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We study the constraints on thermal phase transitions of SUðNcÞ gauge theories by using the ’t Hooft
anomaly involving the center symmetry and chiral symmetry. We consider two cases of massless fermions:
(i) adjoint fermions and (ii) Nf flavors of fundamental fermions with a nontrivial greatest common divisor,
gcdðNc;NfÞ ≠ 1. For the first case (i), we show that the chiral symmetry restoration in terms of the
standard Landau-Ginzburg effective action is impossible at a temperature lower than that of deconfinement.
For the second case (ii), we introduce a modified version of the center symmetry, which we call center-
flavor symmetry, and draw similar conclusions under a certain definition of confinement. Moreover, at zero
temperature, our results give a partial explanation of the appearance of dual magnetic gauge groups in
(supersymmetric) QCD when gcdðNc;NfÞ ≠ 1.
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I. INTRODUCTION AND SUMMARY

Thermal phase transition in gauge theories is a very
interesting and important subject. Theoretically, it is related
to the mystery of how strong dynamics works in confine-
ment and chiral symmetry breaking. Phenomenologically,
the nature of the phase transition affects cosmological
observables such as dark matter abundance. It might even
provide the dark matter itself via QCD effects [1].
The standard way to study chiral symmetry restoration is

as follows [2]. The quark bilinear Φ ∼ ψψ, where ψ
represents left-handed fermions, is believed to be the most
relevant order parameter for the chiral symmetry breaking.
This operator Φ is treated as the effective degrees of
freedom (d.o.f.) near the critical temperature Tchiral, and
the phase transition is described by a Landau-Ginzburg
effective Lagrangian:

Leff ¼ trð∂iΦ†∂iΦÞ þ VðΦÞ
VðΦÞ ¼ c0trðΦ†ΦÞ þ c1½trðΦ†ΦÞ2� þ c2½trðΦ†ΦÞ�2

þ canom½detðΦÞ�tR þ � � � ; ð1Þ

where the coefficients depend on temperature T and, in
particular, c0 ∝ ðT − TchiralÞ, and tR is the Dynkin index
of the left-handed fermion representation. However,
because of the strong coupling, it is not easy to see whether
such a scenario is likely or not. It is conceivable that

deconfinement happens at a lower temperature. If so, we
lose intuitive reasons for treating the composite Φ as the
effective elementary d.o.f. These questions may be rigor-
ously asked in theories where center symmetry is well
defined, such as adjoint QCD, QCD with imaginary baryon
chemical potential [3], or QCD in the large Nc limit.
Recently, a very remarkable paper [4] appeared which

studied phase transitions in pure Yang-Mills. They used a
mixed ’t Hooft anomaly between the CP symmetry and
the 1-form center symmetry to constrain possible phase
transitions at the theta angle, θ ¼ π. Under reasonable
assumptions about the dynamics of pure Yang-Mills,
the CP symmetry cannot be restored below the temper-
ature at which the center symmetry is broken, i.e.,
deconfinement. See the original paper for more careful
discussions.
In this paper, we point out that a similar discussion is

possible for chiral symmetry. The mixed ’t Hooft anomaly
between chiral and center symmetry is also known [5], so
we can repeat the argument of [4] when the center
symmetry exists, such as SUðNcÞ gauge theories with nf
fermions in the adjoint representation. We will see that
chiral symmetry restoration by (1) cannot happen below the
deconfinement temperature.
When there are Nf fermions in the fundamental repre-

sentation of SUðNcÞ, the center symmetry no longer exists.
However, we argue that there is a more subtle “symmetry”
that mixes the center symmetry and flavor symmetry, by
using the fact that the fermions are in the representation of
½SUðNcÞ × SUðNfÞV �=Zn where n ≔ gcdðNc; NfÞ is the
greatest common divisor. The division by Zn leads to what
we call “center-flavor symmetry”. By using it, we obtain
similar constraints as in the case of adjoint fermions, under
a technical definition of confinement in terms of the
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quantum fluctuations of the gauge field in a confining
phase. This has implications even at zero temperature. If the
chiral symmetry is not broken, we need dynamical gauge
fields to match the anomaly of the center-flavor symmetry.
This partially explains the reason why the dual magnetic
gauge groups in Seiberg’s description of supersymmetric
QCD appear [6,7]. In a sense, we can directly see the
existence of gauge fields via the ’t Hooft anomaly.

