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We probe the universality hypothesis by analytically computing the at least two-loop corrections to the
critical exponents for q-deformed OðNÞ self-interacting λϕ4 scalar field theories through six distinct and
independent field-theoretic renormalization groupmethods and ϵ-expansion techniques.We show that the effect
of q deformation on the one-loop corrections to the q-deformed critical exponents is null, so the universality
hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and
the validity of the universality hypothesis is restored. The q-deformed critical exponents obtained through the
six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.
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I. INTRODUCTION

The critical behavior of completely different systems,
such as a fluid and a ferromagnet, can be described on the
same footing, since they present an identical set of critical
exponents. In fact, when this happens, we say that the
distinct systems belong to the same universality class. A
universality class is characterized by many different sys-
tems with the same set of critical exponents. The critical
exponents depend jointly on the dimension d, N, and the
symmetry of some N-component order parameter of the
systems depending on if the interactions are of short- or
long-range type. Otherwise, they do not depend on the
details of the systems as the form of the interactions and
their critical temperature. The order parameter is respon-
sible for revealing the presence of an ordered phase in the
system, which is related to a broken symmetry. In the other
phase, the disordered one, the symmetry is intact. The
properties of both ordered and disordered phases can be
encompassed, in the field-theoretic formulation of phase
transitions and critical phenomena, by defining a fluctuat-
ing quantum field whose mean value can be identified to
the order parameter. In the ordered phase its mean value is
nonvanishing, while in the disordered one it is null. Thus,
the parameters characterizing a universality class are
intimately related to the general properties of the field
such as its symmetry and number N of components, in
addition to the dimension of space-time where it is
embedded. Any change in the general properties of the

field must be accompanied by changes in the values of the
critical exponents. This is the content of the universality
hypothesis. The values of the critical exponents are a result
of the nontrivial interactions among the many degrees of
freedom at various length scales. This is the essence of the
renormalization group tool introduced byWilson [1]. These
ideas, proportioned by the computation of corrections, in
the dimensional parameter ϵ ¼ 4 − d, lead to Landau
theory. In the Landau theory, the interactions at many
length scales are neglected and the corresponding critical
exponents, the Landau exponents, are obtained [2]. The
corrections to Landau critical exponents can be obtained,
and then the interactions among the many length scales are
taken into account and represented by the loop radiative
quantum corrections to the exponents. Thus, depending on
how sensible a physical effect is, more and more loops must
be computed to describe precisely that effect. These
quantum corrections are plagued by divergences and have
to be ruled out by some mathematical procedure.
Technically, these divergences originate in the interactions
among the many values of the quantum field at the same
point of space-time. Specifically, they originate from the
commutation relations between the destruction and creation
operators representing the quantum field. In this paper, we
examine the effect of modifications of the commutation
relations of the quantum field on the values of the critical
exponents. For that, we investigate the modified properties
of the so called q-deformed OðNÞ self-interacting λϕ4

scalar field theory [3]. The q deformation idea has
motivated applications in many research areas such as
relativistic fermion scattering [4], the Ramsauer-Townsend
effect [5], Boson algebra related to gentile statistics [6], the
Berry phase [7], dark matter and dark energy [8], the Dirac
oscillator [9], Yang-Mills theory [10], and cat states [11], to
cite just a few examples. The q-deformed scalar field in free
space-time is given by

*prscarvalho@ufpi.edu.br

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 105006 (2018)

2470-0010=2018=97(10)=105006(6) 105006-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.105006&domain=pdf&date_stamp=2018-05-08
https://doi.org/10.1103/PhysRevD.97.105006
https://doi.org/10.1103/PhysRevD.97.105006
https://doi.org/10.1103/PhysRevD.97.105006
https://doi.org/10.1103/PhysRevD.97.105006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ϕqðxÞ¼
Z

d3k

ð2πÞ3=22ω1=2
k

½aðkÞqexp−ikxþa†qðkÞexpikx� ð1Þ

where ω2
k ¼ k⃗2 þm2 and its creation and destruction

operators obey the q-deformed commutation relations

½aðkÞq; a†qðk0Þ� ¼ qNðkÞδðk − k0Þ; ð2Þ

½aðkÞq; aqðk0Þ� ¼ 0 ¼ ½aðkÞ†q; a†qðk0Þ�; ð3Þ

where NðkÞ ¼ a†qðkÞaqðkÞ. The corresponding general
massive free q propagator in momentum space-time is
given by . In this work
we have to show that the q-deformation parameter q leads
to nontrivial next-to-leading level critical exponents. All
divergences of the theory to be renormalized are contained
in the initially divergent correlation functions or primitively
divergent one-particle-irreductible (1PI) vertex parts Γð2Þ

