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Thin-wall approximation in vacuum decay: A lemma
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The “thin-wall approximation” gives a simple estimate of the decay rate of an unstable quantum
field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually
two different thin-wall approximations and that they bracket the true decay rate: I prove that one is an
upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the
presence of gravity, a generalization of this lemma provides a simple sufficient condition for non-

perturbative vacuum instability.
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Metastable states may decay by quantum tunneling. In
the semiclassical (small %) limit, the most important
contribution to the decay rate

rate ~ A exp[—B/h], (1)

is the tunneling exponent B. In a famous paper Coleman
explained how to calculate B for a scalar field [1]. He
showed that B is given by the Euclidean action of an
instanton that interpolates from the metastable (or “false’)
vacuum toward the target (or “true”) vacuum. For a given
field potential V(¢), the instanton can be derived by
numerically integrating the second-order Euclidean equa-
tions of motion.

For those who lack either the computing power or the
patience to solve the equations of motion, or who seek an
intuitive understanding of the parametric dependence of the
decay rate, Coleman also showed that we can often use the
“thin-wall” approximation. While the instanton is a bubble
that smoothly interpolates from the false vacuum to near
the true vacuum, the thin-wall approximation treats this
transition as abrupt [1]; the decay exponent is then
approximated by
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Consider these two expressions for the tension of the
bubble wall o,
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Coleman used only o,,;, and left Eq. (2) as an uncontrolled
approximation, in the sense that we are provided neither
with an estimate of its accuracy nor with a bound on its
error. We can do better. The main result of this paper is that,
for any potential V(¢),

Lemma 1 (no gravity): |By[0min] < B < By[omall  (4)

The first inequality is proved in Appendix A 1; the second
in Appendix A2. As Ve — Viwe = 0 SO 100 Oppax —
Omin — 0 and the two thin-wall approximations converge.

Gvfalse < 0 Gvfalse >0
always B < B, [01na)? PROVED OPEN
always B > BS,[6ma]? FALSE [5] FALSE [4]

We can partially generalize this to include gravity. As
first calculated by Coleman and de Luccia [2], gravitational
backreaction changes B: the decay exponent now depends
not just on the difference Vi — Ve, but also on Vi
and V. separately, since zero-point energy curves space-
time. The gravitational generalization of the thin-wall
approximation to the decay exponent, BS,[s], is given by
Eq. (B5), and the partial generalization of Lemma 1 is that

Lemma?2

(when GV <0) Zm- (5)

This inequality is proved in Appendix B. The addition of
gravity means it is no longer always true that B > B, [6yyin]:
a de Sitter false vacuum (GVyy,. > 0) with a short but very
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The field starts in the false vacuum ¢; and tunnels towards the true vacuum ¢,. The definition of ¢, is such that V[¢,] = V]g¢].

Equation (3) gives two different definitions of the tension, with 6., > Opmin-

broad barrier has arbitrarily large o, but still decays
relatively promptly via a Hawking-Moss instanton [3], so
that B < B, [01min] < BS,[0ma); and a Minkowski false
vacuum (GVyye. = 0) that has B < BS, [6,mn] Was exhibited
numerically in Sec. V of [4]. (It is still open whether B may
be greater than B [0 for GViye > 0; 1 suspect it
may not.)

One application of these lemmas is diagnosing instability.
Gravity can stabilize superficially metastable GV <0
vacua [2], and there is great interest in determining which
vacua decay and which endure (see e.g. [5]). Lemma 2
provides a sufficient condition for instability, which is that
B, [6max] < 00, or equivalently

sufficient condition for instability :

< \/_V[qﬁtrue} - \/_V[¢false] ] (6)
671G

No such condition is required for GV, > 0, since all de

Sitter false vacua are unstable [2].

We can generalize Lemma 2 by replacing ¢, with any
value in the range ¢, < ¢niq < @, as shown in Fig. 2. Thus
the false vacuum is unstable if there exists any ¢,;q such
that

max

s = [ " 2V = Vi)
< \/_kamid] - \/_V[¢false]
VerG |

When there are multiple fields, there are many possible
routes over the barrier, and this condition applies to all of
them: if we can find any route for the o,,;4 integral such that
Eq. (7) holds, the vacuum must be unstable, the field must
eventually decay, and spacetime is doomed [2].

(7)
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APPENDIX A: PROVING
NONGRAVITATIONAL RESULTS

This appendix proves Lemma 1. The two inequalities
demand two very different proof strategies.