II. SUðNcÞ WITH ADJOINT FERMIONS

In this section, we consider SUðNcÞ gauge theories with
nf massless Weyl fermions in the adjoint representation.

A. ’t Hooft anomaly of chiral and center symmetry

Here, we describe the mixed ’t Hooft anomaly of chiral
and center symmetry [5].

1. Chiral symmetry

Classically, the theory hasUðnfÞ¼½Uð1ÞA×SUðnfÞ�=Znf
chiral symmetry acting on the fermions. The Uð1ÞA is
quantummechanically broken to the anomaly-free subgroup
Zaxial

2Ncnf
, whose generator acts on fermions ψ via

Zaxial
2Ncnf

∶ ψ → exp

�
2πi

2Ncnf

�
ψ : ð2Þ

Thus, the chiral symmetry of the theory is reduced
to ½SUðnfÞ × Zaxial

2Ncnf
�=Znf .

The order parameter of the breaking is Φab ¼
ψaψbða; b ¼ 1;…; nfÞ, which behaves as

detΦab ¼ constðeiθÞ 1
Nc : ð3Þ

If we assume it is nonzero, there are Nc distinct connected
components in the moduli space of vacua. The generator of
Zaxial

2Ncnf
transformation is implemented by the theta angle

rotation, θ → θ þ 2π, which permutes the Nc connected
components.
The continuous part SUðnfÞ of the chiral symmetry is

also broken by the vacuum expectation values of the matrix
ðΦabÞ, which produce Goldstone bosons at each connected
component. However, the details of this breaking do not
play any role in the following discussion.

2. Center symmetry

Because adjoint fermions transform trivially under the
center ZNc

⊂ SUðNcÞ, the theory possesses the ZNc
center

symmetry. The center symmetry is a typical example of
1-form symmetry [5], which acts on line operators in the
present theory.
The 1-form center symmetry can be coupled to a 2-form

background B ∈ H2ðX;ZNc
Þ, where X is spacetime, as

follows. For a topologically nontrivial gauge bundle on a

manifold X, we first take open covers fUaga∈A of X such
that the bundle is trivialized on each of Ua. They are glued
by transition functions gab on Ua ∩ Ub, which we take to
be Nc × Nc matrices in the fundamental representation.
For SUðNcÞ (as opposed to SUðNcÞ=ZNc

) bundles, they
satisfy the standard consistency condition gabgbcgca ¼ 1
if Ua ∩ Ub ∩ Uc ≠ ∅. However, when we consider
SUðNcÞ=ZNc

bundles, we have

gabgbcgca ¼ exp

�
2πiwgauge

abc

Nc

�
; wgauge

abc ∈ ZNc
: ð4Þ

This is allowed because expð2πiwgauge
abc =NcÞ is in the center

ZNc
⊂ SUðNcÞ, and hence it is trivial in SUðNcÞ=ZNc

.
These wgauge

abc give an element of the cohomology group:

wgauge
2 ∈ H2ðX;ZNc

Þ; ð5Þ

which gives the obstruction to uplift the SUðNcÞ=ZNc

bundle to an SUðNcÞ bundle.
Including the background field, B ∈ H2ðX;ZNc

Þ for the
center 1-form symmetry corresponds to considering gauge
bundles which satisfy B ¼ wgauge

2 . Namely, we perform a
path integral under this topological condition for the
gauge field.

