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We consider the coupling of the electromagnetic field to a nonlocal gravity theory comprising of the
Einstein-Hilbert action in addition to a nonlocal R□−2R term associated with a mass scale m. We
demonstrate that in the case of the minimally coupled electromagnetic field, real corrections about the
Reissner-Nordström background only exist between the inner Cauchy horizon and the event horizon of
the black hole. This motivates us to consider the modified coupling of electromagnetism to this theory via
the Kaluza ansatz. The Kaluza reduction introduces nonlocal terms involving the electromagnetic field
to the pure gravitational nonlocal theory. An iterative approach is provided to perturbatively solve the
equations of motion to arbitrary order in m2 about any known solution of general relativity. We derive the
first-order corrections and demonstrate that the higher order corrections are real and perturbative about
the external background of a Reissner-Nordström black hole. We also discuss how the Kaluza reduced
action, through the inclusion of nonlocal electromagnetic fields, could also be relevant in quantum effects
on curved backgrounds with horizons.
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I. INTRODUCTION

The observed late-time accelerated expansion of our
Universe [1,2] have inspired numerous modified gravity
theories which aim to provide a natural explanation for the
cosmological constant. One such class of theories which
have been considerably investigated over the years include
nonlocal corrections of either the Einstein field equations or
the Einstein-Hilbert action. Nonlocality has been used to
address several areas in cosmology and black hole physics,
including an explanation for dark energy [3–17], dark
matter [18–23], path integrals in quantum gravity [24,25],
ghost-free higher derivative theories [26–35] and the near
horizon properties of black holes [36–39], among other
areas. Nonlocal terms generally result in effective actions
due to integrating out certain fields from a given theory.
Many of the models in the references above were in part
inspired by the anomaly-induced quantum effective actions
resulting from gravitational anomalies and their applica-
tions [40,41]. Through their involvement of inverse differ-
ential operators, nonlocal terms are also associated with the
infrared corrections of a theory. However, the construction
of a consistent infrared deformation of general relativity
(GR) provides a considerable challenge. The theory should
be consistent with current cosmological observations,
respect causality and be free of ghosts [42,43], at least
up to a reasonable UV cutoff. One of the earliest proposed
modifications involves the degravitation idea [3,4], where

nonlocal corrections of the Einstein field equations involv-
ing the inverse D’Alembertian could filter out the contri-
bution of the vacuum energy density to the cosmological
constant. These equations were later shown to admit a
stress tensor which is in general not conserved on curved
backgrounds. The first covariant description following the
degravitation idea was provided in [13],

Gμν −
m2

3
ðgμν□−1RÞT ¼ 8πGTμν; ð1:1Þ

where m is a mass scale taken to be of the order of the
Hubble parameter (H0),□¼gμν∇μ∇ν is the D’Alembertian
operator and the superscript ‘T’ denotes the transverse
component. By explicitly considering the transverse com-
ponent, the nonlocal term in Eq. (1.1) ensures the covariant
conservation of the stress tensor and that the ghosts remain
nonradiative. While a covariant action from which this
equation follows has not yet been derived, another action
where the equations agree at the linearized level was
introduced in [44]:

SMM ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

m2

6
R

1

□
2
R

�
: ð1:2Þ

Equation (1.1), as well as the equation of motion resulting
from Eq. (1.2), have been shown to be consistent with solar
system tests and agree, as well as the ΛCDM model, with
current cosmological observations [43–52]. The spherically
symmetric corrections to the Schwarzschild and FRW
backgrounds were also derived in [44]. These solutions
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do not involve nonlinear instabilities in the region outside
the horizon. This is unlike the scenario in massive gravity
theories generically, where nonlinearities do creep in
below a Vainshtein radius thereby causing a breakdown
of the theory well outside of the event horizon. The
success of nonlocal theories such as Eq. (1.2) however are
not known to include general theories with tensorial
nonlocalities. Theories involving curvature terms other
than the Ricci scalar generally do not lead to stable
cosmological evolution [53].
Nonlocal field theories can always be treated as local

constrained field theories through the introduction of
nondynamical auxilliary fields [43]. The nonlocal terms
of the original theory impose constraints on the auxilliary
fields which hold for a large class of nonlocal theories. For
instance, let us consider the case of a gravitational action
which involves a fðRÞ□−nR term, where fðRÞ is an
arbitrary function of the Ricci scalar and ‘n’ is an arbitrary
positive integer. The local formulation of this action will
then always involve an auxilliary field U satisfying
□U ¼ −R. This field plays a central role in our consid-
eration of the coupling of the electromagnetic field. Thus,
while our arguments will be made for Eq. (1.2), our
analysis will hold for a large class of nonlocal pure
gravitational theories, particularly for all local formulations
of nonlocal theories containing U as defined.
In the case of local field theories, it is natural to consider

the minimal coupling prescription. However, as just dis-
cussed, the dynamics of nonlocal theories requires a local
formulation with certain constraints which the gravitational
fields must satisfy. One could thus consider the nonlocal
coupling of matter fields such that the constraints include
the matter fields as well. Such nonlocal terms which
involve both gravitational and gauge fields appear regularly
in the context of anomaly-induced quantum effective
actions. In this paper, we will use the Kaluza ansatz as a
prescription to include nonlocal electromagnetic terms in a
given nonlocal pure gravitational action. We apply the
Kaluza ansatz to Eq. (1.2) in five-dimensions following the
approach considered in [54]. The Kaluza-Klein reduction in
the context of other modified gravity theories [54,55] results
in an effective action involving nonminimal couplings
between the electromagnetic field strength and curvature
tensors. Nonminimal couplings between the electromagnetic
field and curvature terms have been considered previously
for their cosmological implications [56–60]. They also arise
in the one-loop effective action for quantum electrodynamics
on curved backgrounds [61], which have applications in
graviton-photon scattering processes [62–64]. The action
resulting from the Kaluza ansatz in the present case will lead
to terms nonlocal in both the electromagnetic field strength
tensor and the Ricci scalar.
In considering corrections about the Reissner-Nordström

(RN) background, we will demonstrate that the usual mini-
mal coupling of the electromagnetic field is unsatisfactory.