and Γð4Þ. If we renormalize them, all higher 1PI vertex parts
are automatically renormalized, since they are composed of
the primitive ones through a skeleton expansion [12]. We
observe in Eq. (2) that in the limit q → 1 we recover the
nondeformed quantum field properties. As the critical
exponents are universal quantities, they can be obtained
in theories representing the system at and near the critical
point and must be the same when obtained through the
different theories. In the field-theoretic formulation of the
problem approached in this paper, the system at (near) the
critical point is described by an infrared divergent massless
(ultraviolet divergent massive) theory at dimensions less
than four, i.e., d < 4 (for d ¼ 4, we have a Gaussian theory
and the critical exponents are the Landau ones; the range
d ≥ 4 leads also to Landau critical exponents [2]), valid for
2 < d < 4, since the mass in this theoretic formulation
plays the role of the difference between an arbitrary
temperature and the critical one T − Tc; thus, when
T ¼ Tc, m2 ¼ 0. This fact, and the fact that a given
massless and massive theory can be renormalized at distinct
renormalization group schemes, permits us to apply six
versions of descriptions of the system, a massless (critical)
theory renormalized at three different and independent
renormalization schemes and, similarly, three massive
(noncritical) ones for employing the referred task. Thus,
we have the advantage of computing the critical exponents
through the many different methods and checking the final
results. We have to obtain the same values for the critical
exponents because they are universal quantities although
the corresponding q-deformed βq function, anomalous
dimensions, and fixed points present distinct values in
the different methods.
In this work, we evaluate analytically, at least at next-to-

leading loop level, the critical exponents for q-deformed
OðNÞ self-interacting λϕ4 scalar field theories for probing
the universality hypothesis. To this end, we employ six

different and independent field-theoretic renormalization
group methods based on dimensional regularization and
ϵ-expansion techniques. The three first methods are applied
for a critical theory and the three last ones for a noncritical
one. We present the results for the q-deformed critical
exponents and give both mathematical and physical inter-
pretations for them. In the final section, we present our
conclusions.

II. AT THE CRITICAL POINT

In the critical theory, we can obtain the critical exponents
through three independent methods to be displayed below.

A. Normalization conditions

We begin our journey of computing the critical expo-
nents by applying the normalization conditions method
[13,14]. In this method, we start from the bare massless

theory with the Feynman diagrams , , ,

, , , , and . From all these

diagrams, just a minimal set of four of them are
needed to be evaluated. The external momenta of the

needed ones , , , and are held

at fixed values through normalization conditions
which define the symmetry point P02 ¼ 1 to be employed.
Then, we have to compute ,

, ,

and , where P0 is written in
terms of some momentum scale unit κ. Thus, the
q-deformed βq function and anomalous dimensions are
given by

βqðuÞ ¼ −ϵuþ N þ 8

6

�
1þ 1

2
ϵ

�
q2u2

−
3N þ 14

12
q4u3 þ N þ 2

36
q3ð1 − qÞu3; ð4Þ

γϕ;q¼
Nþ2

72

�
1þ5

4
ϵ

�
q3u2−

ðNþ2ÞðNþ8Þ
864

q5u3; ð5Þ

γ̄ϕ2;qðuÞ¼
Nþ2

6

�
1þ1

2
ϵ

�
q2u−

Nþ2

12
q4u2; ð6Þ

where γ̄ϕ2ðuÞ ¼ γϕ2ðuÞ − γϕðuÞ. We observe that in this
renormalization scheme, the q-deformed βq function and
anomalous dimensions are finite functions, as required by
any renormalization program, and depend on the symmetry
point employed through their second, first, and first terms,
respectively. We will show later that the q-deformed critical
exponents do not depend on this nonuniversal feature.
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B. Minimal subtraction scheme

In the minimal subtraction scheme [13,14], once again
we start from the bare massless theory, and the external
momenta of the minimal set of needed Feynman diagrams
above are now left at arbitrary values, which shows its
generality and elegance since the q-deformed βq function
and anomalous dimensions do not depend on specific
values of the external momenta and thus do not depend
on any symmetry point values. The corresponding βq
function and anomalous dimensions have the form

