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The “thin-wall approximation” gives a simple estimate of the decay rate of an unstable quantum
field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually
two different thin-wall approximations and that they bracket the true decay rate: I prove that one is an
upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the
presence of gravity, a generalization of this lemma provides a simple sufficient condition for non-
perturbative vacuum instability.
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Metastable states may decay by quantum tunneling. In
the semiclassical (small ℏ) limit, the most important
contribution to the decay rate

rate ∼ A exp½−B=ℏ�; ð1Þ

is the tunneling exponent B. In a famous paper Coleman
explained how to calculate B for a scalar field [1]. He
showed that B is given by the Euclidean action of an
instanton that interpolates from the metastable (or “false”)
vacuum toward the target (or “true”) vacuum. For a given
field potential VðϕÞ, the instanton can be derived by
numerically integrating the second-order Euclidean equa-
tions of motion.
For those who lack either the computing power or the

patience to solve the equations of motion, or who seek an
intuitive understanding of the parametric dependence of the
decay rate, Coleman also showed that we can often use the
“thin-wall” approximation. While the instanton is a bubble
that smoothly interpolates from the false vacuum to near
the true vacuum, the thin-wall approximation treats this
transition as abrupt [1]; the decay exponent is then
approximated by

B ∼ B̄tw ≡ 27π2

2

σ4

ðVfalse − V trueÞ3
: ð2Þ

Consider these two expressions for the tension of the
bubble wall σ,

σmin ≡
Z

ϕf

ϕ�
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV½ϕ� − V½ϕf �Þ

p
;

σmax ≡
Z

ϕf

ϕt

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV½ϕ� − V½ϕt�Þ

p
: ð3Þ

Coleman used only σmin and left Eq. (2) as an uncontrolled
approximation, in the sense that we are provided neither
with an estimate of its accuracy nor with a bound on its
error. We can do better. The main result of this paper is that,
for any potential VðϕÞ,

Lemma 1 ðno gravityÞ∶ B̄tw½σmin� ≤ B ≤ B̄tw½σmax� : ð4Þ

The first inequality is proved in Appendix A 1; the second
in Appendix A 2. As Vfalse − V true → 0 so too σmax −
σmin → 0 and the two thin-wall approximations converge.

GVfalse ≤ 0 GVfalse > 0

always B ≤ B̄G
tw½σmax�?

always B ≥ B̄G
tw½σmax�?

We can partially generalize this to include gravity. As
first calculated by Coleman and de Luccia [2], gravitational
backreaction changes B: the decay exponent now depends
not just on the difference Vfalse − Vtrue, but also on Vfalse
and Vtrue separately, since zero-point energy curves space-
time. The gravitational generalization of the thin-wall
approximation to the decay exponent, B̄G

tw½σ�, is given by
Eq. (B5), and the partial generalization of Lemma 1 is that

Lemma2

ðwhenGVfalse ≤ 0Þ∶B≤ B̄G
tw½σmax� : ð5Þ

This inequality is proved in Appendix B. The addition of
gravity means it is no longer always true thatB ≥ B̄G

tw½σmin�:
a de Sitter false vacuum (GVfalse > 0) with a short but very
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broad barrier has arbitrarily large σmin but still decays
relatively promptly via a Hawking-Moss instanton [3], so
that B ≪ B̄G

tw½σmin� < B̄G
tw½σmax�; and a Minkowski false

vacuum (GVfalse ¼ 0) that has B < B̄G
tw½σmin� was exhibited

numerically in Sec. Vof [4]. (It is still open whether B may
be greater than B̄G

tw½σmax� for GVfalse > 0; I suspect it
may not.)
One application of these lemmas is diagnosing instability.

