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Alternative theories of gravity may serve to overcome several shortcomings of the standard cosmological
model but, in their weak field limit, general relativity must be recovered so as to match the tight constraints
at the Solar System scale. Therefore, testing such alternative models at scales of stellar systems could give a
unique opportunity to confirm or rule them out. One of the most straightforward modifications is
represented by analytical fðRÞ-gravity models that introduce a Yukawa-like modification to the Newtonian
potential thus modifying the dynamics of particles. Using the geodesics equations, we have illustrated the
amplitude of these modifications. First, we have integrated numerically the equations of motion showing
the orbital precession of a particle around a massive object. Second, we have computed an analytic
expression for the periastron advance of systems having their semimajor axis much shorter than the
Yukawa-scale length. Finally, we have extended our results to the case of a binary system composed of two
massive objects. Our analysis provides a powerful tool to obtain constraints on the underlying theory of
gravity using current and forthcoming data sets.
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I. INTRODUCTION

Does general relativity (GR) need to be modified to
overcome the shortcomings at ultraviolet and infrared
scales? This is one of the fundamental questions that still
needs to be answered. As it is well known, GR is very well
established on the Solar System scale [1–3], and forms the
basis of the concordance cosmological model. Although, in
the last decades many observational data sets have emerged
confirming the model further [4–15], some shortcomings
have brought questions about whether GR is the true
effective theory of gravity. First, GR is not a quantum
theory and it cannot provide a description of the Universe at
quantum scales [16,17]. Second, GR cannot explain the
emergence of the large scale structure and the accelerated
expansion of the Universe without adding two extra
components to the total energy density budget, namely
dark matter (DM) and dark energy (DE). The dynamical
effects of these two components are evident at both
galactic/extragalactic and cosmological scales, but their
fundamental nature, whether particles or scalar fields, is

completely unknown [18–26]. These problems have been
interpreted as a breakdown of GR, and many alternative
theories of gravity have been proposed [27–32]. In brief,
there are two possible approaches to describe all observa-
tional data sets from planetary to cosmological scales: the
first is to preserve GR by adding extra particles and/or
scalar fields; the second is to modify the geometrical
description of the space-time. Both must be tested in all
possible astronomical scenarios in order to understand at
which scales their contributions become significant. Let us
note that some of these modified theories have been ruled
out using the recent discovery of the electromagnetic
counterpart associated to the emission of the gravitational
waves [33–40]. Such a discovery opens new avenues to test
modified theories of gravity further, and those tracks must
be explored.
The simplest prescription to modify GR is to generalize

the Einstein-Hilbert Lagrangian to an arbitrary function
of the Ricci scalar, fðRÞ. Then, one should take care of the
fact that, in the weak field limit, any alternative relativistic
theory of gravity must reproduce GR in order to recover the
tight constraints at the Solar System scale [1–3]. Here, we
are interested in the post-Newtonian limit to describe the
motion of test-particles (and more in general, of a system).
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In models where unknown particles/scalar fields are added
to GR, in order to recover the Solar System bounds, one has
to require that such scalar fields are screened in a high
density environment. However, these mechanisms are
imposed ad-hoc to avoid that scalar fields dominate the
dynamics of small scale systems. In the case of fðRÞ-
gravity the gravitational potential is modified by a Yukawa-
like term related to a new characteristic scale length of the
system that appears because one has to solve forth (instead
of second), order field equations, and this new scale length
can act automatically as a screening mechanism [41].
Some of the most promising objects to test the under-

lying theory of gravity are pulsars. These objects are very
dense and rapidly rotating (up to hundred times per second)
neutron stars emitting gamma radiation beams or X-rays.
They act as a very precise clock and any deviation in their
pulse from the one predicted by GR can be detected. These
deviations can be related to the violation of the strong
equivalence principle and the variation of the gravitational
constant. Both circumstances have been investigated using
binary systems composed by a pulsar and another massive
object (such as a neutron star or a white dwarf) that
produces these anomalies in the pulse [42]. Anyway, these
deviations can also be interpreted as a signature of an
alternative theory of gravity [43–48]. Forthcoming obser-
vations will increase the current point source sensitivity and
resolution by combining different facilities such as large
telescopes apertures, adaptive optics, and near infrared
(NIR) interferometry, and they will allow to detect pulsars
with orbital period in scales as low as one year. Therefore,
the measure of the periastron shift will became one of the
most promising tools to test GR and alternative theories
[49–52]. The most rigorous test of alternative theories
would be provided by a pulsar orbiting near a supermassive
black hole (SMBH) [53]. In such a case, we would not only
expect the largest deviations from GR, but we could also
measure the properties of the black hole (BH). A pulsar-BH
system has not been found yet, but the prospects of finding
one such can increase enormously within the curved space-
time around Sagittarius A* (Sgr A*), the SMBH at the
center of the Milky Way [54,55].
In order to be measurable with current instruments,