βqðuÞ ¼ −ϵuþ N þ 8

6
q2u2

−
3N þ 14

12
q4u3 þ N þ 2

36
q3ð1 − qÞu3; ð7Þ

γϕ;q ¼
N þ 2

72
q3u2 −

ðN þ 2ÞðN þ 8Þ
1728

q5u3; ð8Þ

γ̄ϕ2;qðuÞ ¼
N þ 2

6
q2u −

N þ 2

12
q4u2: ð9Þ

C. Massless Bogoliubov-Parasyuk-Hepp-
Zimmermann method

In themasslessBogoliubov-Parasyuk-Hepp-Zimmermann
method [13,14], as opposed to the previous methods, the
divergences are removed from the massless theory through
the introduction of counterterms to the loop expansions for
the 1PI vertex parts at a given loop level. We repeat this
procedure order by order in perturbation theory to attain the
renormalized theory. Besides the initially minimal set of
diagrams of normalization conditions and minimal sub-
traction scheme methods, we additionally have to compute

the counterterms , , , and , where

ð10Þ

ð11Þ

ð12Þ

ð13Þ

and c1u and c1
ϕ2 are the counterterms at one-loop order

given by

ð14Þ

ð15Þ

These counterterms are not independent and we can show
one more time that the only independent diagrams to be
computed are the ones used in the last method. Thus,
the q-deformed βq function and the field anomalous
dimension are the same as the ones in Eqs. (7) and (8),
respectively. The composite field anomalous dimension has
the form

γϕ2;qðuÞ ¼
N þ 2

6
q2u −

5ðN þ 2Þ
72

q4u2

þ N þ 2

72
q3ð1 − qÞu2; ð16Þ

where in this method we compute γϕ2;qðuÞ instead of
γ̄ϕ2;qðuÞ as in the earlier method.

III. NEAR THE CRITICAL POINT

In the noncritical situation, we can evaluate the
q-deformed critical exponents by applying another three
distinct and independent methods as well.

A. Callan-Symanzik method

This method [13,14] treats a massive theory. A massive
theory is more general than the massless one studied in the
last section, since the diagrams with tadpole insertions,

, , , , , , , and

the one that is independent of external momenta, , are

null in the massless theory and nonvanishing in the
massive one and now must be evaluated. Through a
mathematical trick, these additional diagrams are
eliminated by redefining the initial bare mass at tree
level, thus substituting the initial bare mass with their
three-loop counterpart. We then end up with an effective
loop expansion for the diagrams with terms like

and .

As the diagrams and
P 2=0

do not

depend on external momenta, they do not contribute to the
calculation through the derivative with respect to P02,
defined as the symmetry point in this method as displayed
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below. Thus, we have to evaluate only a minimal set of four
of them. As the bare theory is a massive one, the
external momenta of the minimal set of needed
Feynman diagrams can be held at fixed vanishing values
and the symmetry point is now P02 ¼ 0. The minimal set of
needed diagrams are the massive versions of the ones
computed in the normalization conditions method, namely

, ,

, and .

Thus, the q-deformed βq function and anomalous dimen-
sions are given by

βqðuÞ ¼ −ϵuþ N þ 8

6

�
1 −

1

2
ϵ

�
q2u2

−
3N þ 14

12
q4u3 þ N þ 2

36
q3ð1 − qÞu3; ð17Þ

γϕ;q ¼
N þ 2

72

�
1 −

1

4
ϵþ Iϵ

�
q3u2

−
ðN þ 2ÞðN þ 8Þ

432
ð1þ IÞq5u3; ð18Þ

γ̄ϕ2;qðuÞ ¼
N þ 2

6

�
1 −

1

2
ϵ

�
q2u −

N þ 2

12
q4u2; ð19Þ

where the integral I [14–17] is a number and a residual
consequence of the symmetry point chosen. The integral I
can be calculated analytically in terms of dilogarithm
function of a certain argument [18]. At least up to the loop
level considered in this work, I is canceled out in the
q-deformed critical exponents computation. Once again, the
q-deformed βq function and anomalous dimensions depend
on the symmetry point employed through their second, first,
and first terms, respectively.

