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We derive a generalized deviation equation in Riemann-Cartan spacetime. The equation describes the
dynamics of the connecting vector, which links events on two general adjacent world lines. Our result is
valid for any theory in a Riemann-Cartan background; in particular, it is applicable to a large class of
gravitational theories that go beyond the general relativistic framework.
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I. INTRODUCTION

Within the theory of General Relativity, the relative
motion of test bodies is described by means of the geodesic
deviation (Jacobi) equation [1–4]. This equation only holds
under certain assumptions and can be used only for the
description of structureless neutral test bodies.
In a previous work [5], we have worked out generalized

versions of the deviation equation; see also Refs. [6–28] for
alternative derivations and generalizations. Our findings in
Ref. [5] extended the range of applicability of the deviation
equation to general world lines. However, the results were
limited to theories in a Riemannian background.While such
theories are justified in many physical situations, several
modern gravitational theories [29–31] reach significantly
beyond the Riemannian geometrical framework. In particu-
lar, it is alreadywell known [32–34] that in the description of
test bodies with intrinsic degrees of freedom—like spin—
there is a natural coupling to the post-Riemannian features of
spacetime. Therefore, in view of possible tests of gravita-
tional theories by means of structured test bodies, a further
extension of the deviation equation to post-Riemannian
geometries seems to be overdue.
In this work, we derive a generalized deviation equation

in a Riemann-Cartan background, allowing for spacetimes
endowed with torsion. This equation describes the dynam-
ics of the connecting vector, which links events on two
general (adjacent) world lines. Our results are valid for any
theory in a Riemann-Cartan background; in particular, they
apply to Einstein-Cartan theory [35] as well as to Poincaré
gauge theory [36].

The structure of the paper is as follows. In Sec. II, we
briefly introduce the concepts needed in the derivation of the
exact generalized deviation equation. This is followed by
Sec. III, in which we focus on the properties of a world
function based on autoparallels in a Riemann-Cartan back-
ground. These results are then applied in Sec. IV to arrive at
an expanded approximate version of the deviation equation.
In Sec. V, we discuss how different coordinate choices,
depending on the underlying gravity theory, affect the
interpretation and the operational value of the deviation
equation.We conclude our paper in Sec. VIwith a discussion
of the results obtained and with an outlook of their possible
applications. Our notations and conventions are summarized
in Appendix A and Table I. Some details and intermediate
results of our derivation are given in Appendix B.

II. WORLD FUNCTION AND
DEVIATION EQUATION

Let us briefly recapitulate the relevant steps that lead to
the generalized deviation equation as derived in Ref. [5].
We want to compare two general curves YðtÞ and Xðt̃Þ in an
arbitrary spacetime manifold. Here, t and t̃ are general
parameters, i.e., not necessarily the proper time on the
given curves. In contrast to the Riemannian case, we now
connect two points x ∈ X and y ∈ Y on the two curves by
the autoparallel joining the two points (we assume that this
autoparallel is unique). An autoparallel is a curve along
which the velocity vector is transported parallel to itself
with respect to the connection on the spacetime manifold.
In a Riemannian space, autoparallel curves coincide with
geodesic lines.
Along the autoparallel, we have the world function σ, and

conceptually, the closest object to the connecting vector
between the two points is the covariant derivative of the
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world function, denoted at the point y by σy, cf. Fig. 1.
Following our conventions, the reference curve will be YðtÞ,
and we define the generalized connecting vector to be

ηy ≔ −σy: ð1Þ
Taking its covariant total derivative, we have

D
dt

ηy1 ¼ −σy1y2u
y2 − σy1x2 ũ

x2
dt̃
dt

; ð2Þ

where the velocities along the two curves Y and X are
defined as uy ≔ dYy=dt, and ũx ≔ dXx=dt̃. Denoting the
accelerations by ay ≔ Duy=dt, and ãx ≔ Dũx=dt̃, the
second derivative becomes

D2

dt2
ηy1¼−σy1y2y3u

y2uy3−2σy1y2x3u
y2 ũx3

dt̃
dt
−σy1y2a

y2

−σy1x2x3 ũ
x2 ũx3

�
dt̃
dt

�
2

−σy1x2 ã
x2

�
dt̃
dt

�
2

−σy1x2 ũ
x2
d2 t̃
dt2

:

