, —m3) (3.34)

The tensions of elementary walls that connect vacua
(3.34) are

Thcoy =Tieay = Tisee) = Tpeg)y = m - s,

T<2<_3> - T<6<—7> — 2}’71 . (_iz,

T<3(_5> - T<4<—6> - 27’71 . &1. (335)
Therefore, the elementary walls are
G1e2) = G(3e4) = Gise6) = G78) = 035
Gppe3) = Gloer) = 2003,
§<3<_5> - §<4<—6> 25] . (336)

There are penetrable walls since a; - a3 = 0. The dia-
gram of the elementary walls of the nonlinear sigma model
on Sp(3)/U(3) are depicted in Fig. 1(c). In this figure, a
pair of penetrable elementary walls makes a parallelogram.
A pair of facing sides of the parallelogram are the same
simple roots, whereas a pair of adjacent sides of the
parallelogram are orthogonal simple roots.

We make some observations of the walls. One can guess
the existence of compressed walls from the wall diagram in
Fig. 1(c). Since (12 - Gp—3) # 0, elementary wall (1 « 2)
and elementary wall (2 < 3) are compressed to compressed
wall (1 « 3), which is a compressed wall of level 1. The
moduli matrix of (1 < 3) is

E3.E5|.E](r)

H0<1<_3> = H0<1>€[[ . (337)

One can also see that gp.3) - gi—s) # 0. Therefore,
elementary wall (2 « 3) and elementary wall (3 < 5) are
compressed to compressed wall (2 < 5), which is a com-
pressed wall of level 1. The moduli matrix of compressed
wall (2 < 5) is

Hopos) = Hopyel=F10), (3.38)

Let us consider the moduli matrix of double wall
(1 «2«3),

H0<1‘_2<_3> = H0<1>eE3(V1)eEz(rz)’ (3'39)

and the moduli matrix of double wall (2 « 3 « 5),

Hyposes) = HopyeBm ek, (3.40)

Double wall (1 « 2 « 3) in (3.39) is
Hy(1ne3) = HogyeB2 ) ef2(r)
= HopyeP2(2) eBs(n) glE2 Esl(nitra-tin)
x elE2[Ea ]| (ri+2r,—In2)
& Hopy e (r=2r2+n2) olBo Bsl(r=rs-+in2+in)

x elE [Ex B0, (3.41)

where r := r| + 2r, — In2 and ~ means

1 0 O
0 1
0 0 1

Hopyef2) = en (3.42)

H0<1> ~ H0<1>.

As ry — +oo with finite r, the limit of Hy(j,3) equals
H13). Double wall (1 « 2 « 3) is plotted in Fig. 2.
Double wall (2 « 3 « 5) (3.40) is

H0(2<—3<—5) = H0<2> eEZ(rl)eEl(rz)

= H0(2>eEl(r2)eEz(rl)e[Ez,El](r1+r2>

~ H0<2>eE2(rl)e[ElsE2](r), (343)

T T T
8

8 30

6 6 25

20

4 4 15

5 5 10

5

5 10 15 20 25% 5 10 15 20 25% 5 10 15 20 25%
(a) (b) (©)

FIG.2. Doublewall (1 « 2 « 3)in Sp(3)/U(3), which consists of two elementary walls (1 < 2) and (2 « 3). They are compressed
to (1 « 3). my =8, my=4, and m3=2. (a) r; =60, r,=20; (b) r| =52, r,=24; and (c) r; =40, r, = 30.
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T T T
8 15 8
6 6
10
4 4
2 & 2
X X X
10 20 30 40 10 20 30 40 10 20 30 40
(@) (b) (©)

FIG. 3.
ry = 50; (b) r; =60, r, = 80; and (c) r; = 60, r, = 95.

where r :=r; + r, + iz and ~ means

~

Hyq). (3.44)

e
0

As ry — —oo with finite r, the limit of Hg;, 3.5 equals
Hys). Double wall (2 « 3 « 5) is compressed to com-
pressed wall (2 « 5), which is a compressed wall of
level 1.

Next, we discuss penetrable walls.  Since
Gi3es) - Gis—6) =0, we can observe elementary wall
(3 «5) and elementary wall (5 < 6) pass through
each other. Double wall (3 < 5 « 6) is plotted in Fig. 3.