Gravity can stabilize superficially metastable GVfalse ≤ 0
vacua [2], and there is great interest in determining which
vacua decay and which endure (see e.g. [5]). Lemma 2
provides a sufficient condition for instability, which is that
B̄G
tw½σmax� < ∞, or equivalently

sufficient condition for instability∶

σmax <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V½ϕtrue�

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V½ϕfalse�

p
ffiffiffiffiffiffiffiffiffi
6πG

p : ð6Þ

No such condition is required for GVfalse > 0, since all de
Sitter false vacua are unstable [2].
We can generalize Lemma 2 by replacing ϕt with any

value in the range ϕt ≤ ϕmid < ϕ�, as shown in Fig. 2. Thus
the false vacuum is unstable if there exists any ϕmid such
that

σmid ≡
Z

ϕf

ϕmid

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV½ϕ� − V½ϕmid�Þ

p

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V½ϕmid�

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V½ϕfalse�

p
ffiffiffiffiffiffiffiffiffi
6πG

p : ð7Þ

When there are multiple fields, there are many possible
routes over the barrier, and this condition applies to all of
them: if we can find any route for the σmid integral such that
Eq. (7) holds, the vacuum must be unstable, the field must
eventually decay, and spacetime is doomed [2].
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APPENDIX A: PROVING
NONGRAVITATIONAL RESULTS

This appendix proves Lemma 1. The two inequalities
demand two very different proof strategies.
Consider the decay of the false vacuum of Fig. 1. We will

assume that there are no intervening minima between the
false and true vacua, but otherwise leave the potential
completely general. I will now review how to calculate the
vacuum decay rate; this is all explained with great clarity in
[1]. In [1] it is shown that the tunneling exponent is given
by the Euclidean action of an instanton. The instanton
ϕ̄ðτ; x⃗Þ lives on R4 and extremizes the Euclidean action

SE ¼
Z

d4x

�
1

2
ð∂μϕÞ2 þ VðϕÞ

�

¼ 2π2
Z

dρρ3
�
1

2
_ϕ2 þ VðϕÞ

�
; ðA1Þ

where we have written ds2 ¼ dτ2 þ dx⃗2 ¼ dρ2 þ ρ2dΩ2
3

and used that the instanton can be shown [6] to have O(4)
spherical symmetry ϕ̄ ¼ ϕ̄ðρÞ. One boundary condition is
that the field returns to the false vacuum ϕ̄ → ϕf as ρ → ∞;
the other boundary condition is that the field immediately
after nucleation, given by

field after nucleation∶ϕðt ¼ 0; x⃗Þ ¼ ϕ̄ðτ ¼ 0; x⃗Þ; ðA2Þ
has the same energy as the false vacuum (ΔE ¼ 0) and
classically evolves toward the true vacuum. (In fact, the
symmetry tells us that it will give rise to a bubble of
approximately true vacuum that expands out at approaching
the speed of light.) The instanton gives a path through the
space of ϕðx⃗Þs that connects the before-tunneling configu-
ration ϕðτ ¼ −∞; x⃗Þ ¼ ϕf to the after-tunneling configura-
tion ϕðτ ¼ 0; x⃗Þ. Indeed, the instanton is defined as the
solution of minimum Euclidean action that satisfies these
boundary conditions—in the language of [7], it is the most
probable decay path.1

FIG. 1. The field starts in the false vacuum ϕf and tunnels towards the true vacuum ϕt. The definition of ϕ� is such that V½ϕ�� ¼ V½ϕf �.
Equation (3) gives two different definitions of the tension, with σmax > σmin.

1Technically we insist that the decay path ends at its first
intersection with the ΔE ¼ 0 surface.
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(With no constraint on the energy of the τ ¼ 0 configu-
ration, the instanton has exactly one negative mode [8]; this
negative mode is associated with changing the energy of the
nucleated bubble away from ΔE ¼ 0. In this paper we will
freeze this negative mode by only considering paths that
end with the same energy as the false vacuum ΔE ¼ 0;
amongst this set of paths the instanton is a minimum of the
Euclidean action [9].)
To minimize the action, the instanton must satisfy the