ð3Þ
The generalized deviation equation is obtained from (3)
by expressing all quantities therein along the reference word

line Y. With the help of the inverse σ
−1
—obtained from

σ
−1y1

xσ
x
y2¼δy1y2 and σ

−1 x1
yσ

y
x2 ¼ δx1x2—and by defining the

Jacobi propagatorsHx1
y2≔− σ

−1x1
y2 andK

x1
y2≔−σ

−1x1
y1σ

y1
y2 ,

the velocity along X may be expressed as

ũx3 ¼ Kx3
y2u

y2
dt
dt̃

−Hx3
y1

Dσy1

dt
dt
dt̃

ð4Þ

and inserted into (3)

D2

dt2
ηy1 ¼ −σy1y2y3u

y2uy3 − σy1y2a
y2 − σy1x2 ã

x2

�
dt̃
dt

�
2

− 2σy1y2x3u
y2

�
Kx3

y4u
y4 −Hx3

y4

Dσy4

dt

�

− σy1x2x3

�
Kx2

y4u
y4 −Hx2

y4

Dσy4

dt

�

×

�
Kx3

y5u
y5 −Hx3

y5

Dσy5

dt

�

− σy1x2
dt
dt̃

d2 t̃
dt2

�
Kx2

y3u
y3 −Hx2

y3

Dσy3

dt

�
: ð5Þ

Note thatwemaydetermine the factordt̃=dt by requiring that
the velocity along the curve X is normalized, i.e., ũxũx ¼ 1,
in which case we have

dt̃
dt

¼ ũx1K
x1
y2u

y2 − ũx1H
x1
y2

Dσy2

dt
: ð6Þ

Equation (5) is the exact generalized deviation equation;
it is completely general and can beviewed as the extension of
the standard geodesic deviation (Jacobi) equation to any
order. In particular, it allows for a comparison of two general,
i.e., not necessarily geodetic or autoparallel, world lines in
spacetime.

III. WORLD FUNCTION IN
RIEMANN-CARTAN SPACETIME

In this section, we work out the basic properties of a
world function σ based on autoparallels in a Riemann-
Cartan spacetime, which, in contrast to a Riemannian
spacetime, is endowed with an asymmetric connection
Γab

c. Relevant references that contain some results in a
Riemann-Cartan context are Refs. [37–44].
For a world function σ based on autoparallels, we have

the following basic relations in the case of spacetimes with
asymmetric connections:

σxσx ¼ σyσy ¼ 2σ; ð7Þ

σx2σx2
x1 ¼ σx1 ; ð8Þ

σx1x2 − σx2x1 ¼ Tx1x2
x3∂x3σ: ð9Þ

Note, in particular, the change in (9) due to the presence of
the spacetime torsion Tx1x2

x3 , which leads to σx1x2 ≠ σx2x1 ,
in contrast to the symmetric Riemannian case, in which
σ̄x1x2 ¼

s
σ̄x2x1 holds.1

In many calculations, the limiting behavior of a bitensor
B…ðx; yÞ as x approaches the references point y is required.

FIG. 1. Sketch of the two arbitrarily parametrized world lines
YðtÞ and Xðt̃Þ and the (dashed) autoparallel connecting two points
on these world lines. The generalized deviation vector along the
reference world line Y is denoted by ηy.

1We use “s” to indicate relations that only hold for symmetric
connections and denote Riemannian objects by the overbar.
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This so-called coincidence limit of a bitensor B…ðx; yÞ is a
tensor,

½B…� ¼ lim
x→y

B…ðx; yÞ; ð10Þ

at y and will be denoted by square brackets. In particular,
for a bitensor B with arbitrary indices at different points
(here just denoted by dots), we have the rule [45]

½B…�;y ¼ ½B…;y� þ ½B…;x�: ð11Þ

We collect the following useful identities for the world
function σ:

½σ� ¼ ½σx� ¼ ½σy� ¼ 0; ð12Þ

½σx1x2 � ¼ ½σy1y2 � ¼ gy1y2 ; ð13Þ

½σx1y2 � ¼ ½σy1x2 � ¼ −gy1y2 ; ð14Þ

½σx3x1x2 � þ ½σx2x1x3 � ¼ 0: ð15Þ

Note that up to the second covariant derivative the
coincidence limits of the world function match those in
spacetimes with symmetric connections. However, at the
next (third) order, the presence of the torsion leads to