Apart from being complex outside the event horizon of the
black hole, the corrections do not reduce to those noted for
the Schwarzschild background in the limit of vanishing
charge. Thus, while real perturbative corrections can be
derived from Eq. (1.2) about vacuum solutions of GR, they
do not appear to exist about known electrovacuum sol-
utions of GR in the minimally coupled case. In contrast, the
corrections to the RN background resulting from the
Kaluza reduced action are well defined in the region
beyond the event horizon and reduce to the known
corrections for the Schwarzschild background in the limit
of vanishing charge.
The organization of our paper is as follows. In Sec. II, we

review the basic properties of the action introduced in [44]
and the correction derived about the Schwarzschild back-
ground. We then demonstrate that such real corrections
do not exist outside the event horizon of a RN black hole
when the electromagnetic field is minimally coupled to the
theory. In Sec. III, we apply the Kaluza ansatz to the five-
dimensional gravitational action to derive an effective
action which is nonlocal in both electromagnetic and
gravitational fields. In Sec. IV, the equations of motion
of this action are derived and compared with those for the
original nonlocal theory with a minimally coupled electro-
magnetic field. Section V describes an iterative procedure
which can be used to solve the equations of motion
resulting from the Kaluza reduced nonlocal action. Here
we derive the first-order corrections about the RN back-
ground and consider the form of the higher-order correc-
tions. From this we argue that perturbative corrections exist
to all orders about the RN background. We then conclude
with a discussion of our results and future directions
in Sec. VI.

II. THE NON-LOCAL GRAVITATIONAL ACTION

In this section, we will review the nonlocal action, its
equations of motion and the derivation of the corrections
about the Schwarzschild background as provided in
[44,65]. We will denote the gravitational action introduced
in [44] by SMM

SMM ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − μR

1

□
2
R

�
; ð2:1Þ

where G is the Newton constant, g is the determinant of the
metric gμν, μ ¼ m2

6
is the mass term associated with the

additional nonlocal contribution in the action and □ is the
D’Alembertian operator. For the rest of the paper, we will
set G ¼ 1. We can always include a given local matter
action SM to Eq. (2.1) to define

SNL ¼ SMM þ SM: ð2:2Þ

We can further define two auxilliary, nondynamical fields
U and S which satisfy

KARAN FERNANDES and ARPITA MITRA PHYS. REV. D 97, 105003 (2018)

105003-2



□U ¼ −R; □S ¼ −U; ð2:3Þ

These fields can be included in Eq. (2.2) with the help of
Lagrange multipliers ξ1 and ξ2 to provide the following
local formulation

SNL ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p

× ½R − μRS − ξ1ð□U þ RÞ − ξ2ð□SþUÞ� þ SM:

ð2:4Þ

The equations of motion for U and S are given by

□ξ1 þ ξ2 ¼ 0;

□ξ2 þ μR ¼ 0; ð2:5Þ

respectively, from which we can identify ξ2 ¼ μU and
ξ1 ¼ μS on comparing with Eq. (2.3). With these expres-
sions for ξ1 and ξ2, we have the following equation of
motion for the metric

Gμνð1 − 2μSÞ − 8πTμν ¼ μKμν; ð2:6Þ

where the stress energy tensor Tμν is defined in the usual
way

Tμν ≔ −
2ffiffiffiffiffiffi−gp δSM

δgμν
ð2:7Þ

and Kμν is given by

Kμν ¼ gμν

�
2□Sþ∇αU∇αS −

1

2
U2

�
− 2∇μ∇νS

− ð∇μU∇νSþ∇νU∇μSÞ: ð2:8Þ

It follows from Eq. (2.8) that ∇μKμν ¼ 0. Since the matter
theory is minimally coupled to the background, its equa-
tions of motion are unaffected in the present case. Thus the
modified theory satisfies the usual conservation equations.
The trace of the field equations, on the other hand, is
modified. Denoting the trace of the stress-energy tensor as
T, the trace of Eq. (2.6) is given by

Rð1 − 2μSÞ þ 8πT ¼ −μð6□S − 2U2 þ 2∇αU∇αSÞ;
ð2:9Þ

A. Corrections about the Schwarzschild
background

The field equations given in Eq. (2.6) can be used to find
the corrections about known backgrounds of GR. Such
corrections about the Schwarzschild and FRW back-
grounds were described in [44], based on the analysis
carried out for Eq. (1.1) in [65]. We will now briefly review

this derivation for the Schwarzschild background. By
considering the following spherically symmetric 4d metric

ds2 ¼ −e2αðrÞdt2 þ e2βðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;
ð2:10Þ

its substitution in Eq. (2.3) provides the following two
equations

r2U00 þ ½2rþ ðα0 − β0Þr2�U0

¼ −2e2β þ 2½1þ 2rðα0 − β0Þ þ r2ðα00 þ α02 − α0β0Þ�;
ð2:11Þ

S00 þ
�
α0 − β0 þ 2

r

�
S0 ¼ e2βU: ð2:12Þ

Likewise, from Eqs. (2.6) and (2.10) the equations for
e2ðβ−αÞR00 þ R11 and R22 take the following form