3. Mixed ’t Hooft anomaly

Let us describe the mixed ’t Hooft anomaly between the
axial symmetry Zaxial

2Ncnf
and the center symmetry [5]. Under

the axial rotation (2), the standard Fujikawa’s argument
tells us that the path integral measure ZðXÞ changes as

ZðXÞ → ZðXÞ exp
�
2πi

Z
X

1

8π2
trF ∧ F

�
; ð6Þ

where F is the gauge field strength, and the trace is in the
fundamental representation.
If B ¼ wgauge

2 ¼ 0, the above phase factor is trivial
because the instanton number is integral. However, when
we turn on the background field B ¼ wgauge

2 ≠ 0, we
have (on a manifold like T4 [8]) 1

8π2

R
X trF ∧ F ¼

− 1
2N

R
X B ∧ B mod 1 and hence

ZðXÞ → ZðXÞ exp
�
−
2πi
2N

Z
X
B ∧ B

�
: ð7Þ

This represents the mixed ’t Hooft anomaly.

4. Low-energy behavior

There is an immediate consequence of the above mixed ’t
Hooft anomaly. It is impossible that the low-energy limit
has a trivial gapped vacuum with both the chiral and center
symmetries unbroken.
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By looking at the two-loop beta function, a likely
scenario is as follows [9]. When nf ≤ 2, the chiral
symmetry is spontaneously broken. When nf ¼ 5, it flows
to a conformal fixed point. The cases nf ¼ 3, 4 are unclear,
but nf ¼ 4 may have a conformal fixed point.

B. Constraints on phase transition

Next we use the mixed ’t Hooft anomaly of the Zaxial
2Ncnf

and theZNc
center symmetry to constrain the thermal phase

transition. We reduce the theory along the thermal circle S1T
and obtain the effective theory on R3. The center symmetry
now splits into two global symmetries. One is the 0-form
center symmetry Z0-form

Nc
acting on the Polyakov loop

L ¼ trNc
P expði RS1T AÞ. The other is the 1-form center

symmetry Z1-form
Nc

acting on spacelike Wilson loops extend-
ing along R3.
The three-dimensional effective theory still has the

mixed “triangle” ’t Hooft anomaly among the three
symmetries ðZ0-form

Nc
ÞðZ1-form

Nc
ÞðZaxial

2Ncnf
Þ obtained by dimen-

sional reduction of (7). The anomaly forbids the three
symmetries to be simultaneously preserved.

1. High/low-temperature phases

We summarize the symmetry breaking in the high/low-
temperature limit. First, we note that the fermions have an
antiperiodic boundary condition along the thermal circle
and have no zero modes onR3. Then, when the temperature
is sufficiently high, they can be safely integrated out. The
axial Zaxial

2Ncnf
is unbroken.

The remaining d.o.f. consist of the 3d Yang-Mills and the
periodic scalars coming from the gauge field in the direction
S1T . The scalars get the effective potential at the one-loop
level such that the Z0-form

Nc
is broken. The 3d Yang-Mills is

expected to be confined with the area law for spacelike
Wilson loops. Therefore, at extremely high temperature, the
Z0-form

Nc
is broken, whereas theZ1-form

Nc
× Zaxial

2Ncnf
is unbroken.

At very low temperature, the theory can be regarded as
four dimensional. We focus on the case in which the theory
is confined and the chiral symmetry is broken. Then Zaxial

2Ncnf
is broken, whereas Z0-form

Nc
× Z1-form

Nc
is not.

The summary is in the following table.