½σx1x2x3 � ¼
1

2
ðTy1y3y2 þ Ty2y3y1 þ Ty1y2y3Þ ¼ Ky2y1y3 ; ð16Þ

where in the last line we made use of the contortion K,
cf. also Appendix A for an overview of the geometrical
quantities.2 With the help of (11), we obtain for the other
combinations with three indices

½σx1x2y3 � ¼ −½σx1x2x3 � ¼ ½σy1x2y3 � ¼ ½σx2x3x1 � ¼ Ky2y3y1 ;

½σx1y2y3 � ¼ −½σx2x3x1 � ¼ ½σx1x3x2 � ¼ ½σy1x2x3 � ¼ Ky3y1y2 ;

½σy1y2y3 � ¼ −½σx3x2x1 � ¼ Ky2y1y3 ;

½σx1y2x3 � ¼ −½σx1x3x2 � ¼ Ky3y2y1 ;

½σy1y2x3 � ¼ ½σx3x2x1 � ¼ Ky2y3y1 : ð17Þ

The nonvanishing of these limits leads to added
complexity in subsequent calculations compared to the
Riemannian case.
At the fourth order, we have

Ky1
y
y2Ky3yy4 þ Ky1

y
y3Ky2yy4 þ Ky1

y
y4Ky2yy4

þ ½σx4x1x2x3 � þ ½σx3x1x2x4 � þ ½σx2x1x3x4 � ¼ 0; ð18Þ

and in particular,

½σx1x2x3x4 � ¼
1

3
∇y1ðKy3y2y4 þ Ky4y2y3Þ

þ 1

3
∇y3ð3Ky2y1y4 − Ky1y2y4Þ

þ 1

3
∇y4ð3Ky2y1y3 − Ky1y2y3Þ þ πy1y2y3y4 ; ð19Þ

½σx1x2x3y4 � ¼ −
1

3
∇y1ðKy3y2y4 þ Ky4y2y3Þ

−
1

3
∇y3ð3Ky2y1y4 − Ky1y2y4Þ

þ 1

3
∇y4Ky1y2y3 − πy1y2y3y4 ; ð20Þ

½σx1x2y3y4 � ¼
1

3
∇y1ðKy4y2y3 þ Ky3y2y4Þ −

1

3
∇y4Ky1y2y3

−
1

3
∇y3Ky1y2y4 þ πy1y2y4y3 ; ð21Þ

½σx1y2y3y4 � ¼ −
1

3
∇y1ðKy3y4y2 þ Ky2y4y3Þ þ

1

3
∇y3Ky1y4y2

þ 1

3
∇y2Ky1y4y3 þ∇y4Ky3y1y2 − πy1y4y3y2 ; ð22Þ

½σy1y2y3y4 � ¼
1

3
∇y4ð−2Ky2y3y1 þ Ky1y3y2Þ −

1

3
∇y2Ky4y3y1

−
1

3
∇y1Ky4y3y2 −∇y3Ky2y4y1 þ πy4y3y2y1 ; ð23Þ

πy1y2y3y4 ≔
1

3
½Ky1y2

yðKy3y4y þ Ky4y3yÞ
− Ky1y3

yðKy4y2y þ Kyy2y4Þ
− Ky1y4

yðKy3y2y þ Kyy2y3Þ
− 3Ky2y1

yKy3y4y þ Ky3y1
yKyy2y4 þ Ky4y1

yKyy2y3

þ Ry1y3y2y4 þ Ry1y4y2y3 �: ð24Þ

Again, we note the added complexity compared to the
Riemannian case, in which we have ½σx1x2x3x4 � ¼

s

1
3
ðR̄y2y4y1y3 þ R̄y3y2y1y4Þ at the fourth order. In particular,

we observe the occurrence of derivatives of the contortion
in (19)–(23).
Finally, let us collect the basic properties of the

so-called parallel propagator gyx ≔ eyðaÞe
ðaÞ
x , defined in

terms of a parallely propagated tetrad eyðaÞ, which in turn

allows for the transport of objects, i.e., Vy¼gyxVx,
Vy1y2¼gy1x1g

y2
x2V

x1x2 , etc., along an autoparallel:

2The contortion Ky2y1y3 should not be confused with the Jacobi
propagator Kx

y.
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gy1xgxy2 ¼ δy1y2 ; gx1ygyx2 ¼ δx1x2 ; ð25Þ

σx∇xgx1y1 ¼ σy∇ygx1y1 ¼ 0;

σx∇xgy1x1 ¼ σy∇ygy1x1 ¼ 0; ð26Þ

σx ¼ −gyxσy; σy ¼ −gxyσx: ð27Þ

Note, in particular, the coincidence limits of its derivatives

½gx0y1 � ¼ δy0y1 ; ð28Þ

½gx0y1;x2 � ¼ ½gx0y1;y2 � ¼ 0; ð29Þ

½gx0y1;x2x3 � ¼ −½gx0y1;x2y3 � ¼ ½gx0y1;x2x3 �

¼ −½gx0y1;y2y3 � ¼
1

2
Ry0

y1y2y3 : ð30Þ

In the next section, we will derive an expanded approxi-
mate version of the deviation equation. For this, we first
work out the expanded version of quantities around the
reference world line Y. In particular, we make use of the
covariant expansion technique [45,46] on the basis of
the autoparallel world function.

IV. EXPANDED RIEMANN-CARTAN
DEVIATION EQUATION

For a general bitensor B… with a given index structure,
we have the following general expansion, up to the third
order (in powers of σy):

By1…yn ¼ Ay1…yn þ Ay1…ynþ1
σynþ1

þ 1

2
Ay1…ynþ1ynþ2

σynþ1σynþ2 þOðσ3Þ; ð31Þ

Ay1…yn ≔ ½By1…yn �; ð32Þ

Ay1…ynþ1
≔ ½By1…yn;ynþ1

� − Ay1…yn;ynþ1
; ð33Þ

Ay1…ynþ2
≔ ½By1…yn;ynþ1ynþ2

� − Ay1…yny0 ½σy0ynþ1ynþ2
�

− Ay1…yn;ynþ1ynþ2
− 2Ay1…ynðynþ1;ynþ2Þ: ð34Þ

With the help of (31), we are able to iteratively expand any
bitensor to any order, provided the coincidence limits
entering the expansion coefficients can be calculated.
The expansion for bitensors with mixed index structure
can be obtained from transporting the indices in (31) by
means of the parallel propagator.
To develop an approximate form of the generalized

deviation equation (5) up to the second order, we need
the following expansions—note that we give some explicit
intermediate results in Appendix B—of the derivatives of
the world function:

σy1y2 ¼ gy1y2 þ Ky2y1y3σ
y3 þOðσ2Þ; ð35Þ

σy1x2 ¼ −gy1x2 þ gx2
yKy3yy1σ

y3 þOðσ2Þ; ð36Þ

σy1y2y3 ¼ Ky2y1y3 þ
1

3
½∇y4ðKy2y3y1 þ Ky1y3y2Þ −∇y2Ky4y3y1

−∇y1Ky4y3y2 − 3∇y3Ky2y4y1 þ 3πy4y3y2y1 �σy4
þOðσ2Þ; ð37Þ

σy1y2x3 ¼ gx3
y3

�
Ky2y3y1 −

1

3
½∇y3ðKy2y4y1 þ Ky1y4y2Þ

−∇y2Ky3y4y1 −∇y1Ky3y4y2 þ 3πy3y4y2y1 �σy4
�

þOðσ2Þ; ð38Þ

σy1x2x3 ¼ gx2
y2gx3

y3

�
Ky3y1y2 þ

1

3
½∇y2ðKy4y3y1 þ Ky1y3y4Þ

−∇y4ðKy2y3y1 þ 3Ky3y1y2Þ

−∇y1Ky2y3y4 þ 3πy2y3y4y1 �σy4
�
þOðσ2Þ: ð39Þ

The Jacobi propagators are approximated as

Hx1
y2 ¼ gx1

y2 þ Ky3y2
x1σy3 þOðσ2Þ; ð40Þ

Kx1
y2 ¼ gx1y2 þ ðKy2

x1
y3 þ Ky3y2

x1Þσy3 þOðσ2Þ; ð41Þ

which in turn allows for an expansion of the recurring term
entering (5):�
Kx1

y2u
y2 −Hx1

y2

Dσy2

dt

�

¼ gx1y0
�
uy

0 −
Dσy

0

dt
þðKy2

y0
y3 þKy3y2

y0 Þuy2σy3
�
þOðσ2Þ:

ð42Þ

A. Synchronous parametrization

Before writing down the expanded version of the
generalized deviation equation, we will simplify the latter
by choosing a proper parametrization of the neighboring
curves. The factors with the derivatives of the parameters t
and t̃ appear in (5) due to the nonsynchronous para-
metrization of the two curves. It is possible to make things
simpler by introducing the synchronization of parametri-
zation. Namely, we start by rewriting the velocity as

uy ¼ dYy

dt
¼ dt̃

dt
dYy

dt̃
: ð43Þ

That is, we now parametrize the position on the first curve
by the same variable t̃ that is used on the second curve.
Accordingly, we denote
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uey ¼
dYy

dt̃
: ð44Þ

By differentiation, we then derive

ay ¼ d2 t̃
dt2

uey þ
�
dt̃
dt

�
2

aey; ð45Þ

where

aey ¼
D
d t̃

uey ¼
D2Yy

dt̃2
: ð46Þ

Analogously, we derive for the derivative of the deviation
vector

D2ηy

dt2
¼ d2t̃

dt2
Dηy

dt̃
þ
�
dt̃
dt

�
2D2ηy

d t̃2
: ð47Þ

Now, everything is synchronous in the sense that both
curves are parametrized by t̃.
As a result, the exact deviation equation (5) is recast into

a simpler form:

D2

dt̃2
ηy1 ¼ −σy1y2aey2 − σy1x2 ã

x2 − σy1y2y3uey2uey3
− 2σy1y2x3uey2

�
Kx3

y4uey4 −Hx3
y4

Dσy4

dt̃

�

− σy1x2x3

�
Kx2

y4uey4 −Hx2
y4

Dσy4

dt̃

�

×

�
Kx3

y5uey5 −Hx3
y5

Dσy5

dt̃

�
: ð48Þ

B. Explicit expansion of the deviation equation

Substituting the expansions (35)–(42) into (48), we
obtain the final result

D2

dt̃2
ηy1 ¼ ãy1 − aey1 þ Ty2y3

y1uey2
Dηy3

dt̃

−
�
Ky2y4

y1aey2 − Ky4y2
y1 ãy2 þ Δy1

y2y3y4uey2uey3
�
ηy4

þOðσ2Þ; ð49Þ
where we introduced the abbreviation

Δy1y2y3y4 ≔ 2πy3y4y2y1 − πy4y3y2y1 − πy2y3y4y1

þ Ty0y2y1Ty4y3
y0 − 2∇y2Kðy1y3Þy4

þ∇y1Ky2y3y4 −∇y4Ky2y3y1 : ð50Þ

It should be understood that the last expression is
contracted with u

˜

y2u
˜

y3 and hence the symmetrization is
naturally imposed on the indices ðy2y3Þ.

Equation (49) allows for the comparison of two general
world lines in Riemann-Cartan spacetime, which are not
necessarily geodetic or autoparallel. It therefore represents
the generalization of the deviation equation derived in
Ref. [5], Eq. (35).

C. Riemannian case

A great simplification is achieved in a Riemannian
background, when

Δ̄y1y2y3y4 ¼ 2π̄y3y4y2y1 − π̄y4y3y2y1 − π̄y2y3y4y1 ¼ R̄y1y3y2y4 ;

ð51Þ

and (49) is reduced to

D2

dt̃2
ηy1¼s ãy1 − aey1 − R̄y1

y2y3y4uey2uey3ηy4 þOðσ2Þ: ð52Þ

Along geodesic curves, this equation is further reduced to
the well-known geodesic deviation (Jacobi) equation.