ð1 − 2μSÞðα0 þ β0Þ ¼ −μr½S00 − ðα0 þ β0 −U0ÞS0�; ð2:13Þ

ð1 − 2μSÞ½1þ e−2βðrðβ0 − α0Þ − 1Þ�

¼ μ

�
r2
�
U þ U2

2

�
− 2re−2βS0

�
: ð2:14Þ

Equations (2.11)–(2.14) represent four independent equa-
tions in four unknowns. The primes in these equations
denote differentiation with respect to r, i.e. α0 ¼ ∂α

∂r. Due to
the nonvanishing U and S fields, the right-hand side of
Eq. (2.13) does not vanish as it does in GR and leads to α
being in general different from β. The complete solutions
were not derived for these coupled differential equations.
However they can be solved in terms of corrections about
the Schwarzschild background in the region far away from
the black hole.
In the Newtonian limit where rS ≪ r, with rS denoting

the Schwarzschild radius, we can consider perturbations
about flat space and m arbitrary. The solution for UðrÞ
resulting from Eq. (2.11) is now given by the Green
function for the inhomogeneous Helmholtz equation.
With this solution for U, the following expressions for
AðrÞð¼ e2αÞ and BðrÞð¼ e2βÞ were derived

AðrÞ ¼ 1 −
rS
r

�
1þ 1

3
ð1 − cosmrÞ

�
;

BðrÞ ¼ 1þ rS
r

�
1 −

1

3
ð1 − cosmr −mr sinmrÞ

�
: ð2:15Þ

The corrections can also be derived in the small m limit,
i.e. r ≪ m−1. In this limit, the metric approximates to those
of the Schwarzschild background, i.e. :α≈ 1

2
lnð1− rS

r Þ≈−β.
Equation (2.11) then simplifies to □U ¼ 0 about the
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Schwarzschild background, which has the following
general solution:

UðrÞ ¼ u0 − u1 ln

�
1 −

rS
r

�
: ð2:16Þ

This expression can be substituted in Eqs. (2.12), (2.13),
(2.14) to solve for AðrÞ, BðrÞ, and SðrÞ. For real constants
u0 and u1, the solution of Eq. (2.16) is real for all values of r
beyond the Schwarzschild radius. The constant u0 however
provides a cosmological constant to the field equations.
This can be noted from Eq. (2.6), where the μ U2

2
gμν term

contained in Kμν would provide such a contribution. Since
we are considering corrections about the Schwarzschild
background, this constant should be set to vanish. The
corrections resulting from Eq. (2.16) were found to agree
with the corresponding expressions in Eq. (2.15) provided
u1 ¼ 1 [65]. With these values for the constants, we have

UðrÞ ¼ − ln

�
1 −

rS
r

�
: ð2:17Þ

Note that while this solution is not well defined for
r ≤ rS (at and behind the horizon), it does nevertheless
allow for corrections outside the horizon of the black hole.
Equation (2.17) provides the following leading-order cor-
rection to the metric when rS ≪ r∶

AðrÞ ¼ e2α ≈ 1 −
rS
r
ð1þ μr2Þ: ð2:18Þ

We note that the involvement of the logarithm of the lapse
function ð1 − rS

r Þ in Eq. (2.16) provides an expression for
AðrÞ in Eq. (2.18) which is consistent with the Newtonian
limit in Eq. (2.15).
The solutions were further considered via numerical

integration to account for corrections beyond first order.
This verified that the corrections to GR remain 1þOðm2r2Þ
and linear up to r ∼ rS (since m ∼H0) at higher orders.
Thus one recovers the vacuum solution of Einstein’s
equations in the limit of m → 0, demonstrating that the
theory contains no vDVZ discontinuity. This is in contrast
with the result in the case of the Einstein-Hilbert action
with a Fierz-Pauli term, where a vDVZ discontinuity does
result. The linear expansion breaks down below a Vainshtein
radius rV ¼ ðGMm4 Þ1=5, which is parametrically larger than the
Schwarzschild radius.

B. Corrections about an electrovacuum background

In this subsection, we will describe the corrections about
the RN background which result from including the
minimally coupled Maxwell action,

SM ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
FβγFβγ; ð2:19Þ

in Eq. (2.2). The gravitational field equations are as given in
Eq. (2.6), and from Eq. (2.7) we have the following stress-
energy tensor:

Tμν ¼
1

4π

�
FμαFν

α −
1

4
FβγFβγgμν

�
: ð2:20Þ

Varying the action with respect to the electromagnetic field
provides Maxwell’s equations,

∇μFμν ¼ 0; ð2:21Þ

which are not modified in the present case. As in the case of
the Schwarzschild background, we can solve Eq. (2.6) by
assuming the spherically symmetric metric given in
Eq. (2.10). We can now show that real perturbative
corrections do not exist outside the event horizon of a
charged, asymptotically flat black hole solution of GR,
such as the RN black hole. Denoting the mass and charge of
the RN black hole by M and Q, respectively, the small m

limit in this case implies α ≈ 1
2
lnð1 − 2M

r þ Q2

r2 Þ ≈ −β. The
constraint equation in Eq. (2.11) now becomes □U ¼ 0
about the RN background, whose general solution is given
by

UðrÞ ¼ c1 þ
c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p arctan h

�
r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
�
: ð2:22Þ

ArctanhðxÞ is real only when its argument lies between
x ∈ ½−1; 1�. In the context of its argument in Eq. (2.22), this

region lies between the inner Cauchy horizon rc ¼ M −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
and the event horizon rH ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
of the RN black hole. The constant coefficients c1 and c2
can be real only when rC < r < rH.
The region beyond the event horizon can be considered

through the choice of a complex coefficient. To elaborate
on this point, it will be instructive to express the arctanh
function in terms of the logarithm function by using
arctan hðxÞ ¼ − 1