Euler-Lagrange equation,

d
dρ

�
1

2
_̄ϕ
2 − Vðϕ̄Þ

�
¼ −

3

ρ
_̄ϕ
2
: ðA3Þ

This equation implies that 1
2
_̄ϕ
2 − Vðϕ̄Þ monotonically

decreases as ρ increases (in [1] this is called “friction”),
which in turn implies that

−Vfalse <
1

2
_̄ϕ
2 − VðϕÞ < −V true ðA4Þ

→
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VfalseÞ

p
< _̄ϕ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − V trueÞ

p
: ðA5Þ

The tunneling exponent is then given by the difference in
Euclidean action between the instanton and the false vacuum

B¼SEðϕ̄Þ−SEðϕ̄fÞ¼2π2
Z

∞

0

dρρ3
�
1

2
_ϕ2þVðϕÞ−Vfalse

�
:

ðA6Þ
Since tunneling conserves energy, immediately after nucle-
ation the bubble must have the same energy as the false
vacuum,

ΔE≡ 4π

Z
∞

0

dρρ2
�
1

2
_̄ϕ
2 þ Vðϕ̄Þ − Vfalse

�
¼ 0: ðA7Þ

But the energy density is not zero everywhere. Instead, the
energy density is positive in the “wall” of the bubble where
the field traverses the barrier, and then negative inside the
bubble. Fig. 3 shows a cross section of a typical bubble.
“Outside” the bubble (ϕ > ϕ�) the energy density is bigger
than Vfalse; “inside” the bubble (ϕ < ϕ�) we know only that
the energy density is bigger than V true.
Consider the field value at the very center of the bubble,

ϕðρ ¼ 0Þ. It follows from the conservation of energy that
ϕð0Þ ≤ ϕ�; conversely it follows from Eq. (A5) that
ϕð0Þ ≥ ϕt. Indeed, the fact that ϕt ≤ ϕð0Þ ≤ ϕ� is what
originally motivated the definitions of σmin and σmax in
Eq. (3): the two lower limits of integration capture the full
range of possible values of ϕð0Þ.
For the remainder of Appendix Awe will add a constant

to the potential to set Vfalse ¼ 0.

FIG. 2. If we can find any path across the barrier that satisfies Eq. (7), the vacuum must be unstable. Left: the σ integral need not be
taken all the way to ϕtrue, and can instead stop anywhere in the range ϕtrue ≤ ϕmid < ϕ�. Right: when there are multiple fields, there are
many escape routes, and the decay path may take any of them.

FIG. 3. A cross-section through a typical bubble at the moment of nucleation. The center of the bubble may have an energy density as
low as V true; but for ρ > ρ� the energy density necessarily exceeds that of the false vacuum 1

2
_ϕ2 þ VðϕÞ ≥ VðϕÞ ≥ Vfalse. The total

integrated energy is equal to that in the false vacuum, ΔE ¼ 0.
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1. Proving B ≥ B̄tw½σmin�
Proof strategy: The instanton is a bubble configuration

with zero energy, ΔE ¼ 0. In order to have ΔE ¼ 0, any
bubble must be big, and if it is big enough it must
have B ≥ B̄tw½σmin�.
First let’s construct a new potential V̂½ϕ� that decays

faster than V½ϕ�,

V̂½ϕ�≡
�
V½ϕ� for ϕ > ϕ�
V½ϕ − ϕ� þ ϕt� for ϕ < ϕ�:

The region of V½ϕ� between ϕt and ϕ� has been excised,
with the ϕ > ϕ� part glued straight onto the ϕ < ϕt part.
This does not affect σmin or Vfalse or V true, but since we have
removed part of the barrier the decay rate is faster