V. CHOICE OF COORDINATES

To utilize the deviation equation for measurements or in
a gravitational compass setup [5,45,47,48], the occurring
covariant total derivatives need to be rewritten, and an
appropriate coordinate choice needs to be made. The lhs of
the deviation equation takes the form

D2ηa
dt2

¼ _ub∇bηa þ η
∘∘
a − 2ubΓba

dη
∘
d − ubucΓcb

d∂dηa

− ubucηeð∂cΓba
e − Γcb

dΓda
e − Γca

dΓbd
eÞ: ð53Þ

Here, we used η
∘ a ≔ dηa=dt for the standard total

derivative.
Observe that the first term on the rhs vanishes in the case

of autoparallel curves ( _ua ≔ Dua=dt ¼ 0). Also note the
symmetrization of the connection imposed by the velocities
in some terms.
Rewriting the connection in terms of the contortion and

switching to normal coordinates [49–55] along the world
line, which we assume to be an autoparallel, yields

D2ηa
dt2

¼jY η
∘∘
a þ 2ubKba

dη
∘
d þ ubucKcb

d∂dηa

þ ubucηe

�
∂cKba

e −
2

3
R̄cðbaÞe

þ Kcb
dKda

e − Kca
dKbd

e

�
: ð54Þ

Note the appearance of a term containing the partial (not
ordinary total) derivative of the deviation vector, in contrast
to the Riemannian case.

DEVIATION EQUATION IN RIEMANN-CARTAN SPACETIME PHYS. REV. D 97, 104069 (2018)

104069-5



The first term in the second line may be rewritten as an

ordinary total derivative, i.e., ubucηe∂cKba
e ¼ ubηeK

∘
ba

e
,

but this is still inconvenient when recalling the compass
equation, which will contain terms with covariant deriva-
tives of the contortion.

A. Operational interpretation

At this point, some thoughts about the operational
interpretation of the coordinate choice are in order. In
particular, it should be stressed that so far we did not
specify any physical theory in which the deviation equa-
tion (48) should be applied. Stated the other way round, the
derived deviation equation is of completely geometrical
nature; i.e., it describes the change of the deviation vector
between points on two general curves in Riemann-Cartan
spacetime.
From the mathematical perspective, the choice of coor-

dinates should be solely guided by the simplicity of the
resulting equation. In this sense, our previous choice of
normal coordinates appears to be appropriate. But what
about the physical interpretation or, better, the operational
realization of such coordinates?
Let us recall the coordinate choice in General Relativity

in a Riemannian background. In this case, normal coor-
dinates also have a clear operational meaning, which is
related to the motion of structureless test bodies in General
Relativity. As is well known, such test bodies move along
the geodesic equation. In other words, we could—at least in
principle—identify a normal coordinate system by the
local observation of test bodies. If other external forces
are absent, normal coordinates will locally3 lead to
straight line motion of test bodies. In this sense, there is
a clear operational procedure for the realization of normal
coordinates.
However, now, we are in a more general situation, since

we have not yet specified which gravitational theory we are
considering in the geometrical Riemann-Cartan back-
ground. The physical choice of a gravity theory will be
crucial for the operational realization of the coordinates.
Recall the form of the equations of motion for a very large
class [33,34] of gravitational theories, which also allow for
additional internal degrees of freedom, in particular for
spin. In this case, the equations of motion are no longer
given by the geodesic equation or, as it is sometimes
erroneously postulated in the literature, by the autoparallel
equation. In such theories, test bodies exhibit an additional
spin-curvature coupling, which leads to nongeodesic
motion, even locally.
How does this impact the operational realization of

normal coordinates in such theories? Mainly, one just has
to be aware of the fact that for the experimental realization of

the normal coordinates, one now has to make sure to use the
correct equation of motion and, consequently, the correct
type of test body. Taking the example of a theory with spin-
curvature coupling, like Einstein-Cartan theory, this would
eventually lead to the usage of test bodies with vanishing
spin, since those still move on standard geodesics, and
therefore lead to an identical procedure as in the general
relativistic case; i.e., one adopts coordinates in which the
motion of those test bodies becomes rectilinear.

VI. CONCLUSIONS AND OUTLOOK

In this work, we investigated the generalization of the
deviation equation in a Riemann-Cartan geometry. As a
novel technical result, we have developed Synge’s world
function approach in the non-Riemannian spacetime with
curvature and torsion. Our expanded version of the
deviation equation (48) can be directly compared to result
in the Riemannian context [5]. The generalization should
serve as a foundation for the test of gravitational theories
that make use of post-Riemannian geometrical structures.
As we have discussed in detail, the operational usability

of the Riemann-Cartan deviation equation differs from the
one in a general relativistic context, which was also noticed
quite early in Ref. [29]. In particular, it remains to be shown
which additional concepts and assumptions are needed in
order to fully realize a gravitational compass [5,45,47,48]
in a Riemann-Cartan background. In contrast to the
Riemannian case, an algebraic realization of a gravitational
compass on the basis of the deviation equation is out of the
question due to the appearance of derivatives of the torsion
even at the lowest orders.
An interesting question for future works is the possible

application of (48) to the analysis of motion of (micro)
structured test bodies. In particular, it seems worthwhile to
search for new ways to map the gravitational field with the
help of such a deviation equation and work out its
implications for various applications, aiming for novel
tests of relativistic gravity theories.
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APPENDIX A: NOTATION
AND CONVENTIONS