pulsars with short orbital periods would need to be
discovered, such pulsars would orbit at distances inside
a 10 AU radius circle centered at Sgr A*. In particular, an
ideal pulsar would be one spinning a few hundred times per
second. Searches are currently undergoing with the
BlackHoleCam1 and Event Horizon Telescope (EHT)
Collaboration2 [54,56–66]. EHT is a project to create a
large telescope array consisting of a global network of radio
telescopes and combining data from several Very-Long-
Baseline Interferometry (VLBI) stations around the Earth.

The aim is to observe the immediate environment of the
Galactic Center, as well as the even larger BH inMessier 87
(M87), with angular resolution comparable to the BH’s
event horizon [60]. These facilities, together with current
and forthcoming Pulsar Timing Array (PTA) observatories
[67], will give us a unique opportunity to test alternative
theories of gravity using the orbital motion of a test particle
around a massive object as well as the motion of a binary
system. Hereby, we are indeed currently building the
theoretical facilities needed to test fðRÞ-gravity.
The aim is to demonstrate the capability of the Yukawa-

like gravitational potential of explaining the dynamics of the
particles at the Galactic center. The study of the periastron
shift is complementary to other studies on the time variation
of the orbital period in fðRÞ gravity that have been used to
constrain the gravitonmass [44,45]. Although the periastron
shift has been studied in a sort of semiclassical approach
where the Yukawa-potential has been considered to describe
the gravitational force in the Newtonian classical dynamics
[68–72], the full relativistic approach is needed to take into
account the geodesic structure of the space-time, and to
investigate how particles dynamics is affected. The systems
that we will examine are somewhat idealized, compared to
real astrophysical sources. For example, we neglect tidal
effects that become important only when the mean separa-
tion of the two objects is of the order of their radius. This
allow us to understand the essence of the physical mecha-
nismwithminimal complications, and to form the basis for a
more detailed study of realistic sources in alternative
theories of gravity. The paper is divided as follows: in
Sec. II we briefly review the post-Newtonian limit of an
analytic fðRÞ model showing how the Yukawa-like gravi-
tational potential arises; in Sec. III, we introduce the
geodesic motion in fðRÞ gravity computing the geodesic
equation and the canonical momenta; in Sec. IV, we solve
numerically the geodesic equation illustrating the effect of
theYukawa-potential on the orbital precession; in Sec. V, we
compute an analytic formula for the periastron advance and
apply it to toy models; finally in Sec. VI, we give our
conclusion and remarks.

II. POST-NEWTONIAN LIMIT AND
YUKAWA-LIKE GRAVITATIONAL POTENTIALS

Here we summarize the main steps that lead to the
modification of the gravitational potential in the post-
Newtonian limit of the fðRÞ-gravity. The natural starting
point is to consider a general fourth order gravity action:

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðRÞ þ XLm�; ð1Þ

where fðRÞ is an analytic function of Ricci scalar, g is the
determinant of the metric gμν, X ¼ 16πG=c4 is the cou-
pling constant and Lm describes the standard fluid-matter

1https://blackholecam.org.
2http://www.eventhorizontelescope.org.
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Lagrangian. For fðRÞ ¼ R, the Hilbert-Einstein action of
GR is restored.
Varying the action in Eq. (1) with respect to the metric

tensor we obtain the following field equations:

f0ðRÞRμν−
1

2
fðRÞgμν−f0ðRÞ;μνþgμν□f0ðRÞ¼X

2
Tμν; ð2Þ

and their trace

3□f0ðRÞ þ f0ðRÞR − 2fðRÞ ¼ X
2
T: ð3Þ

Here primes indicate derivatives with respect to the Ricci
curvature, and□ is the usual d’Alembert operator. The next
step is the fairly common practice to make a conformal
transformation to pass from the Jordan frame to the Einstein
frame, in which the field equations are reduced from fourth
order partial differential equations to second order ones,
and a scalar field arises from the extra degrees of freedom.
On the one hand, this operation simplifies the calculations
and requires to introduce a mechanism to screen the scalar
field in high density environments (short distances)
[73–75]. On the other hand, the two frame are mathemati-
cally equivalent but their physical equivalence is, nowa-
days, under debate [28,76,77]. To be sure of the physical
equivalence one should reproduce the results in both frames
and compare them. The alternative is to stay in Jordan
frame accepting the idea of having to handle with the fourth
order field equations in Eq. (2), and regarding to the extra
degrees of freedom of the theory as free parameters to be
constrained with the data. This approach avoids the need of
introducing a screening mechanism because of the scale
dependence of the theory. Thus, hereafter, all calculations
will be performed in the Jordan frame.
Following [78,79], the post-Newtonian (PN) limit of