2
lnð1−x

1þxÞ. With this expression, Eq. (2.22)
can be expressed as

UðrÞ ¼ c1 −
c2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p ln

�
rH − r
r − rC

�
: ð2:23Þ

For the region r > rH, the argument in the logarithm is
negative. When z ¼ ρeiθ with ρ > 0, we have lnðzÞ ¼
iθ þ lnðρÞ. Hence θ ¼ π implies lnð−ρÞ ¼ iπ þ lnðρÞ.
Using this, Eq. (2.23) gives us

UðrÞ ¼ c1 −
iπc2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p −
c2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p ln

�
r − rH
r − rC

�
;

ðr > rHÞ: ð2:24Þ
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To find a solution of U which can be connected to
Eq. (2.17) about the Schwarzschild background, we can
now set

c1 ¼
iπc2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p ; c2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð2:25Þ

In the Q → 0 limit, rC → 0 and rH → rS, where rS is the
horizon of the Schwarzschild black hole. Therefore the
Q → 0 limit of Eq. (2.24) with the constants of Eq. (2.25)
gives us

UðrÞ ¼ − ln

�
1 −

rS
r

�
; ðr > rSÞ: ð2:26Þ

Thus, we can recover Eq. (2.17) with the choice of a
complex coefficient c1 in Eq. (2.22). However, since c1 is
nonvanishing, it introduces an effective cosmological con-
stant in the corrected RN metric in exactly the same way as
a nonvanishing u0 would have about the Schwarzschild
background, as discussed below Eq. (2.16). In order to
investigate real, perturbative corrections about the external
RN background, we will consider the nonminimal coupling
of the electromagnetic field to the theory via the Kaluza
Ansatz in the next section.

III. THE KALUZA REDUCED ACTION

In this section, we will describe the Kaluza ansatz, which
can be used to geometrically determine the electromagnetic
coupling to a given pure gravitational theory. We assume a
five-dimensional spacetime with the following metric,

ĝAB ¼
�
gμν þ α2AμAν αAμ

αAν 1

�
; ð3:1Þ

where α is a parameter that will be fixed later. Here and
elsewhere in this section, five-dimensional objects will be
represented with hats, uppercase Latin indices are five-
dimensional, A;B;… ¼ 0;…; 4, while Greek indices are
four-dimensional, μ; ν;… ¼ 0;…; 3. The inverse of
Eq. (3.1) is given by

ĝAB ¼
�

gμν −αAμ

−αAν α2AγAγ þ 1

�
: ð3:2Þ

From Eq. (3.1), it follows that
ffiffiffiffiffiffi
−ĝ

p ¼ ffiffiffiffiffiffi−gp
. We will

further assume the cylindricity condition ∂ĝAB
∂x5 ¼ 0. An

immediate consequence of this condition is that
□̂ ¼ ĝAB∇̂A∇̂B ¼ gμν∇μ∇ν ¼ □. Using the metric given
in Eq. (3.1), we find the following components of the Ricci
tensor:

R̂μν ¼ Rμν þ
1

4
α4FβγFβγAμAν

−
1

2
α2ðAμ∇βF

β
ν þ Aν∇βF

β
μ þ FβμF

β
νÞ;

R̂μ5 ¼
1

4
α3FβγFβγAμ −

1

2
αð∇βF

β
μÞ; R̂55 ¼

1

4
α2FβγFβγ:

ð3:3Þ

The Ricci tensor components can now be used to derive the
five-dimensional Ricci scalar

R̂ ¼ R −
α2

4
FβγFβγ: ð3:4Þ

Writing the radius of compactification of the fifth dimen-
sion as R̃, and the five-dimensional Newton’s constant as
Ĝ5, we find that setting

2πR̃

Ĝ5

¼ 1

G
¼ 1; α2 ¼ 4G ¼ 4; ð3:5Þ

leads to the following reduction of the five-dimensional
Einstein-Hilbert action

1

16πĜ5

Z
d5x

ffiffiffiffiffiffi
−ĝ

p
R̂ ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
R

−
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
FβγFβγ: ð3:6Þ

Thus the choice considered in Eq. (3.5) leads to the usual
Einstein-Maxwell action in four dimensions. Let us now
consider Eq. (2.1) in five dimensions. The action in this
case is given by

ŜMM ¼ 1

16πĜ5

Z
d5x

ffiffiffiffiffiffi
−ĝ

p �
R̂ − μ̂ R̂

1

□̂
2
R̂

�
; ð3:7Þ

The five-dimensional mass scale μ̂ must be such that
μ̂ ¼ m̂2

6
¼ m2

6
¼ μ, as the mass scale must match the original

nonlocal theory in the limit of a vanishing electromagnetic
field. Likewise, since □̂2 ¼ □

2, their inverses should also
agree. For the remaining terms, we substitute Eqs. (3.5) and
(3.4) to find the following reduced action:

SKMM ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − FβγFβγ

− μ

�
ðR − FβγFβγÞ

1

□
2
ðR − FβγFβγÞ

��
: ð3:8Þ

Equation (3.8) now comprises nonlocal terms which
involve both the Ricci scalar and the electromagnetic field
strength tensor. In the next section, we will consider the
local formulation of this action through the introduction of
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auxilliary fields. The constraint equations satisfied by these
auxilliary fields will play an important role in the nature of
the resulting solutions.