Symmetry Low T Intermediate High T

Center Z0-form
Nc

Unbroken ? Broken
Center Z1-form

Nc
Unbroken ? Unbroken

Axial Zaxial
2Ncnf

Broken ? Unbroken

2. Inequality for Tdeconf and Tchiral

We can define at least two critical temperatures: decon-
finement temperature, Tdeconf for Z0-form

Nc
, and chiral

symmetry restoration temperature, Tchiral for Zaxial
2Ncnf

. We

do not consider the cases with more than two critical
temperatures.
Now, suppose that the chiral symmetry is restored by the

Landau-Ginzburg effective action (1). Then the mixed
’t Hooft anomaly implies the inequality between the two
temperatures,

Tdeconf ≤ Tchiral: ð8Þ

The reason is as follows. Suppose (8) does not hold. Then
in the intermediate temperature Tchiral < T < Tdeconf , both
Z0-form

Nc
and Zaxial

2Ncnf
are unbroken. If the physics near Tchiral

is described by (1), there is no way to break the 1-form
symmetry Z1-form

Nc
, and also, there is no gapless d.o.f. in

Tchiral < T < Tdeconf . This contradicts the anomaly because
all of the symmetries are unbroken, and there is no d.o.f. to
match the anomaly.
If (8) holds, both Z0-form

Nc
and Zaxial

2Ncnf
are broken in

Tdeconf < T < Tchiral. This is consistent with the mixed ’t
Hooft anomaly. However, it is a little counterintuitive to use
(1) because, intuitively, the gluons and quarks are liberated
in the deconfining phase T ∼ Tchiral > Tdeconf .
A lattice study [10] with nf ¼ 4 gave a result consistent

with (8). However, that result is not conclusive because the
theory with nf ¼ 4 may have a conformal fixed point
[9,11,12]. Results in a sequence of semiclassical studies of
adjointQCD, e.g., [13–19], are consistentwithour constraints.
Finally, let us mention two alternative scenarios without

assuming (1). They do not require (8).
(1) There is a single first-order phase transition at

Tc ¼ Tchiral ¼ Tdeconf . When we cross the temper-
ature Tc, the decofinement transition and the chiral
symmetry restoration occur at the same time.

(2) We allow a phase with broken Z1-form
Nc

in
Tchiral < T < Tdeconf . Namely, we have a Higgs
phase for the effective 3d Yang-Mills in the inter-
mediate temperatures as discussed in [4]. However,
this scenario seems difficult in the presence of the
order parameter Φab.

III. SUðNcÞ WITH FUNDAMENTAL FERMIONS

In this section, we consider SUðNcÞ gauge theories with
massless fermions in the fundamental and antifundamental
representations Nc þNc. We assume that the flavor num-
ber Nf and the color number Nc have a nontrivial greatest
common divisor n ≔ gcdðNf; NcÞ ≠ 1, which includes the
case of Nc ¼ Nf, such as the SU(3) QCD in the massless
limit of up, down, and strange quarks.

A. Center-flavor symmetry

First, we explain a way to introduce nontrivial back-
ground fields to detect the anomaly.
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When matter fields are in the fundamental representa-
tion, it does not make mathematical sense to take transition
functions as in (4) with wgauge

abc ≠ 0. However, we can
avoid this problem by the following trick.1 The matter
fields are in the bifundamental representations Nc ×Nf of
the SUðNcÞ × SUðNfÞV symmetry, where SUðNfÞV is the
diagonal subgroup of the SUðNfÞL × SUðNfÞR chiral
symmetry. Let n ¼ gcdðNc; NfÞ be the greatest common
divisor of Nc and Nf. There is a subgroup Zn ⊂ SUðNcÞ ×
SUðNfÞV that acts trivially on the fermions. Then it is
possible to consider ½SUðNcÞ × SUðNfÞV �=Zn bundles.
(See also [26] in which SUðNfÞV is dynamical.)
More concretely, we consider the following gauge and

flavor bundles. The flavor bundle has transition functions
hab satisfying

habhbchca ¼ exp

�
2πiwflavor

abc

Nf

�
; wflavor

abc ∈ ZNf
: ð9Þ

Then we require

n
Nc

wgauge
abc ¼ n

Nf
wflavor
abc ≔ wabc ∈ Zn: ð10Þ

Under this condition, the fermions are put on X
because the total transition functions ðg ⊗ h†Þab satisfy
ðg ⊗ h†Þab · ðg ⊗ h†Þbc · ðg ⊗ h†Þca ¼ 1. We call the
“symmetry” corresponding to this background as center-
flavor symmetry, although we do not give a Hilbert space
interpretation.