fðRÞ gravity can be computed assuming a general spheri-
cally symmetric metric:

ds2 ¼ gttðx0; rÞdx02 − grrðx0; rÞdr2 − r2dΩ2; ð4Þ

where x0 ¼ ct and dΩ2 is the solid angle. For the sake of
simplicity, following [41] we set c ¼ 1 (it will be restored
in the next sections). Then, let us add perturbations of the
metric tensor with respect to a Minkowskian background
gμν ¼ ημν þ hμν, and assume an fðRÞ Lagrangian expand-
able in Taylor series:

fðRÞ ¼
X
n

fnðR0Þ
n!

ðR − R0Þn

≃ f0 þ f00Rþ f000R
2 þ f0000 R

3 þ � � � : ð5Þ

Inserting the Eq. (5) into field equations (2)–(3) and
expanding them up to orders Oð0Þ, Oð2Þ and Oð4Þ, one
obtains

f00rR
ð2Þ−2f00g

ð2Þ
tt;rþ8f000R

ð2Þ
;r −f00rg

ð2Þ
tt;rrþ4f000rR

ð2Þ ¼ 0;

f00rR
ð2Þ−2f00g

ð2Þ
rr;rþ8f000R

ð2Þ
;r −f00rg

ð2Þ
tt;rr ¼ 0;

2f00g
ð2Þ
rr − r½f00rRð2Þ−f00g

ð2Þ
tt;r−f00g

ð2Þ
rr;r

þ4f000R
ð2Þ
;r þ4f000rR

ð2Þ
;rr � ¼ 0;

f00rR
ð2Þ þ6f000½2Rð2Þ

;r þ rRð2Þ
;rr � ¼ 0;

2gð2Þrr þ r½2gð2Þtt;r− rRð2Þ þ2gð2Þrr;rþ rgð2Þtt;rr� ¼ 0: ð6Þ

Using the trace equation [the fourth in system (6)], one gets
the following general solution:

gð2Þtt ¼ δ0 −
δ1
f00r

þ δ2ðtÞλ2e−r=λ
3

þ δ3ðtÞλ3er=λ
6r

; ð7Þ

gð2Þrr ¼−
δ1
f00r

−
δ2ðtÞλ2ð1þ r=λÞe−r=λ

3r
þδ3ðtÞλ3ð1− r=λÞer=λ

6r
;

ð8Þ

Rð2Þ ¼ δ2ðtÞ
e−r=λ

r
þ δ3ðtÞλer=λ

2r
; ð9Þ

where λ ≐
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6f000=f00

p
, the constant δ0 can be neglected,

the δ1 is an arbitrary constant, and δ2ðtÞ and δ3ðtÞ are
completely arbitrary functions of time which, since the
differential equations in the system (6) contain only spatial
derivatives, can be fixed to constant values. Let us note that
on the limit fðRÞ → R, for a pointlike mass M, we recover
the standard weak field limit when δ1 ¼ GM. Finally,
requiring that the metric must be asymptotically flat
[Yukawa growing mode in the system of Eqs. (7)–(9)
are discarded] one obtains

gttðx0; rÞ ¼ 1 −
GM
f00r

þ δ2ðtÞλ2e−r=λ
3

; ð10Þ

grrðx0; rÞ ¼ 1þGM
f00r

þ δ2ðtÞλ2ð1þ r=λÞe−r=λ
3r

; ð11Þ

R ¼ δ2ðtÞe−r=λ
r

: ð12Þ

Themetric in Eqs. (10) and (11) also contains the solution
of the modified gravitational potential. Specifically, remem-

bering that g00 ¼ 1þ 2Φgrav ¼ 1þ gð2Þtt [80], one can
extract the expression for the gravitational potential in
fðRÞ-gravity:

Φ ¼ −
GM
f00r

þ δ2ðtÞλ2e−r=λ
6r

: ð13Þ

Let notice that the standard Newtonian potential is recovered
only in the particular case fðRÞ ¼ R while it is not so for
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generic analytic fðRÞmodels. Equation (13) can be straight-
forwardly recast as (for more details see [32,41])