B½VðϕÞ� ≥ B̂≡ B½V̂ðϕÞ�: ðA8Þ

The shape of the bubble is plotted in Fig. 4. The bubble
stays uniformly in the true vacuum until ρ ¼ ρ̂�, and then
proceeds towards the false vacuum with a profile given
by Eq. (A3).
Let us calculate B̂. First notice that by changing variables

from ρ to ϕ,

Z
∞

ρ̂�
dρ

�
1

2
_̄ϕ
2 þ V½ϕ̄�

�

¼
Z

ϕf

ϕ�

dϕ
_̄ϕ

�
1

2
_̄ϕ
2 þ V½ϕ̄�

�

¼
Z

ϕf

ϕ�
dϕ

1
2
ð _̄ϕ −

ffiffiffiffiffiffi
2V

p Þ2 þ ffiffiffiffiffiffi
2V

p _̄ϕ
_̄ϕ

≥ σmin: ðA9Þ

The total energy of the bubble, relative to the false
vacuum, is

ΔÊ ¼ 4π

Z
ρ̂�

0

dρρ2
�
1

2
_̄ϕ
2 þ V½ϕ̄�

�

þ 4π

Z
∞

ρ̂�
dρρ2

�
1

2
_̄ϕ
2 þ V½ϕ̄�

�
ðA10Þ

≥ 4π

Z
ρ̂�

0

dρρ2V true þ 4πρ̂2�

Z
∞

ρ̂�
dρ

�
1

2
_̄ϕ
2 þ V½ϕ̄�

�

≥
4π

3
ρ̂3�V true þ 4πρ̂2�σmin: ðA11Þ

Tunneling conserves energy, ΔÊ ¼ 0, so the bubble must
be large

ρ̂� ≥
3σmin

ð−V trueÞ
: ðA12Þ

SinceΔÊ ¼ 0 implies B̂ ¼ B̂ − πρ̂�ΔÊ
2

, we can use Eqs. (A6)
and (A10) to prove our result

B ≥ B̂ ¼ 2π2
Z

∞

0

dρρ2ðρ − ρ̂�Þ
�
1

2
_̄ϕ
2 þ V̂½ϕ̄�

�
ðA13Þ

≥ 2π2
Z

ρ̂�

0

dρρ2ðρ − ρ̂�Þ
�
1

2
_̄ϕ
2 þ V̂½ϕ̄�

�
ðA14Þ

≥ 2π2
Z

ρ̂�

0

dρρ2ðρ − ρ̂�ÞV true ðA15Þ

≥ 2π2
ρ̂4�ð−V trueÞ

12
ðA16Þ

≥
27π2

2

σ4min

ð−V trueÞ3
¼ B̄tw½σmin�: ðA17Þ

2. Proving B ≤ B̄tw½σmax�
Proof strategy: The instanton is the path of minimum

action that interpolates from the false vacuum to a ΔE ¼ 0
state on the true vacuum side of the barrier. I will explicitly
construct an interpolating path with action B̄tw½σmax�.
Consider the one-parameter family of field-profiles2

ϕR̄ðρÞ parameterized by R̄ and defined by

FIG. 4. V̂½ϕ� is constructed by deleting the part of VðϕÞ that lies between ϕt and ϕ�. The corresponding bubble instanton has pure true
vacuum inside some radius that we will call ρ̂�. The bubble has energy ΔÊ ¼ 0.

2This field-profile has a discontinuous first derivative at both
ρ ¼ R̄ and ρ ¼ 0. This indicates the field-profile is not a
minimum of the Euclidean action, but does not prevent the
field-profile from contributing to the path integral—to contribute
to the path integral, a field-profile only needs to be continuous,
not differentiable. If desired, my proof can be reformulated
entirely in terms of differentiable field-profiles: smoothing the
field at ρ ¼ 0 and ρ ¼ R will only make a tiny (second-order)
change to the action, so the inequality would still follow.
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ϕR̄ðρÞ ¼ ϕf for ρ > R̄ ðA18Þ

_ϕR̄ðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV½ϕR̄ðρÞ� − V trueÞ

p
for ρ < R̄: ðA19Þ

From the definition it follows that ϕt < ϕR̄ðρÞ ≤ ϕf . The
Euclidean action of ϕR̄ðρÞ is