The moduli matrix of (1 « 5), which is a compressed
wall of level 2, is

Hyps) = H0<1>eH[[E3,Ez]sz]El],El](V). (3.45)

The moduli matrix of triple wall (I « 2 « 3 < 5) is

i) N=5:
Joe17) =g
Gisc0) = Gise10) = Gy = g
G3es) = Glaee) = G(1113) = G(1214) = G(1921)
Gpe3y = Gi7) = Juo-11) = G(ia1s) = G(18<19)
G2 =Gpay =9
=g

=3
=3

(21<22) = §<23<_24> = 5(2&—26) = §<27<_28) = 9(2930) = 9(31<32) = dis.

Double wall (3 « 5 « 6) in Sp(3)/U(3), which consists of two penetrable walls. m; = 8, m, =5, and m3 = 2. (a) r; = 60,

Hoyes) = H0<1>EE3(V|)eEz(rz)eE|(V3>' (3.46)

We shall consider higher N. Elementary walls can be
identified with the simple roots of USp(2N) with proper
coefficients. All the compressed single walls and multi-
walls can be constructed from the elementary wall con-
figuration. The elementary wall configuration for N = 4 is

§<5<—9> = §<6<—10> = §<7<—11> = §<8<—12> = 2ay,
Gi3es) = Glace) = G1<13) = G214y = 20,
Gp<3) = Gis<7) = Guo—11) = Jac1s) = 203,
Guea) = Gpeay = Gise6) = Gres)
= 1910 = G(11-12) = J13<14) = G(15-16) = Ca-

(3.47)

The diagram of the elementary walls is depicted in
Fig. 1(d). We leave vacuum labels out of diagrams from
Fig. 1(d) onward.

While the elementary wall diagrams are planar for N < 4,
the diagrams are nonplanar for N > 5. The elementary wall
configurations for N = 5 and N = 6 are as follows:

(1018) = G(1119) = G(1220) = G(1321) = G(1422) = G(15-23) = G(1624) = 20,

(8<12) = 721(_25) = _)(22<—26) = 723(_27) = _)<24<—28> = 2a,,

(20<22) = G(2729) = Giag30) = 203,
=g = o031y = 204,

(2223) (2627)

(56) = G(78) = G(910) = G(1112) = G(1314) = G(1516) = G(1718) = G(19-20)

- -

(3.48)
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§<2z<—38> = 5(2349) = §<24<—40> = §<25<-41> = §(26<—42>
93147y = Gi3aeag) = 204,

J(14<22) = J(15<23) = §(16<—24>

5(45<-53> = §<46<—54) = §<47<—55> = §<48<_56> = 2a,,

G(53e57) = G(s4es8) = G(5559) = (s660) = 203,

(46) = §<1l<_13> = 5(12<-14) = 5(19921) = §<20<_22> = §<27<_29> = 5(2&—30) = §<3s<_37> = §<36<_38>

§<59<—61> = §<6o<_62> = 2ay,

(67) = G01011) = G1ac1s) = G(18<19) = J2223) = G(2627) = G(30<31)

Gis0<51) = Gisacss)y = J(ss—s9) = J(6263) = 20s.

(3<4) = §<5<—6> = §<7<—8> = 5(9«10) = §<11<—12> = §<13<—14) = §<15<-16> = §<17<—18> = 5(19«20) = 5(2142}

(i) N =6:
G017<33) = Gus<3ay = J19<3s) = J20-36) = J2137) =
= G(2743) = G(284a) = G(2945) = G(3046) =
G917y = G1018) = G(11<19) = J(1220) = J(1321) =
= Jla149) = Ga250) = J(a3s1) = Jlaaesz) =
Gis<9) = Gi6—10) = G711) = G(812) = Ga125) = G(2226) = J(2327) = J(2428)
= (37-41) = J(3842) = J(3043) = J(4044) =
Gi3es) =9
= J(43-45) = Glasess) = O(s1s3) = J(52-58) =
Jpe3 =9
= G(34e35) = G(3839) = Giu24a3) = Gua6ea7) =
Jueo =9
= G324y = J25026) = G(2728) = (2930) =
= Ga1c42) = Guasaay = Guas—ae) = Jar—ag) =
= G(s758) = G(59-60) = Ji6162) = J(6364) =

The diagrams of the elementary walls of the N = 5 and
N = 6 cases are depicted in Figs. 4 and 5.