The curvature and the torsion are defined with respect to
the general connection Γab

c as follows:
3Here, “locally” refers to the observers laboratory on the

reference world line.
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Rabc
d ≔ ∂aΓbc

d − ∂bΓac
d þ Γan

dΓbc
n − Γbn

dΓac
n; ðA1Þ

Tab
c ≔ Γab

c − Γba
c: ðA2Þ

The symmetric Levi-Civita connection Γ̄kj
i as well as all

other Riemannian quantities are denoted by an additional
overline. For a general tensor A of rank ðn; lÞ, the
commutator of the covariant derivative thus takes the
form

ð∇a∇b −∇b∇aÞAc1…cn
d1…dl

¼ −Tab
e∇eAc1…ck

d1…dl þ
Xk
i¼1

Rabe
ciAc1…e…ck

d1…dl

−
Xl

j¼1

Rabdj
eAc1…ck

d1…e…dl : ðA3Þ

In addition to the torsion, we define the contortion Kkj
i

with the following properties:

Kkj
i ≔ Γ̄kj

i − Γkj
i; ðA4Þ

Kkji ¼ −
1

2
ðTkji þ Tikj þ TijkÞ; ðA5Þ

Tkj
i ¼ −2K½kj�i: ðA6Þ

The signature of the spacetime metric is assumed to be
ðþ1;−1;−1;−1Þ.
As usual, σyx1…y2… ≔ ∇x1…∇y2…ðσyÞ denote the

higher-order covariant derivatives of the world function.

APPENDIX B: INTERMEDIATE RESULTS

Here, we give some intermediate results of the derivation
of the expansions the world function derivatives around the
reference world line Y:

σy1y2 ¼ gy1y2 þ ½σy1y2y3 �σy3 þ
�
1

2
½σy1y2y3y4 � − ½σy1y2y3 �;y4

−
1

2
½σy1y2y5 �½σy5y3y4 �

�
σy3σy4 þOðσ3Þ; ðB1Þ

σy1y2y3 ¼ ½σy1y2y3 � þ ð½σy1y2y3y4 � − ½σy1y2y3 �;y4Þσy4

þ 1

2
ð½σy1y2y3y4y5 � − ½σy1y2y3 �;y4y5 − 2½σy1y2y3y4 �;y5

− ½σy1y2y3y0 �½σy0y4y5 � þ ½σy1y2y3 �;y0 ½σy0y4y5 �Þσy4σy5
þOðσ3Þ; ðB2Þ

σy1x2 ¼ −gy1x2 þ gx2
y½σy1xy3 �σy3 þ

1

2
ðgx2y½σy1xy3y4 �

− gx2
y2gy1y½gy2x;y3y4 � − 2gx2

y½σy1xðy3 �;y4Þ
− gx2

y½σy1xy5 �½σy5y3y4 �Þσy3σy4 þOðσ3Þ: ðB3Þ

TABLE I. Directory of symbols.

Symbol Explanation

Geometrical quantities
gab Metric
δab Kronecker symbol

xa, ya Coordinates
Γab

c Connection

Γ̄ab
c Levi-Civita connection

Rabc
d Curvature

Tab
c Torsion

Kab
c Contortion

σ World function
ηy Deviation vector
gy0 x0 Parallel propagator

Miscellaneous
YðtÞ; Xðt̃Þ (Reference) world line
ua Velocity

ab Acceleration

Kx
y, Hx

y Jacobi propagators

Ay1…yn Expansion coefficient

πy1y2y3y4 Auxiliary quantities

Operators
∂i, “ ;” Partial derivative

∇i, “ ;” Covariant derivative
D
dt ¼ “_” Total covariant derivative
d
dt ¼ “°” Total derivative

“½…�” Coincidence limit
“—” Riemannian object
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