Consider the decay of the false vacuum of Fig. 1. We will
assume that there are no intervening minima between the
false and true vacua, but otherwise leave the potential
completely general. I will now review how to calculate the
vacuum decay rate; this is all explained with great clarity in
[1]. In [1] it is shown that the tunneling exponent is given
by the Euclidean action of an instanton. The instanton
¢(z,%) lives on R* and extremizes the Euclidean action

o= [ (50,07 + V@)

22" [ ap’ ngz + V(¢>),

where we have written ds® = dt* + dx* = dp? + p*dQ3
and used that the instanton can be shown [6] to have O(4)
spherical symmetry ¢ = ¢(p). One boundary condition is
that the field returns to the false vacuum ¢ — ¢; as p — o;
the other boundary condition is that the field immediately
after nucleation, given by

(A1)

field after nucleation:¢p(t = 0,X) = ¢p(r = 0,X),  (A2)
has the same energy as the false vacuum (AE = 0) and
classically evolves toward the true vacuum. (In fact, the
symmetry tells us that it will give rise to a bubble of
approximately true vacuum that expands out at approaching
the speed of light.) The instanton gives a path through the
space of ¢(X)s that connects the before-tunneling configu-
ration ¢(7 = —00, X) = ¢ to the after-tunneling configura-
tion ¢(z =0,X). Indeed, the instanton is defined as the
solution of minimum Euclidean action that satisfies these
boundary conditions—in the language of [7], it is the most
probable decay path.'

lTechnically we insist that the decay path ends at its first
intersection with the AE = 0 surface.
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If we can find any path across the barrier that satisfies Eq. (7), the vacuum must be unstable. Left: the ¢ integral need not be

taken all the way to ¢y, and can instead stop anywhere in the range ¢ < Pmia < ¢». Right: when there are multiple fields, there are

many escape routes, and the decay path may take any of them.

(With no constraint on the energy of the 7 = 0 configu-
ration, the instanton has exactly one negative mode [8]; this
negative mode is associated with changing the energy of the
nucleated bubble away from AE = 0. In this paper we will
freeze this negative mode by only considering paths that
end with the same energy as the false vacuum AE = 0;
amongst this set of paths the instanton is a minimum of the
Euclidean action [9].)

To minimize the action, the instanton must satisfy the
Euler-Lagrange equation,

d (1:> - 39
o Gi-v@) -2

(A3)
This equation implies that %(;52 — V(¢) monotonically
decreases as p increases (in [1] this is called “friction”),
which in turn implies that

_Vfalse < %&2 - V(¢) < _Vtrue (A4)
-V 2(V - Vfalse) < & <V 2(V - Vtrue)' (AS)

The tunneling exponent is then given by the difference in
Euclidean action between the instanton and the false vacuum

N
e

0N pl* :p

FIG. 3.

B=5u) 50080 =2 [ oy (597 + VD)~ Viae ).
(6)

Since tunneling conserves energy, immediately after nucle-
ation the bubble must have the same energy as the false
vacuum,

o 1= _
AE = 471'/) dpp2 (5 ¢2 + V(¢) - Vfalse) - 0 (A7)

But the energy density is not zero everywhere. Instead, the
energy density is positive in the “wall” of the bubble where
the field traverses the barrier, and then negative inside the
bubble. Fig. 3 shows a cross section of a typical bubble.
“Outside” the bubble (¢ > ¢,.) the energy density is bigger
than Vy,.; “inside” the bubble (¢ < ¢,) we know only that
the energy density is bigger than V.

Consider the field value at the very center of the bubble,
¢(p = 0). It follows from the conservation of energy that
¢(0) < ¢,; conversely it follows from Eq. (A5) that
$(0) > . Indeed, the fact that ¢, < ¢p(0) < ¢, is what
originally motivated the definitions of o, and o, in
Eq. (3): the two lower limits of integration capture the full
range of possible values of ¢(0).

For the remainder of Appendix A we will add a constant
to the potential to set Vi = 0.

1.,
5925 + V(o)

‘/}alse -1

Vruc >
t p|* p

A cross-section through a typical bubble at the moment of nucleation. The center of the bubble may have an energy density as

low as V..; but for p > p, the energy density necessarily exceeds that of the false vacuum %qﬁz + V(¢) = V(¢) = Viyee- The total

integrated energy is equal to that in the false vacuum, AE = 0.
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FIG. 4. V][¢]is constructed by deleting the part of V(¢) that lies between ¢, and ¢, . The corresponding bubble instanton has pure true
vacuum inside some radius that we will call p,. The bubble has energy AE = 0.