SE½R̄� ¼ 2π2
Z

R̄

0

dρρ3
�
1

2
_ϕ2
R̄ þ V½ϕR̄�

�
ðA20Þ

¼ 2π2
Z

R̄

0

dρρ3ð2ðV½ϕ�−V trueÞÞþ2π2
Z

R̄

0

dρρ3ðV trueÞ

ðA21Þ

≤ 2π2R̄3

Z
ϕf

ϕR̄½0�
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV½ϕ�−V trueÞ

p
þ2π2

4
V trueR̄4

ðA22Þ

≤ 2π2R̄3σmax −
π2

2
ð−V trueÞR̄4 ðA23Þ

≤
27π2

2

σ4max

ð−V trueÞ3
¼ B̄tw½σmax�: ðA24Þ

Our family of field-profiles ϕR̄ðρÞ must contain as “escape
path,” in the language of [7]: while small values of R̄ gives
positive energy ΔE > 0, arbitrarily large values of R̄ give
arbitrarily negative energies, so there must be an intervening
value R̄E¼0 such that ΔE½ϕR̄ðt ¼ 0; x⃗Þ� ¼ 0. Therefore the
most probable escape path has B ≤ SE½R̄E¼0� ≤ B̄tw½σmax�.
This proof would still have gone through had we

replaced V true by Vmid ≡ V½ϕmid� in Eq. (A19), for any
ϕmid in the range ϕt ≤ ϕmid < ϕ�. Thus a strengthening of
the lemma is that

B ≤
27π2

2

σ4mid

ðVfalse − VmidÞ3
; where

σmid ≡
Z

ϕf

ϕmid

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV½ϕ� − V½ϕmid�Þ

p
ðA25Þ

for every possible ϕmid, and (for multifield potentials) for
every possible route over the barrier.

APPENDIX B: PROVING
GRAVITATIONAL RESULT

When gravity is included, the decaying field curves
spacetime. Despite this complication, the same general
proof strategy will apply as for the nongravitational case of
Sec. A 2.
The formalism that governs the gravitational decay of the

false vacuum was described with great clarity in [2]. With
gravity included, it has not been proved that the dominant
instanton is still Oð4Þ-symmetric; following conventional
wisdom, we will assume that it is. The metric may then be
written

ds2 ¼ dξ2 þ ρðξÞ2dΩ2
3: ðB1Þ

Matter tells space how to curve

_ρ2 ¼ 1þ 8πG
3

ρ2
�
1

2
_ϕ2 − VðϕÞ

�
; ðB2Þ

and space tells matter how to move

d
dξ

�
1

2
_̄ϕ
2 − Vðϕ̄Þ

�
¼ −3

_ρðξÞ
ρðξÞ

_̄ϕ
2
: ðB3Þ

When the gravitational constraint Eq. (B2) is satisfied, the
action is given by Eq. (3.9) of [2] as

SE¼ 4π2
Z

dξ
�
ρ3V−

3

8πG
ρ

�
¼ 4π2

Z
dρ

ρ3V− 3
8πGρ

_ρ
:

ðB4Þ

The thin-wall approximation3 to the tunneling exponent
[2,14] is

B̄G
tw ≡ 2π2ρ̄3σ þ 3

16

ð1 − 8πG
3
ρ̄2V trueÞ32 − 1

G2V true

−
3

16

ð1 − 8πG
3
ρ̄2VfalseÞ32 − 1

G2Vfalse
; ðB5Þ

where ρ̄ is the radius of the bubble wall that maximizes
Eq. (B5), namely (for GVf ≤ 0)

ρ̄≡ 3σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffi

−V t
p

−
ffiffiffiffiffiffiffiffiffi
−Vf

p Þ2 − 6πGσ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ffiffiffiffiffiffiffiffi
−V t

p þ ffiffiffiffiffiffiffiffiffi
−Vf

p Þ2 − 6πGσ2
p : ðB6Þ

As σ approaches ð ffiffiffiffiffiffiffiffi
−V t

p
−

ffiffiffiffiffiffiffiffiffi
−Vf

p Þ= ffiffiffiffiffiffiffiffiffi
6πG

p
both ρ̄ and B̄G

tw
diverge; for larger values of the tension, the thin-wall
approximation predicts that the false vacuum is stable.
To prove the gravitational lemma [Eq. (5)] we will follow