IV. VACUA CONNECTED TO THE MAXIMUM
NUMBER OF ELEMENTARY WALLS

We study the vacua that are connected to the maximum
number of elementary walls. We denote the vacua (A) and

FIG. 4. Elementary walls of the nonlinear sigma model on
Sp(5)/U(5). The left-hand side is the limit as x — o0, and the
right-hand side is the limit as x - —oo.

FIG.5. Elementary walls on Sp(6)/U(6). The left-hand side is
the limit as x — +o0, and the right-hand side is the limit as
X - —c0.

Ji31-32) = G3334) = G(35-36) = J(3738) = §(3940)
5(4940) = 5(5142) = §(53<_54> = §<55<_56>
ag. (3.49)

(B). Let (A) be the vacuum near (1) and (B) be the vacuum
near (2V). From Figs. 1, 4, and 5, we make the following

observations in which m denotes simple root @,,:
i N=1:

(1) « 1« (2) (4.1)
(i) N =2:
2 (A) <1< (B) <2 (4.2)
(iii) N =3:
3. <—2_><—<A <—{1_:_>}<—-
.<—{1ﬁ,_)}<—<B><—5<—~ 3 (4.3)
(iv) N =4
§e <—{5,Z}<—<A><—{f,_’}<—~
AT (B A e ed ()
v) N=5:
5. ~<—{iZ}<—(A)<— lq,q,_)}<—-
<—{1_),_),5_)} (B <—{5,_)}<—~ c«5. (4.5)
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(vi) N=6:
6 {2.4,6} —(A) —{1.3.5}
- {1,3,5} < (B) <~ {2.4.6} < «6. (4.6)

From Figs. 1, 4, and 5 and Egs. (3.36), (3.47), (3.48), and
(3.49), (A) and (B) are identified as follows:

i) N =3:
(4)=@3). (B)=(6) (4.7)

() N =4:
(a)=1(6).  (B) =(11). (4.8)

(iii) N =5:
() =1,  (B) =(22). (4.9)

(iv) N =6:
(A)=(22),  (B)=(43).  (4.10)

The vacuum labels are not unique since we can change
them as we please. Therefore, let us label the vacua that are
connected to the maximum number of elementary walls as
(A) and (B).

The vacuum structures that are connected to the maxi-
mum number of elementary walls are as follows:

(i) N=4m—-3(m >2):

(4.11)

(i) N=4m—-2(m >2):

(4.12)

<N. (4.13)
(iv) N=4m(m > 2):
N <
“— {E,Z, ,4m—2,m} — (A) «
2m

(4.14)

Equations (4.11), (4.12), (4.13), and (4.14) are
proven in the Appendix.
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T T T
35

15 15 30
25

10 10 20
15

5 5 10
A g

5 10 15 20 25X ‘ 5 10 15 20 25 30X ' 5 10 15 20 25 30X
(a) (b) (©)

FIG. 6. Double wall (7 « 11 « 19) in Sp(5)/U(5). Elementary walls (7 « 11) and (11 « 19) are compressed to (7 < 19) as

ry = —oo with r; + r, = r (finite). m; = 12, my, = 8, my = 6, my = 4, and ms = 2. (a) r; = 30, r, = 30; (b) r; =22, r, = 38; and

() r; =19, r, =41.

T T T
8 8
8
6 5 6
4 4 4
2 2 2
5 10 15 2OX 5 15 20X 5 10 15 20X
(a) ©

FIG. 7. Double wall (7 « 11 « 12} in Sp(5)/U(5). Elementary walls (7 < 11) and (11 « 12) pass through each other. m; = 12,
my, =8, my =6, my =4, and ms = 2. (a) r; = 20, r, =25; (b) ry =20, r, =37; and (c) r; = 20, r, = 55.