1. Proving B > By, [6min]

Proof strategy: The instanton is a bubble configuration
with zero energy, AE = 0. In order to have AE = 0, any
bubble must be big, and if it is big enough it must
have B > By [0min)-

First let’s construct a new potential V[¢] that decays
faster than V¢,

for ¢ > ¢,
for ¢ < ¢..

A

Vig]

{ Vig]
V[¢ - ¢* + ¢t]

The region of V[¢] between ¢, and ¢, has been excised,
with the ¢ > ¢, part glued straight onto the ¢ < ¢, part.
This does not affect o,;, or Vi OF Ve, but since we have
removed part of the barrier the decay rate is faster
B[V(¢)] = B=B[V(#)].
The shape of the bubble is plotted in Fig. 4. The bubble
stays uniformly in the true vacuum until p = p,, and then
proceeds towards the false vacuum with a profile given
by Eq. (A3).
Let us calculate B. First notice that by changing variables
from p to ¢,

/ﬁoo dp G $+ V[<?>1>

(A8)

e d B _
- /¢ i Gdf + V[¢]>
o
l L_ h
[ g PRV (a9
). ¢

The total energy of the bubble, relative to the false
vacuum, is

AE =4z /)ﬁ* dpp? (%(Zz + v[z}])

14z /: dpp? (%552 + v@s}) (A10)

P

P oo ] i -
>4n / " AppPV e + 47 / dp <§ P+ V[¢]>
0

4z .
> _,02 Vtruc + 4ﬂpzamin’

: (A1)

Tunneling conserves energy, AE = 0, so the bubble must
be large

3Gmin
(_ Vtrue) ‘

Since AE = 0 implies B = B — ”ﬁ*zAE, we can use Egs. (A6)
and (A10) to prove our result

pe 2 (A12)

p28-22 [anp-p) (30 + V) (a13)

> 20 [" o) (37 4 V) (A1

2
Ps

> 2n° A dpp*(p = P.)Virue (A15)

peit

p*(_vtrue)
> Qg2 Al
> 22?7 (A16)

277* ot =

> min — B Al7
= 2 (—Vtme)3 tw[amm] ( )

2. Proving B < By, [6max]

Proof strategy: The instanton is the path of minimum
action that interpolates from the false vacuum to a AE = 0
state on the true vacuum side of the barrier. I will explicitly
construct an interpolating path with action By, [0 ax]-

Consider the one-parameter family of field—proﬁles2
¢r(p) parameterized by R and defined by

*This field-profile has a discontinuous first derivative at both
p=R and p=0. This indicates the field-profile is not a
minimum of the Euclidean action, but does not prevent the
field-profile from contributing to the path integral—to contribute
to the path integral, a field-profile only needs to be continuous,
not differentiable. If desired, my proof can be reformulated
entirely in terms of differentiable field-profiles: smoothing the
field at p = 0 and p = R will only make a tiny (second-order)
change to the action, so the inequality would still follow.
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for p > R (A18)

Pr(p) = V2(VIgr(p)] = Vine) for p <R (A19)

From the definition it follows that ¢, < ¢z(p) < ¢s. The
Euclidean action of ¢ (p) is

sulR) = 20" ["do? (3 + Vi (A20)

2 [ * Ao VI = Vi) + 20 / * o0 (Vi)

(A21)
rp3 [P 272 54
<27°R d¢g 2(V[¢] - Vtrue) +—VieR
2 4
$[0]
(A22)
_ pa -
< 277"2R35max ) (_Vtrue)R4 (A23)
272* o} =
<— " ___B . A24
=" (_lee)3 tw [Gmax] ( )

Our family of field-profiles ¢; (p) must contain as “escape
path,” in the language of [7]: while small values of R gives
positive energy AE > 0, arbitrarily large values of R give
arbitrarily negative energies, so there must be an intervening
value Rj_ such that AE[¢(t = 0,X)] = 0. Therefore the
most probable escape path has B < Sg[Rp_] < By [Cmaxl-
This proof would still have gone through had we
replaced Ve by Vg = V(dmia] in Eq. (A19), for any
(¢miq 1n the range ¢; < Ppiq < P, Thus a strengthening of
the lemma is that
2772 afnid
B < )
2 (Vfalse - Vmid)3

owis = [ a2V = Vi)

mid

where

(A25)

for every possible ¢4, and (for multifield potentials) for
every possible route over the barrier.
|

APPENDIX B: PROVING
GRAVITATIONAL RESULT

When gravity is included, the decaying field curves
spacetime. Despite this complication, the same general
proof strategy will apply as for the nongravitational case of
Sec. A2.