Sec. A 2 in constructing a family of paths and showing that
one member of the family is an escape path, and every

3For numerical investigations of the reliability of the thin-wall
approximation in the nongravitational case, see [10]; see also
[11]. For numerical investigations in the gravitational case, see
[4,12]; see also [13].
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member of the family has ΔSE ≤ B̄G
tw½σmax�. The family of

field-profiles will be parametrized by R̄,

ϕR̄ðξÞ ¼ ϕf → _ρ2 ¼ 1 −
8πG
3

ρ2Vfalse for ρ > R̄ ðB7Þ

_ϕR̄ðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV½ϕðξÞ� − V trueÞ

p

→ _ρ2 ¼ 1 −
8πG
3

ρ2V true for ρ < R̄: ðB8Þ
Notice that while this family need not satisfy the equation
of motion for the field, Eq. (B3), it is required to satisfy the
gravitational constraint, Eq. (B2), because only such

configurations contribute to the gravitational path integral.
Notice also that _ρ ≥ 1 > 0 so ρ monotonically increases
with ξ and the topology is R4. The field and metric differ
from the false vacuum only inside ρ < R̄, so the difference
in action ΔSE ¼ SE½ϕR̄ðρÞ� − SE½ϕf � is

ΔSE¼ 4π2
Z

R̄

0

dρ

0
B@ ρ3V− 3

8πGρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 8πG

3
ρ2V true

q −
ρ3Vfalse− 3

8πGρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 8πG

3
ρ2Vfalse

q
1
CA

ðB9Þ

¼ 4π2
Z

R̄

0

dρ

0
B@ ρ3ðV − V trueÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πG
3
ρ2V true

q þ ρ3V true − 3
8πG ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πG
3
ρ2V true

q −
ρ3Vfalse − 3

8πG ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πG

3
ρ2Vfalse

q
1
CA

¼ 4π2
Z

ϕf

ϕR̄½0�

dϕρ3ðV − V tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − V tÞ

p þ 3

16

ð1 − 8πG
3
R̄2V tÞ32 − 1

G2V t
−

3

16

ð1 − 8πG
3
R̄2VfÞ32 − 1

G2Vf

≤ 2π2R̄3σmax þ
3

16

ð1 − 8πG
3
R̄2V trueÞ32 − 1

G2V true
−

3

16

ð1 − 8πG
3
R̄2VfalseÞ32 − 1

G2Vfalse
ðB10Þ

≤ B̄G
tw½σmax�: ðB11Þ

There are two possible cases, both shown in Fig. 5. First
consider σmax < ð ffiffiffiffiffiffiffiffi

−V t
p

−
ffiffiffiffiffiffiffiffiffi
−Vf

p Þ= ffiffiffiffiffiffiffiffiffi
6πG

p
. In this case,

both ΔSE½R̄� and ΔE½R̄� become unboundedly negative
at large R̄, so the family contains an escape path;
since no member of the family has an action that
exceeds B̄G

tw½σmax�, Lemma 2 holds. By contrast, for the case

σmax≥ð ffiffiffiffiffiffiffiffi
−V t

p
−

ffiffiffiffiffiffiffiffiffi
−Vf

p Þ= ffiffiffiffiffiffiffiffiffi
6πG

p
the family may not contain

an escape path, but since B̄G
tw½σmax� ¼ ∞, Lemma 2 trivially

holds. Thus we have proved Lemma 2 for all values of σmax.
As in the nongravitational case, this proof would still

have gone through had we replaced ϕt with any value in the
range ϕt ≤ ϕmid < ϕ�, yielding the more powerful con-
dition of Eq. (7).
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