IV. EQUATIONS OF MOTION

Let us define two variables Ũ and S̃ which satisfy

□Ũ ¼ −ðR − FβγFβγÞ; □S̃ ¼ −Ũ: ð4:1Þ

The presence of FβγFβγ as a source for the Ũ field
distinguishes the fields given in Eq. (4.1) with those of
Eq. (2.3). The fields Ũ and S̃ can now be substituted in
Eq. (3.8) with the help of two Lagrange multipliers ξ1 and
ξ2 to give

SKMM ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½ðR − FβγFβγÞð1 − μS̃Þ

− ξ1ð□Ũ þ R − FβγFβγÞ − ξ2ð□S̃þ ŨÞ�: ð4:2Þ

Varying this action with respect to Ũ and S̃, we find

−ξ2 −□ξ1 ¼ 0;

−μðR − FβγFβγÞ −□ξ2 ¼ 0; ð4:3Þ

respectively. These two equations identify ξ2 ¼ μŨ and
ξ1 ¼ μS̃. From Eq. (4.2) we find the following equation of
motion for the metric

ðGμν − 8πTμνÞð1 − 2μS̃Þ ¼ μK̃μν; ð4:4Þ

where Tμν is as defined in Eq. (2.20) and

K̃μν ¼ gμν

�
2□S̃þ∇αŨ∇αS̃ −

1

2
Ũ2

�
− 2∇μ∇νS̃

− ð∇μŨ∇νS̃þ∇νŨ∇μS̃Þ: ð4:5Þ

The equations of motion for the electromagnetic field Aμ

resulting from Eq. (4.2) are given by

∇μðð1 − 2μS̃ÞFμνÞ ¼ 0: ð4:6Þ

Thus, both Einstein’s and Maxwell’s equations involve
nonlocal corrections. This is unlike the situation where the
electromagnetic field is minimally coupled. In comparing
Eq. (4.4) with Eq. (2.6), we note that the stress-energy
tensor in the Kaluza reduced case also involves μ correc-
tions. Finally, while Eqs. (4.5) and (2.8) show that the
general correction terms K̃μν and Kμν are structurally
similar, they provide different contributions due to the
difference in the definitions of the auxilliary fields. In the
following subsection, we will derive the solution of
Eq. (4.4) through an iterative approach built on known
solutions of GR.

V. ITERATIVE APPROACH FOR THE SOLUTIONS

To construct the solutions of the equations of motion
given in the previous section, let us rewrite Eq. (4.4) and
Eq. (4.6) in the following way:

Gμν − 8πTμν ¼ μðK̃μν þ 2S̃ðGμν − 8πTμνÞÞ
∇μFμν ¼ 2μðð∇μS̃ÞFμν þ S̃∇μFμνÞ: ð5:1Þ

The form of these equations suggest that we can consider
the fields gμν and Aμ in terms of their zeroth-order and first-
order (in μ) contributions:

gμν ¼ gð0Þμν þ gð1Þμν ; Aμ ¼ Að0Þ
μ þ Að1Þ

μ : ð5:2Þ

Here, fgð1Þμν ; A
ð1Þ
μ g is linear in μ and fgð0Þμν ; A

ð0Þ
μ g satisfy the

Einstein-Maxwell equations:

Gð0Þ
μν − 8πTð0Þ

μν ¼ 0; ∇ð0Þ
μ Fð0Þμν ¼ 0: ð5:3Þ

Thus, gð0Þμν and Að0Þ
μ represent any known electrovacuum

solution of GR. Here, we will assume the standard RN
solution,

gð0Þμν ¼

0
BBB@

−fðrÞ 0 0 0

0 fðrÞ−1 0 0

0 0 r2 0

0 0 0 r2sin2θ

1
CCCA;

Fð0Þ
μν ¼

0
BBB@

0 Q
r2 0 0

− Q
r2 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; ð5:4Þ

where fðrÞ ¼ 1 − 2M
r þ Q2

r2 , with M and Q denoting the
mass and charge of the black hole, respectively, while

Fð0Þ
μν ¼ 2∂ ½μA

ð0Þ
ν� is the lowest-order electromagnetic field

strength tensor. Using these solutions, we can find the first-
order corrections in μ from Eq. (5.1)

Gð1Þ
μν − 8πTð1Þ

μν ¼ μðK̃ð0Þ
μν þ 2S̃ð0ÞðGð0Þ

μν − 8πTð0Þ
μν ÞÞ

¼ μK̃ð0Þ
μν ;

∇ð1Þ
μ Fð0Þμν þ∇ð0Þ

μ Fð1Þμν ¼ 2μðð∇ð0Þ
μ S̃ð0ÞÞFð0Þμν

þ S̃ð0Þ∇ð0Þ
μ Fð0ÞμνÞ

¼ 2μð∇ð0Þ
μ S̃ð0ÞÞFð0Þμν: ð5:5Þ

In Eq. (5.5), ∇ð0Þ
μ and ∇ð1Þ

μ imply that the connection in the
covariant derivative involve terms up to the respective

order. Gð1Þ
μν and Tð1Þ

μν are the first-order contributions of Gμν

and Tμν, while K̃
ð0Þ
μν is described in terms of the zeroth-order

fields with the following expression:
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K̃ð0Þ
μν ¼ gð0Þμν

�
2□ð0ÞS̃ð0Þ þ∇ð0Þ

α Ũð0Þ∇ð0ÞαS̃ð0Þ −
1

2
Ũð0Þ2

�
− 2∇ð0Þ

μ ∇ð0Þ
ν S̃ð0Þ

−
�
∇ð0Þ

μ Ũð0Þ∇ð0Þ
ν S̃ð0Þ þ∇ð0Þ

ν Ũð0Þ∇ð0Þ
μ S̃ð0Þ

�
: ð5:6Þ

To solve Eq. (5.5), we will assume the following ansatz for the spherically symmetric metric and electromagnetic field
strength,

gμν ¼

0
BBB@

−ðfðrÞ þ μAðrÞÞ 0 0 0

0 ðfðrÞ þ μðAðrÞ − BðrÞÞÞ−1 0 0

0 0 r2 0

0 0 0 r2sin2θ

1
CCCA;

Fμν ¼

0
BBB@

0 Q
r2 þ μDðrÞ 0 0

− Q
r2 − μDðrÞ 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; ð5:7Þ

where AðrÞ, BðrÞ, and DðrÞ represent the first-order
correction terms. Let us first consider the constraint
equations given in Eq. (4.1), which will be needed to
solve Eq. (5.5). The constraint equations are satisfied at all
orders in μ. The first-order corrections to the metric and
electromagnetic field strength tensor require the zeroth-
order solutions of the constraint equations. From Eq. (4.1),
we have the following lowest-order equations:

□
ð0ÞŨð0Þ ¼ Fð0Þ

αβ F
ð0Þαβ ¼ −

2Q2

r4
; □

ð0ÞS̃ð0Þ ¼ −Ũð0Þ:

ð5:8Þ
To simplify the notation, we will henceforth label Ũð0ÞðrÞ
and S̃ð0ÞðrÞ as ũðrÞ and s̃ðrÞ, respectively. Using this
notation, from Eqs. (5.4) and (5.8), we have the following
two equations about the RN background,

2Q2

r4
¼ −fðrÞ0ũðrÞ0 þ fðrÞ

�
2ũðrÞ0

r
þ ũðrÞ00

�
ð5:9Þ

ũðrÞ ¼ fðrÞ0s̃ðrÞ0 þ fðrÞ
�
2s̃ðrÞ0
r

þ s̃ðrÞ00
�
; ð5:10Þ

where primes denote differentiation with respect to coor-
dinate ‘r’. The first-order correction of the ð1 − 2μSÞ ×
ðg00R00 − g11R11Þ term can be found from the first equation
of Eq. (5.5):

fðrÞBðrÞ0 − BðrÞfðrÞ0 ¼ −2rfðrÞ2ðũðrÞ0s̃ðrÞ0 þ s̃ðrÞ00Þ:
ð5:11Þ

Likewise, the second equation of Eq. (5.5) provides the
first-order correction to Maxwell’s equation:

QðBðrÞfðrÞ0 − BðrÞ0fðrÞÞ
¼ −2fðrÞ2ð−Qs̃ðrÞ0 þ 2rDðrÞ þ r2DðrÞ0Þ: ð5:12Þ

Finally, the first-order correction to R22 can also be
determined from the first equation of Eq. (5.5) to be

4rfðrÞs̃ðrÞ0 ¼ 2

�
AðrÞ þ 2QDðrÞ þ r2

�
ũðrÞ þ ũðrÞ2

2

�

þ r

�
AðrÞ0 − BðrÞ0

2

��

− BðrÞ
�
2þ 2Q2

fðrÞr2 þ
rfðrÞ0
fðrÞ

�
: ð5:13Þ

Equations (5.9)–(5.13) provide a sequence of equations
which can be used to solve the coupled differential
equations. Beginning with Eq. (5.9), we can find a solution
for ũðrÞ. Using this solution in Eq. (5.10), we can solve for
s̃ðrÞ. These two solutions can be used in Eq. (5.11), where
we now solve for the field BðrÞ. Proceeding in this way, we
can solve for the fields ũðrÞ; s̃ðrÞ; BðrÞ; DðrÞ and AðrÞ
sequentially and determine the first-order correction to the
field equations. This sequence also demonstrates the pivotal
role of ũ in providing the corrections.

A. First-order corrections

The general solution of Eq. (5.9) on the RN background
is given by

ũ ¼ c1 þ
c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p arctan h

�
r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
�

− ln

�
1 −

2M
r

þQ2

r2

�
: ð5:14Þ
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Following the discussion below Eq. (2.22), there are no real
constants c1 and c2 which admit real corrections outside the
event horizon of a RN black hole. By setting c1 ¼ 0 ¼ c2,
the homogeneous solution can be eliminated and we are left
with

ũ ¼ − ln

�
1 −

2M
r

þQ2

r2

�
: ð5:15Þ

This solution, apart from being real outside the event
horizon of the RN black hole, also agrees with
Eq. (2.17) in the limit of vanishing charge. Neither
Eq. (2.17) nor Eq. (5.15) are real for r ≤ rH, due to the
fact that both solutions of the constraint equations were
derived in static coordinates. We could always derive a
solution for ũ by adopting coordinates which are well
defined across the horizon. However, as we intend to
derive the perturbative corrections outside the RN black
hole and compare these with the known corrections
about the Schwarzschild background, we will continue
to adopt the usual spherically symmetric coordinates in this
section.
The solution of ũ is real outside the event horizon of a

RN black hole and thus allows us to consider perturbative
corrections in μ in this region. Using Eq. (5.15) in
Eq. (5.10), the general solution of s̃ comprises logarithmic
terms, products of logarithmic terms and polylog functions,
which are similar to those found about the Schwarzschild
background [65]. Further, unlike the Schwarzschild case,
there exist the homogeneous contribution involving the

arctan h
�

r−Mffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
�
functions, which can again be addressed

through an appropriate choice of the constants. The
solutions for AðrÞ, BðrÞ, and DðrÞ are significantly more
involved in the logarithmic terms which can obscure their
leading-order behavior when rH ≪ r. We will, thus, con-
sider only the leading order in r contribution for all the
correction terms, for which we find the following:

AðrÞ ¼ −2Mr − 2ðM2 −Q2Þ þ d1 þOðr−1Þ
BðrÞ ¼ d1 þOðr−1Þ

DðrÞ ¼ −
2MQ
r

þOðr−2Þ: ð5:16Þ

The lowest-order correction to the RN background can be
found by taking d1 ¼ 0. Substituting Eq. (5.16) in
Eq. (5.18) we find the following nonvanishing corrections
of the metric and electric field, to first order in μ and leading
orders in r:

g00 ≈
�
1 −

�
2M
r

�
ð1þ μðr2 þMrÞÞ þQ2

r2
ð1þ 2μr2Þ

�

F01 ≈
Q
r2

ð1 − 2μMrÞ: ð5:17Þ

As can be seen from comparing Eq. (2.18) with
Eq. (5.17), the corrected metric is an appropriate
extension of the result for the Schwarzschild back-
ground. We also note that the electric field contains a
charge correction which involves the mass M of the
black hole. Such r−1 corrections for the electric field are
absent when the electromagnetic field is minimally
coupled. The corrections beyond leading order in
Eq. (5.16) could be relevant in the region beyond the
horizon. We have, thus, also taken into account the
complete solution for AðrÞ, BðrÞ, and DðrÞ numerically.
The plots for these solutions are provided in Fig. 1.
These should not be confused with μAðrÞ; μBðrÞ, and
μDðrÞ, which provide the actual corrections to the
metric and electromagnetic field strength and are neg-
ligibly small except for mr ≥ 1. The corrected metric
and field strength have been compared with the uncor-
rected RN solutions in Figs. 2 and 3. These figures
indicate the excellent agreement of the complete first-
order corrected solution with the original RN solution
from r ≈ rH up to mr < 1.
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FIG. 1. In all plots, M ¼ 5 and Q ¼ 4 are assumed; The event horizon is located at rH ¼ 8. Left: The complete first-order correction
functions AðrÞ (red), BðrÞ (blue), andDðrÞ (green) near the horizon of the black hole (From r ¼ 8 to r ¼ 40). Right: The same functions
now considered up to r ¼ 1000. AðrÞ; BðrÞ, and DðrÞ approach finite values at the horizon and are well behaved outside the horizon.
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B. Higher-order corrections

We have just demonstrated that the Kaluza reduced action
admits real first-order corrections outside the event horizon
of a RN black hole. The complete solution can be derived
iteratively and constructed in powers of μ ¼ m2

6
. However, in

order for the solutions to be perturbative, the corrections to

the metric and the field strength must continue to not grow at
higher orders in μ. Here we will consider the nature of the
corrections at order μ2 and argue why this behavior will
continue to hold to all orders. Following the first-order
correction, the metric and electromagnetic field strength
tensor to order μ2 can be expressed as

gμν ¼

0
BBB@

−ðf̃ðrÞ þ μ2ÃðrÞÞ 0 0 0

0 ðf̃ðrÞ þ μ2ðÃðrÞ − B̃ðrÞÞÞ−1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

1
CCCA;

Fμν ¼

0
BBB@

0 C̃ðrÞ þ μ2D̃ðrÞ 0 0

−C̃ðrÞ − μ2D̃ðrÞ 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; ð5:18Þ
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FIG. 3. Comparative plots of the complete first-order corrected electric field (green) with that of the uncorrected RN electric field
(yellow) assuming M ¼ 5, Q ¼ 4 and μ ¼ m2

6
¼ 10−6. Left: From r ¼ 8 to r ¼ 40. Right: From r ¼ 8 to r ¼ 2000.
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FIG. 2. Comparative plots of the complete first-order corrected g00 (red dashed) and g11 (blue dashed) metric components with that of

the uncorrected RN gð0Þ00 (yellow) assuming M ¼ 5, Q ¼ 4 and μ ¼ m2

6
¼ 10−6. Left: From r ¼ 8 to r ¼ 40. Right: From

r ¼ 8 to r ¼ 2000.
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where f̃ðrÞ and C̃ðrÞ are g00 and F01 of Eq. (5.17),
respectively. To determine the second-order corrections
of the metric and electromagnetic field strength, we need to
solve the first-order constraint equations given by

□
ð0ÞŨð1Þ ¼ −Rð1Þ þ Fð0Þ

αβ F
ð1Þαβ þ Fð1Þ

αβ F
ð0Þαβ −□

ð1Þũ;

ð5:19Þ

□
ð0ÞS̃ð1Þ ¼ −Ũð1Þ −□

ð1Þs̃: ð5:20Þ

Ũð1Þ and S̃ð1Þ denote the first-order corrections of Ũ and S̃;
respectively. While the Ricci scalar vanishes on the RN
background (Rð0Þ ¼ 0), its first-order correction does not
and has the following expression

Rð1Þ ¼ 4
ðM2 −Q2 þ 3MrÞ

r2
þOðr−3Þ: ð5:21Þ

The additional Oðr−3Þ terms for Rð1Þ indicate contributions
from those terms which were ignored in going from
Eq. (5.16) to Eq. (5.17). Denoting the right-hand side of
Eq. (5.19) by lðrÞ, it is clear that □ð0ÞŨð1Þ ¼ lðrÞ has the
same homogeneous solution about the RN background
involving the arctanhðxÞ function. This piece can always be
ignored through the choice of constants. The remaining
inhomogeneous solution has the general form

Ũð1ÞðrÞ ¼ a0ũðrÞ þ � � � ; ð5:22Þ

where a0 is a constant which depends only on the mass and
charge of the RN black hole and � � � represent terms which
involve products of logarithms and polylogarithms. These
additional contributions are a result of the nonvanishing
Ricci scalar at this order and the contribution from □

ð1Þũ.
Following the steps outlined in the first-order correction of
the previous subsection, we find that when rH ≪ r the
leading-order corrections at this order are given by

ÃðrÞ ¼ αrþ β þOðr−1Þ;
B̃ðrÞ ¼ γ þOðr−1Þ;