1. Anomaly

We can see the existence of the anomaly of center-flavor
symmetry by the following concrete setup. Compactify the
spacetime to X ¼ S1T × S1A × S1B ×RC, where S1T will be the
temporal direction (i.e., thermal circle) and S1A × S1B ×RC

are the spatial directions. The radii of S1A;B are taken to be
much larger than that of S1T .
We introduce the flavor background along ST;A;B as

follows [8,27,28]. In the direction S1A × S1B, we introduce
the flavor Wilson lines ΩA and ΩB given as

ΩA ¼ INf=n ⊗ ωA; ð11Þ

ΩB ¼ INf=n ⊗ ωB; ð12Þ

where Im is the unit m ×m matrix and ωA and ωB are
n × n matrices with the commutation relation ωAωB ¼
e2πi=nωAωB. Explicitly,

ωA ¼ diagð1; e2πi=n; e4πi=n;…; e2ðn−1Þπi=nÞ; ð13Þ

ωB ¼ ðδiþ1;jÞ1≤i;j≤n: ð14Þ

We take the flavor Wilson line in the direction S1T to be an
imaginary baryonic chemical potential μB [3,29].

ΩT ¼ eiμB=NcINf
: ð15Þ

The flavor background is a flat connection.
For the gauge field, we have the freedom to choose their

boundary conditions. Let xC ∈ RC be the coordinate. We
impose boundary conditions at xC → �∞ such that the
gauge field approaches flat connections represented by
gauge Wilson lines WTðxCÞ;WAðxCÞ, and WBðxCÞ as

WAðxC ¼ �∞Þ ¼ VA ⊗ ωA

WBðxC ¼ �∞Þ ¼ VB ⊗ ωB

WTðxC ¼ �∞Þ ¼ V�∞ ⊗ In; ð16Þ

where ωA and ωB are the same ones as in the flavor
background introduced above and ðVA; VB; V�∞Þ are
Nc=n × Nc=n unitary matrices such that detWA ¼
detWB ¼ detWT ¼ 1, and

detðV�∞Þ ¼ expð2πim�∞=nÞ ð17Þ

for m�∞ ∈ Zn. The VA, VB, and V�∞ commute with each
other so that the gauge field is flat at infinity.
The above configurations give a nontrivial w2 as

n
Nf

Z
S1A×S

1
B

wflavor
2 ¼ n

Nc

Z
S1A×S

1
B

wgauge
2 ¼ 1 mod n:

Due to this w2, there are fractional instantons in X with
instanton charge ðmþ∞ −m−∞Þ=n mod 1 [30] (see also
[31]). We remark that explicit instanton solutions are not at
all necessary for our discussion, and only the topological
data are important. Then, the Atiyah-Patodi-Singer (APS)
index theorem states (for generic VA, VB, V�∞; μB) that
there are fermion zero modes such that under theZaxial

2Nf
axial

rotation

Zaxial
2Nf

∶ ψ → e
2πi
2Nfψ ; ð18Þ

the path integral measure ZðXÞ gets a phase factor:

1The idea similar to here appeared in [20], where spinors are
placed on nonspin 4-manifolds by considering spinc structure.
The gravitational background there corresponds to the flavor
background here, and the U(1) gauge field there corresponds to
the SUðNÞ gauge field here. Analogous interplay between global
and gauge symmetries has also appeared in recent discussions of
topological phases of matter, see, e.g., [21–23]. Formally, we are
going to use the fact that the flavor symmetry acting on gauge
invariant operators is SUðNfÞV=Zn, and it has the extension
1→ SUðNcÞ→ ½SUðNcÞ× SUðNfÞV �=Zn → SUðNfÞV=Zn → 1.
The ideas very close to ours have appeared also in [24,25].
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ZðXÞ → ZðXÞ · exp ð2πiðmþ∞ −m−∞Þ=nÞ: ð19Þ

This is the key anomaly for our purposes.