B. Unconventional minimal subtraction scheme

This method was introduced recently by one of the
authors [19] and was inspired by the previous method but
now for arbitrary values of external momenta. Now, the

diagrams and , the price to pay for

maintaining the external momenta at general values, do not
disappear of the intermediate results though derivatives
with respect to P02, and we have to compute them at the
next order in the dimensional expansion parameter ϵ. At the
end of calculations they do not contribute to the corre-
sponding q-deformed βq function and anomalous dimen-
sions, which have the same forms as the corresponding
ones in the minimal subtraction scheme [Eqs. (7)–(9)].

C. Massive Bogoliubov-Parasyuk-Hepp-
Zimmermann method

This method [20–23] is the most general of all six
methods treated here, since it deals with a massive theory at
arbitrary values of external momenta and with its initial bare
mass at its tree-level value. Thus, we have to, necessarily,

compute diagrams like and , for example. The

corresponding q-deformed βq function and anomalous
dimensions have the same forms as those obtained in the
massless version of this method, i.e., the massless
Bogoliubov-Parasyuk-Hepp-Zimmermann method.

IV. RESULTS FOR q-DEFORMED CRITICAL
EXPONENTS AND DISCUSSION

Now, we can compute the loop corrections to the
q-deformed critical exponents in the six methods. For that,
we employ the relations η≡ γϕ;qðu�Þ and ν−1q ≡ 2 − ηq −
γ̄ϕ2;qðu�Þ in the first, second, fourth, and fifth methods and
the ηq ≡ γϕ;qðu�Þ and ν−1q ≡ 2 − γϕ2;qðu�Þ ones in the third
and last renormalization schemes for evaluating, independ-
ently, ηq and νq, since there are six q-deformed critical
exponents to be computed and four scaling relations among
them [2]. The u� quantity is the nontrivial fixed point which
gives the fluctuation corrections to mean field q-deformed
critical exponents. For a given method, it is obtained as the
nontrivial solution to the equation βqðu�Þ ¼ 0 for the
corresponding q-deformed βq function of the referred
method. The trivial or Gaussian solution u� ¼ 0 gives
no loop corrections to the q-deformed critical exponents,
thus leading to their trivial mean field values. We have
computed the q-deformed critical exponents up to, at least,
two-loop order and obtained the same values in the six
methods. They are