The formalism that governs the gravitational decay of the
false vacuum was described with great clarity in [2]. With
gravity included, it has not been proved that the dominant
instanton is still O(4)-symmetric; following conventional
wisdom, we will assume that it is. The metric may then be
written

ds®> = d& + p(£)2dQ3. (B1)

Matter tells space how to curve

) 872G 1.

pPr=1+ TPZ (5(152 - V(fﬁ)), (B2)
and space tells matter how to move

d (1:2 . ) p(&) =2

Az =-v =-32247. B3

P -ve) =258 ey

When the gravitational constraint Eq. (B2) is satisfied, the
action is given by Eq. (3.9) of [2] as

3 3v_ 3
SE=4n2/d:(p3V——p> ﬂW/d’pM.
872G P

(B4)

The thin-wall approximation3 to the tunneling exponent
[2,14] is

_ 3 (1 -8G5y, ) —1
ng EZHZ/_)}G—F—( 3 4 true)

16 G?V e
3 1_8”—(;_2‘/‘4136%_1
__( 3 g) fal ) , (BS)
16 G Vfalse

where p is the radius of the bubble wall that maximizes
Eq. (B5), namely (for GV, < 0)

30

p

(B6)

3For numerical investigations of the reliability of the thin-wall
approximation in the nongravitational case, see [10]; see also
[11]. For numerical investigations in the gravitational case, see
[4,12]; see also [13].

V= V1) = 65602/ (Y, + /V,)} — 616G

As ¢ approaches (v/=V, - /=V;)/v/6xG both p and BS,
diverge; for larger values of the tension, the thin-wall
approximation predicts that the false vacuum is stable.
To prove the gravitational lemma [Eq. (5)] we will follow
Sec. A 2 in constructing a family of paths and showing that
one member of the family is an escape path, and every
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ASg[R]4 ASg[R]
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. >R >R
\

ﬁ[amaX]

FIG. 5. Left: for o < (v=V;—+/=V;)/V6xG, the function ASg[R] from Eq. (B10) never exceeds B [6max]. Right: for
Omax = (vV=V,—+/=V;)/V67rG, the function ASg[R] may (or may not) grow without bound.

member of the family has ASy < BY,[6,.y]. The family of  configurations contribute to the gravitational path integral.
field-profiles will be parametrized by R, Notice also that p > 1 > 0 so p monotonically increases

872G ) with & and the topology is R*. The field and metric differ
Pr(&) = s = p* =1 - ?P *Vigse forp>R  (B7) from the false vacuum only inside p < R, so the difference

= \/2 )] — Viwe) in action ASg = SE[¢R(10)] - SE[(/’f] 18

8 G - R PV — 3. —3
- pr=1 —”szlee for p < R. (B8)  ASp=4n’ / el PV talse ~ §aGP

\/ 1= 87':G ZV \/ 1= 87‘[G 2V

true false
Notice that while this family need not satisfy the equation
of motion for the field, Eq. (B3), it is required to satisfy the (B9)
gravitational constraint, Eq. (B2), because only such
|

_ 471' / V Vtrue) P Vtrue SJTG'D P Vfalse gﬂGp

\/1 8ﬂG 2Vtrue \/1 8ﬂG 2Vtrue \/1 87[G vadlbe

”2/¢f dgp*(V-vy) 3 (1- SRV ) —1 3 (1 -832G RV, )i — 1
¢

[0 V2V =V) 16 G*V, 16 G*V;
_ 3(1-3CRV, )i -1 3 (1-3CRVy )i —1
<27 R30 + — = -= = B10
= Omax - 16 Gthrue 16 G Vfalsc ( )
[
< BG,[6max)- (B11)  Omax>(v/=Vi=+/=V;)/V62G the family may not contain

an escape path, but since BS,[6,,] = o0, Lemma 2 trivially
holds. Thus we have proved Lemma 2 for all values of o,,,;.
As in the nongravitational case, this proof would still

There are two possible cases, both shown in Fig. 5. First

consider oy, < (v=Vi—v/=V;)/V62G. In this case,

both ASp(R] and AE[R] become unboundedly negative have gone through had we replaced ¢, with any value in the

at large R, so the family contains an escape path; range ¢, < Pma < ¢.. yielding the more powerful con-
since no member of the family has an action that  giion of Eq. (7).
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