B. Constraints by anomaly

We would like to discuss some consequences of the
anomaly (19).

1. Thermal phase transition

Because of the anomaly (19), there are constraints on
phase transitions. First, let us discuss the case of a specific
value of μB. The fundamental fermions are coupled to the
total Wilson line WT ⊗ Ω†

T . Now, the effect of center
symmetry action WT → e−2πi=NcWT can be compensated
by the shift μB → μB − 2π. By combining parity in the ST
direction, μB → −μB, we find that there is a Z2 symmetry if
μB ¼ π [3,29]. This Z2 acts on the Polyakov loop, L ¼
trNc

WT as L → ðe−2πi=NcLÞ�, where e−2πi=Nc comes from
the center symmetry action and the complex conjugate
comes from the parity flip on S1T . Thus, this is a symmetry
whose order parameter is the Polyakov loop, and as
we discuss below, it is broken at high temperature and
unbroken at low temperature. Therefore, thisZ2 can be used
for a rigorous definition of deconfinement/confinement
phases at μB ¼ π, just as theZ0-form

Nc
symmetry of the adjoint

fermion theory.
At high temperature, the Z2 is spontaneously broken just

by standard perturbative computation at finite temperature,
and the minima of the effective potential are at WT ¼ INc

and e2πi=NcINc
, which are related by Z2. Now let us take the

boundary conditions asm−∞ ¼ 0 andmþ∞ ¼ 1. These two
values are in the two vacua related by the spontaneously
broken Z2. Then m−∞ ¼ 0 and mþ∞ ¼ 1 indicate that the
gauge configuration approaches these two vacua at
xC → �∞. The domain wall interpolating the two vacua
is the fractional instanton.
At very low temperature, we can see that Z2 is unbroken

as follows. If it were broken, then by changing the value of
μB from π − ϵ to π þ ϵ for an infinitesimal ϵ, there would be
a phase transition from one phase to another which are
related by Z2. However, the μB is coupled to the baryon
number and all of the particles having nonzero baryon
numbers are heavy. Therefore, the change of μB from π − ϵ
to π þ ϵ cannot change the dynamics of low-energy physics
(i.e., the effective theory of pions) if the temperature is
significantly lower than the lowest baryon mass, and hence,
there are no phase transitions associated with the assumed
spontaneously broken Z2 symmetry. Therefore, the Z2

should not be broken. This consideration is in agreement
with the numerical results in [29] (see Fig. 3 of that paper).
The fact that Z2 is unbroken at low temperatures means

that WT is well-fluctuating and the vacuum state has an
overlap with any value ofm�∞. So the boundary conditions

m−∞ ¼ 0 and mþ∞ ¼ 1 become irrelevant at low
temperature.
Therefore, we have the following situation;

Zaxial
2Nf

Z2 Source of anomaly

Low T Broken Unbroken Zaxial
2Nf

breaking

Intermediate ? ? ?
High T Unbroken Broken Fractional instanton

Comparison with the case of adjoint fermions is done as
Zaxial

2Ncnf
↔ Zaxial

2Nf
, Z0-form

Nc
↔ Z2, and Z1-form

Nc
correspond to

the center-flavor background ΩA;B described above. The
anomaly (19) excludes the possibility that the phase
transition is simply described by (1) below the deconfine-
ment temperature at which the Z2 symmetry is broken.