αq ¼
ð4 − NÞ
4ðN þ 8Þ ϵþ

ðN þ 2ÞðN2 þ 30N þ 56Þ
4ðN þ 8Þ3 ϵ2

−
ðN þ 2Þð4 − NÞ

2ðN þ 8Þ3
ð1 − qÞ

q
ϵ2; ð20Þ

βq ¼
1

2
−

3

2ðN þ 8Þ ϵþ
ðN þ 2Þð2N þ 1Þ

2ðN þ 8Þ3 ϵ2

þ 3ðN þ 2Þ
2ðN þ 8Þ3

ð1 − qÞ
q

ϵ2; ð21Þ

γq ¼ 1þ ðN þ 2Þ
2ðN þ 8Þ ϵþ

ðN þ 2ÞðN2 þ 22N þ 52Þ
4ðN þ 8Þ3 ϵ2

−
ðN þ 2Þ2
2ðN þ 8Þ3

ð1 − qÞ
q

ϵ2; ð22Þ

δq ¼ 3þ ϵþN2þ14Nþ60

2ðNþ8Þ2 ϵ2−
Nþ2

ðNþ8Þ2
ð1−qÞ

q
ϵ2; ð23Þ

P. R. S. CARVALHO PHYS. REV. D 97, 105006 (2018)

105006-4



νq ¼
1

2
þ ðN þ 2Þ
4ðN þ 8Þ ϵþ

ðN þ 2ÞðN2 þ 23N þ 60Þ
8ðN þ 8Þ3 ϵ2

þ ðN þ 2Þð4 − NÞ
8ðN þ 8Þ3

ð1 − qÞ
q

ϵ2; ð24Þ

ηq ¼
ðNþ2Þ

2ðNþ8Þ2qϵ
2

×

�
1þ

�
6ð3Nþ14Þ
ðNþ8Þ2 −

1

4
−
2ðNþ2Þ
ðNþ8Þ2

ð1−qÞ
q

�
ϵ

�
: ð25Þ

First of all, as we have written the q-deformed critical
exponents such that it is an easy task to take the limit
q → 1, we can easily see that they reduce to their
corresponding nondeformed values [14] in that limit, as
expected. Secondly, we realize that all one-loop corrections
to the q-deformed critical exponents are the same as their
nondeformed counterparts. This means that the universality
hypothesis was broken down at that loop order, i.e., that a
change in the internal properties of the fluctuating field did
not affect the universal q-deformed critical exponents. We
can furnish a mathematical explanation for this result by
extending a known fact, valid particularly for Lorentz-
violating systems, for example, that a possible new physical
effect represented by a given parameter cannot turn out to
be a real physical effect if this parameter can be eliminated
from the Lagrangian density through coordinate redefini-
tions [24]. In that case, the critical exponents for a similar
nondeformed scalar theory, now with Lorentz violation
[25–27], did not present any modifications with respect to
their Lorentz-invariant counterparts [28–30]. In our case, if
we restrict our analysis to the one-loop level, we observe that
the q-deformed results can be obtained from the non-
deformed ones by a simple rescaling of the q-deformed
coupling constant in terms of its nondeformed counterpart as
u ¼ quð0Þ, where uð0Þ is the nondeformed dimensionless
renormalized coupling constant. This can be understood if
we remember that, for a general diagram, the number of
loops l, internal lines i, and order n of interactions are related
by l ¼ i − nþ 1 [31]. The only way we have i ¼ n, the
internal line number being equal to the interaction order
number, is for l ¼ 1 (one-loop level) and we can state the
rescaling above, since each internal line is accompanied of a
power of q, then the i ¼ n equality implies that, for one-loop
level, q and u are proportional. If we try to find any possible
rescaling for higher loop orders, we will arrive at the
conclusion that such a rescaling is impossible; then the
q-deformed theory at higher loops is nontrivial and cannot
be obtained from its nondeformed counterpart through a
simple rescaling, it thus being necessary to compute the
corresponding loop quantum corrections to the q-deformed
critical exponents to verify the restoration of the validity of
the universality hypothesis. The physical interpretation for
this result for the one-loop level is that the q deformation is
so slight a modification of the internal properties of the

fluctuating field, via commutation relations of its creation
and destruction operators, that this modification is exhibited
in the loop corrections to the q-deformed critical exponents
just at two-loop and higher order as we can observe in the
two-loop results for the q-deformed critical exponents (and
the three-loop term of ηq). Thus, we have verified the
universality hypothesis restoration. We can conjecture that
the q deformation manifests at all loop orders as argued
above as well and thus that the universality hypothesis is
valid for all loop levels, since the last term of the ηq critical
index is of three-loop level and presents a q-deformed three-
loop correction. Now we present our conclusions.

V. CONCLUSIONS

We computed analytically the critical exponents for
q-deformed OðNÞ self-interacting λϕ4 scalar field theories
at two-loop and higher order to probe the universality
hypothesis. For that, we employed six distinct and inde-
pendent field-theoretic renormalization group methods and
ϵ-expansion techniques. We showed that the one-loop
corrections to the q-deformed critical exponents were
not affected by the q-deformation mechanism, thus show-
ing the breaking down of the universality hypothesis at that
loop level. We presented the mathematical explanation for
this result: a possible new physical effect represented by a
given parameter can occur, in fact, if this parameter cannot
be eliminated from the Lagrangian density by coordinate
redefinitions. We showed that, at one-loop level, such
coordinate redefinition can be made. The corresponding
physical interpretation is that the q-deformation mechanism
is so slight that it does not manifest at the lower loop level,
the one-loop one. The q-deformation mechanism can be
perceived just at two-loop and higher order. That was the
case as shown, at least, in the two-loop corrections to the
q-deformed critical exponents, thus restoring the univer-
sality hypothesis validity. We also presented a mathemati-
cal explanation, through similar arguments for the one-loop
order case, that, on the other hand, for higher loop levels,
we can not redefine coordinates such that the q-deformed
theory can be obtained from the corresponding nonde-
formed one. Thus, the higher-loop corrections to the
q-deformed critical exponents can be obtained only by their
explicit computations. This implies that we can conjecture
the universality hypothesis validity for all loop orders. This
conjecture is confirmed, at least, at three-loop level through
the computed last and three-loop order q-deformed critical
index ηq value. The dependence of q-deformed critical
exponents on the q-deformation parameter q opens the
possibility of detecting its influence, through future experi-
ments, on measured q-deformed critical exponents.
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