V. WALLS OF NONLINEAR SIGMA
MODEL ON Sp(5)/U(5)

We have studied the vacuum structures that are con-
nected to the maximum number of elementary walls for
general N. The elementary walls can be compressed or can
pass through each other. We discuss some features of
elementary walls of the nonlinear sigma model on
Sp(5)/U(5), which is the simplest nontrivial case. From
(3.48) and (4.5), (11) is one of the vacua that are connected
to the maximum number of elementary walls. The structure
near (11) is

where ~ means

Hygyef1(2) = (Is + e"ej o) Hoy = Hopgy. (5.3)
As r; —» —oo with ry +ry =r (finite), Ho;7 11c19) =
Hg(7<19)- Double wall (7T < 11 « 19) is compressed to
compressed wall (7 « 19), which is a compressed wall of
level 1. This is depicted in Fig. 6.

In (5.1), &, - a5 = 0. Therefore, elementary wall (7 « 11)
and elementary wall (11 < 12) are penetrable. The
moduli matrix of double wall (7 « 11 « 12), which
consists of two penetrable elementary walls (7 « 11)
and (11 « 12), is

7 3 [« (19)

<« -

) . ()« 3<(13) (5.1)  Hopgericny

<10> - § “«— <12>_ :H0<7(_11>6E5(r2) :H0<7>e52("1)eE5(r2) :H0<7>6E5(r2)eE2(r1)
= Hoprg) e, (5.4)

In (5.1), a, - a; # 0. Therefore, elementary wall (7 « 11)
and elementary wall (11 « 19) are compressed to a single
wall. Vacuum (7) is labeled by (Z,%,,2%3,%4,%5) =
(my, my, —msz, —my, ms). The moduli matrix for double
wall (7 < 11 < 19) is

Hyg11-19) = Hor) eE2(r1) gEi(r2)

= H0<7>€E1("Z)eE2<r1)—[E1,E2](rl+r2)

~ H0<7>eEZ(rl)_[ElsE2]<rl+r2)’ (5.2)

This is depicted in Fig. 7.

VI. CONCLUSION

We have studied the vacua and the walls of mass-
deformed Kihler nonlinear sigma models on Sp(N)/
U(N) by using the moduli matrix formalism. For N = 1
and N = 2, the nonlinear sigma models on Sp(N)/U(N)
are Abelian theories, in which single walls are compressed
to compressed walls while penetrable walls are not allowed.
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On the other hand, for N > 3, the nonlinear sigma models
on Sp(N)/U(N) are non-Abelian theories, so there exist
penetrable walls, which lead to a unique vacuum configu-
ration for each N. We have proven the vacuum structures
that are connected to the maximum number of elementary
walls by induction.
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APPENDIX: VACUUM STRUCTURES

In this Appendix, we prove (4.11), (4.12), (4.13), and
(4.14). The vacuum structures that are connected to the
maximum number of elementary walls in the nonlinear
sigma models on SO(2N)/U(N) are studied by decom-
posing the diagrams into two-dimensional diagrams in
Ref. [11]. We use the same method in the nonlinear sigma
models on Sp(N)/U(N). The rule for the decomposition is

FIG. 8. N =5 case. The vacuum structure near (1) ((32))
decomposes into two diagrams.

®

(b)

FIG. 9. N =6 case. The vacuum structure near (1) ((64))
decomposes into two diagrams.

FIG. 10. N =7 case. The vacuum structure near (1) ((128))
decomposes into two diagrams.

that the simple roots that have already appeared in the
previous diagrams should not be repeated.

The vacuum structure of the N = 5 case is depicted in
Fig. 4. The vacuum structure near (1)((32)) decomposes
into two diagrams, as is shown in Fig. 8. The circle
indicates (A)((B)). The letter X indicates the vacuum that
is connected to the both diagrams. The left-hand side (the
right-hand side) of the each diagram is the limit as x —
+00(x — —oo) for the vacuum structure near (1), whereas
the left-hand side (the right-hand side) of each diagram is
the limit as x — —oo(x — +o0) for the vacuum structure
near (32).

Figure 5, which describes the vacuum structure of the
N = 6, case decomposes into two diagrams as is shown in
Fig. 9. In the same manner, the vacuum structures of the
N =7 and N = 8 cases are presented in Figs. 10 and 11.
The vacuum structures repeat the four diagrams in Fig. 1.

All the vacuum structures can be decomposed into two-
dimensional diagrams in Fig. 12, in which only the first two
diagrams are shown and then fall into four categories. The
vacuum that is connected to the maximum number of
elementary walls is circled in each diagram in Fig. 13.