Next, we give a speculative discussion about the case of
0 ≤ μB < π. Even though there is noZ2 symmetry, we may
still define confinement in the following technical sense.Our
spacetime is Euclidean, so we can regard RC as a time
direction and find a ground state jΩi on S1T × S1A × S1B. (This
idea is well-known in the case of 2d CFT) The boundary
conditions m�∞ also define physical states jm�∞i.2 We
define confinement as the statement that hm ¼ 1jΩi ≠ 0 as
well as hm ¼ 0jΩi ≠ 0. The jm ¼ 0i is expected to always
have overlapwith jΩi for jμBj ≤ π. In the presence ofZ2, we
have hm ¼ 1jΩi ¼ hm ¼ 0jΩi if Z2 is unbroken in jΩi. So
this condition hm ¼ 1jΩi ≠ 0 is a generalization of the
above case of μB ¼ π to any value of μB. Deconfinement
means that hmjΩi ¼ 0 for m ≠ 0. This criterion of (de)
confinement might be supported by an analytical picture of
confinement [30]. Intuitively, confinement means (see, e.g.,
[8]) that the gauge field and, in particular, WT is quantum
mechanically well fluctuating. Then jΩi is a superposition
of states with all possible values ofWT . Becausem is related
to the values ofWT [see (17)], we expect hmjΩi ≠ 0 for allm
in a confining phase. On the other hand, it is localized near
WT ¼ INc

in a deconfining phase. We leave it as a future
work to study more details of this criterion.
If the theory confines in the above technical sense, we do

not have a domain wall interpolating xC ¼ þ∞ and
xC ¼ −∞. Thus, the anomaly cannot be matched by a
domain wall (i.e., fractional instanton), and hence, the
chiral symmetry must be broken. Then the anomaly
constraint (19) works in the same way as that in the case
of μB ¼ π. Again, (1) is impossible below the deconfine-
ment temperature.
Let us make another remark about the effects of μB.

Because the baryon charge of quarks is 1=Nc, the μB is
coupled to quarks via μB=Nc. Therefore, in large Nc
counting, the effect of μB=Nc is a subleading effect. The

2For fermions, we need to impose APS boundary conditions
for the APS index theorem to work. They have natural Hilbert
space interpretations [32].
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inequality Tdeconf ≤ Tchiral is indeed satisfied [33] in a
holographic QCD model [34]. For recent numerical studies
at Nc ¼ 3, see, e.g., [35,36].

2. Dual magnetic gauge group

The anomaly (19) has implications at zero temperature.
Let us consider supersymmetric QCD. One of the most
remarkable phenomena is the appearance of a dual mag-
netic gauge group in Seiberg’s description of those theories
[6,7]. The ’t Hooft anomaly of the usual chiral symmetries
was important for those results.
We would like to add one more evidence that may give

some new insight. Suppose that the chiral symmetry is
unbroken. Now, if the theory contains only scalars and
fermions in low energy after confinement, it cannot match
the anomaly (19). The key fact here is that the anomaly
exists even when the flavor background is flat and that the
flat background itself does not produce any fermion zero
modes. Therefore, the anomaly (19) detects the existence of
dual magnetic gauge fields.
Now let us apply anomaly matching of (19) to super-

symmetric QCD.
(i) Nf ≤ Nc: the chiral symmetry is broken.3

(ii) Nf ¼ Nc þ 1: the chiral symmetry is unbroken, and
the theory is confined. In this case, we have
gcdðNc; Nc þ 1Þ ¼ 1, so the anomaly (19) vanishes.
Thus, a dual magnetic gauge group need not appear.

(iii) Nc þ 2 ≤ Nf < 3Nc: the chiral symmetry is
unbroken, and a dual magnetic gauge group
appears SUðNf − NcÞ. This satisfies the anomaly

matching of (19) because gcdðNc; NfÞ ¼
gcdðNf − Nc; NfÞ.4

Our anomaly argument does not rely on supersymmetry
at all, so it can also constrain a magnetic gauge group in
nonsupersymmetric QCD. It would be interesting to apply
these constraints to ideas such as hidden local symmetry
[37] (see also [38]).
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Note added.—Recently, we became aware of that two
closely related papers [39,40] appeared. In [39], the authors
obtained the inequality (8) for adjoint QCD by using the
same anomaly as ours. In [40], the authors introduced
the new order parameter for QCD by using the mixing of
the center and flavor symmetry.
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