D̃ðrÞ ¼ δ

r
þOðr−2Þ: ð5:23Þ

In Eq. (5.23), α, β, γ and δ are dimensionful constants
which depend only on the mass and charge of the RN
black hole. Each of the leading contributions indicated in
Eq. (5.23) are a result of the a0ũ term of Ũð1ÞðrÞ. The
product of logarithm terms indicated through the ellipsis in
Eq. (5.22) contribute only to the subleading terms in
Eq. (5.23). It can be noted that the leading contribution
in Eq. (5.23) has the same form as Eq. (5.16), up to new
constants which involve the parameters of the RN black
hole. The dependence on the parameters of black holes

imply μ2ÃðrÞ < μAðrÞ, μ2B̃ðrÞ < μBðrÞ and μ2D̃ðrÞ <
μDðrÞ, which further imply that the corrections are per-
turbative up to this order.
Since the solutions for ŨðrÞ; S̃ðrÞ; AðrÞ; BðrÞ and DðrÞ

at each order result from the r dependence of the solutions
of the previous order, it follows that the corrections at
higher orders in μ will also have the same leading order in r
behavior. By considering the region outside the horizon and
up to subleading terms in r, the corrections are perturbative
for r > rH and μr2 ≪ 1. This extends the observation made
about the Schwarzschild background, where the nature of
the first-order corrections were shown by numeric integra-
tion to be maintained at higher orders for the μr2 ≪ 1
region outside the event horizon of the black hole [65].
Here we have seen that this property is due to the leading
order in r contribution to Ũ at all orders, which up to
dimensionful constants, is of the same form as ũ.

VI. DISCUSSION

In this paper, we investigated the coupling of the
electromagnetic field to nonlocal gravity theories and their
implications on the resulting electrovacuum solutions. In
particular, we considered the action introduced in [44],
which is causal, covariant and free of ghosts, and satisfies
currently known cosmological observations. However, in
Sec. II we also noted that while the action admits real
perturbative corrections about the Schwarzschild back-
ground, it does not admit similar corrections about the
RN background when the electromagnetic field is mini-
mally coupled. This was determined through the constraint
equation of the auxilliary field ‘U’ given in Eq. (2.3),
whose introduction was needed for the local formulation of
the theory. We determined that this equation does not admit
real solutions outside the event horizon of the RN black
hole. As a consequence, we cannot construct solutions
which involve real, perturbative corrections about the RN
background. Since this result also follows directly from the
auxilliary field equation, our conclusion holds for other
nonlocal pure gravitational theories involving the Ricci
scalar. One reason for the absence of real solutions of the
constraint equation on the RN background is the presence
of the electric charge in the metric. We thus require a
charged source for the constraint equation, which can only
result from nonlocal terms involving the electromagnetic
fields.
We then considered the modified coupling of the

electromagnetic field by performing the Kaluza reduction
on the nonlocal action of Eq. (3.7) in Sec. III. The Kaluza
reduced action involves terms which are nonlocal in both
gauge and gravitational fields. In Sec. IV, we introduced
auxilliary fields and considered the resulting local formu-
lation of the action. Due to the nonlocal coupling of the
electromagnetic field in the Kaluza reduced action,
Maxwell’s equation and the stress-energy tensor receive
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corrections involving the auxilliary fields of the theory.
In order to derive the classical solutions, we provided an
iterative approach in Sec. V, catered to the five coupled
differential equations one needs to solve. By considering
the RN background, we demonstrated that the auxilliary
field now admit real solutions in the region outside the
event horizon. This allowed for the derivation of the first
order in μ corrections of the metric and electromagnetic
field strength about the RN background, whose expressions
up to leading orders in r was provided in Eq. (5.16). We
then considered higher-order corrections to argue that
the corrections are perturbative and have the same leading
order in r behavior as the first-order corrections, up to
dimensionful constants. Thus the Kaluza ansatz provides
the nonlocal coupling of the electromagnetic field needed
to admit real perturbative corrections about electrovacuum
solutions of GR.
The lowest-order solutions of the auxilliary fields, given

in Eq. (2.17) about the Schwarzschild background for the
original nonlocal theory and Eq. (5.15) about the RN
background for the Kaluza reduced action, both involved
the logarithm of the lapse function of the respective
background. This was a consequence of adopting static
coordinates, which allowed us to investigate perturbations
outside the event horizon of the black hole. To consider
the near horizon physics of black holes, it will be interest-
ing to use coordinates which are well behaved across
the horizon. This will in particular be relevant to study

quantum effects due to nonlocal fields on curved back-
grounds. Here we note the “nonviolent nonlocal” (NVNL)
proposal [37,38], which could provide a possible resolution
of the information paradox. Further, it has been argued that
some of the consequences of this proposal could have
observable signatures in future gravitational wave obser-
vations [39,66,67]. Some implications of the NVNL
proposal on nonlocal scalar fields were considered in
[68] and it will be interesting to extend these results to
nonlocal gauge fields. As the nonlocal electromagnetic
fields involved in the Kaluza reduced action also modify
Maxwell’s equations, the Gauss law constraint of the theory
will involve nonlocal corrections as well. This could have
further implications on the charges and near horizon
properties of black holes.
Nonlocal electromagnetic fields allow for other quantum

effects on curved backgrounds. The anomaly-induced
quantum effective actions resulting from background
gravitational and gauge fields have applications in the
scattering amplitudes on curved backgrounds. Contri-
butions to graviton-photon amplitudes will exist when
the effective action contains nonlocal terms involving an
inverse quartic operator as well as both R and FαβFαβ

[69,70]. Due to the presence of similar terms in the nonlocal
action of Eq. (3.8), one can expect analogous scattering
processes to result from the Kaluza reduced action. We look
forward to investigating these and related topics in future
work.
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