8
/6~87 g

(b)

FIG. 11. N = 8 case. The vacuum structure near (1) ((256))
decomposes into two diagrams.

(b)

FIG. 12. First two diagrams of the vacuum structure near (1)
and (2V).

C— O

(a) (b)
(©) (d)

FIG. 13. Four types of vacuum structures. The circle indicates
the vacuum that is connected to the maximum number of simple
roots.
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2 1 . . . 4m-6 4m-7
4 3 4m-4 4m-5

FIG. 14. Common part near (A).

1 2 .. 4m-7 4m-6
3 4 4m-5 4m-4

FIG. 15. Common part near (B).

4m-3 4m-2 4m-3
c - S
_/
(a) (b)
4m-2 4m-3 4m-2 4m-3
am-1 4am 4m-1
(©) (d)

FIG. 16. Remaining part of the vacuum structure near (A). The
location of (A) is circled.

i) N=4m-3,(m>2):

4m-3 4m-3 4m-2
- S =
/
(a) (b)
4m-3 4m-2 4m-3 4m-2
4m-1 4m-1 4m
(c) (d)

FIG. 17. Remaining part of the vacuum structure near (B). The
location of (B) is circled.

The vacuum structures that are connected to the maxi-
mum number of elementary walls can be obtained from the
repeated diagrams. (A) denotes the vacuum near (1), and
(B) denotes the vacuum near (2V). The common parts of
each vacuum structure near (A) and (B) are shown in
Figs. 14 and 15. The rest of the vacuum structures are
obtained from Fig. 13. The remaining parts of each vacuum
structure near (A) and (B) are shown in Figs. 16 and 17 for
N=4m -3, N=4m -2, N=4m—1, and N = 4m.

The vacuum structure of (A) is derived from Figs. 14 and
16 as follows:

{2.4,....4m—6,4m —4} — (A) < {1.3,....4m — 5,4m — 3}. (A1)
2m—2 2m—1
(i) N=4m—2,(m>2):
{2.4,...4m—4,4m =2} « (A) < {1.3,....4m — 5,4m — 3}. (A2)
2m—1 2m—1
(i) N=4m—1,(m>2):
(2.4, 4m—4,4m =2} — (A) < {1.3,....4m =3, 4m — 1}. (A3)
2m—1 2m
(iv) N =4m,(m >2):
(3.4, ... 4m—2,4m} < (A) < {1.3....4m —3,4m — 1}. (A4)

Each case with m = 1 is shown in Fig. 1. Each case with m = 2 is shown in Figs. 8, 9, 10, and 11. Let us assume that
(A1), (A2), (A3), and (A4) are true. Then, these are true for m’ = m + 1 as it corresponds to adding one more diagram in

Fig. 14. Therefore, Egs. (A1), (A2), (A3), and (A4) are true.
The vacuum structure of (B) is derived from Figs. 15 and 17 as follows:

105012-14



VACUA AND WALLS OF MASS-DEFORMED KAHLER

PHYS. REV. D 97, 105012 (2018)

() N=4m—-3,(m>2):

—

{1.3.....4m —5.4m =3} « (B) < {2.4,....4m — 6,4m — 4}. (A5)
2m om
(i) N=4m—-2,(m > 2):
{1.3,...4m—5.4m =3} « (B) « {2.4,....4m — 4,4m - 2}. (A6)
2m—1 2m—2
(i) N=4m—1,(m >2):
{1.3,...4m =3, 4m — 1} « (B) < {2.4,....4m — 4,4m - 2} (A7)
2m 2m—1
(iv) N =4m,(m >2):
(1.3....4m =3, 4m -1} « (B) « {2.4,....4m -2, 4m }. (A8)
om 2m

Each case with m = 1 is shown in Fig. 1. Each case with m = 2 is shown in Figs. 8§, 9, 10, and 11. Let us assume that
(A5), (A6), (A7), and (AB) are true. Then, these are true for m’ = m + 1 as it corresponds to adding one more diagram in

Fig. 15. Therefore, Egs. (AS), (A6), (A7), and (A8) are true.

For any N, the vacuum structure is
Therefore, Eqs. (4.11), (4.12), (4.13), and (4.14) are proven.

—(A) « -

«— (B) « -+« N. (A9)
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