ΦðrÞ ¼ −
GM

ð1þ δÞr ð1þ δe−
r
λÞ; ð14Þ

by defining 1þ δ ¼ f00, and assuming that δ1 is quasiconst-
ant, and it is related to δ as follows through

δ2 ¼ −
6GM
λ2

δ

1þ δ
: ð15Þ

Equation (14) deserves some comments. If δ ¼ 0 then the
Newtonian potential is recovered. Next, the first term is the
Newtonian potential generated by a pointlike mass M

1þδ. And,
the second term is the Yukawa-like modification of the
gravitational potential with a scale length, λ, related to the
above coefficient of the Taylor expansion of the gravitational
Lagrangian. The parameter λ naturally arises from the theory,
and acts as a screening mechanism. It makes the Yukawa
correction be negligible at small scales while relevant at
galactic, extragalactic and cosmological scales providing a
possible way to explain galaxy rotation curves, cluster of
galaxies and the accelerated expansionof theUniversewithout
requiring dark matter and/or dark energy [27,28,81–85].
Understanding the amplitude of these corrections to the

gravitational potential at the scale of the stellar systems is
one of the most important tools that could be used to
observationally confirm or rule out these alternative
approaches to GR.

III. GEODESIC MOTION IN F(R)-GRAVITY

Let us apply the Euler-Lagrange equations to find the
geodesics equations of motion associated to the line
element given in Eqs. (10) and (11). After some manip-
ulations, they can be recast into the following form

ds2 ¼ ½1þΦðrÞ�dt2 − ½1 −ΨðrÞ�dr2 − r2dΩ; ð16Þ

where the two potentials ΦðrÞ and ΨðrÞ are given by

ΦðrÞ ¼ −
2GMðδe−r

λ þ 1Þ
rc2ðδþ 1Þ ; ð17Þ

ΨðrÞ ¼ 2GM
rc2

�ðδe−r
λ þ 1Þ

ðδþ 1Þ þ ðδre−
r
λ

λ − 2Þ
ðδþ 1Þ

�
; ð18Þ

with the speed of light having been reinstated. Note that the
potential ΨðrÞ can be rewritten as

ΨðrÞ ¼ ΦðrÞ þ δΦðrÞ; ð19Þ

where the term δΦðrÞ representing an extra contribution to
the total gravitational potential. Since we are interested in

small scale systems,3 we have verified whether such
contribution is negligible or not. In Fig. 1, we show the
region plot of the ratio ðΨðrÞ −ΦðrÞÞ=ΦðrÞ. Since such
ratio is almost insensitive to the scale length λ, the latter has
been kept fixed to the confidence value of 5000 AU
[68–70,86]. The color bar on the figure indicates the
relative change of the two potentials. We have varied δ
from −0.1 to 0.1 showing that the departure of ΨðrÞ from
ΦðrÞ is ∼20% for δ ¼ �0.1, while it decreases to ∼2% for
δ ∼�0.01. To explain binary systems in the framework of
fðRÞ gravity, we need very small departure from GR,
which means jδj ≪ 0.1 [44,45]. Thus, hereafter, we will
assume ΨðrÞ ∼ΦðrÞ.
Thus, the line element in Eq. (16) becomes

ds2 ¼ ½1þΦðrÞ�dt2 − ½1 −ΦðrÞ�dr2 − r2dΩ: ð20Þ

To compute the geodesic equations, we use the Euler-
Lagrange equations:

d
ds

∂L
∂ _xμ −

∂L
∂xμ ¼ 0; ð21Þ

that are equivalent to the geodesic equations [80]

ẍμ þ Γμ
αβ _x

α _xβ ¼ 0: ð22Þ

For the line element in Eq. (20), the nonzero Levi-Civita
connections are

Γ1
11 ¼ −

RS½ðer
λ þ δÞλþ δr�

λr½2RSðer
λ þ δÞ þ e

r
λð1þ δÞr� ; ð23Þ
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FIG. 1. Relative difference of the two gravitational fields
ΦðrÞ and ΨðrÞ as a function of the parameters of the strength
and the scale length of the Yukawa term in Eq. (14). Here, we
have used G ¼ M ¼ c ¼ 1.

3Here “small scales” means stellar system scales.
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Γ1
22 ¼ −

e
r
λð1þ δÞr2

2RSðer
λ þ δÞ þ e

r
λð1þ δÞr ; ð24Þ

Γ1
33 ¼ −

e
r
λð1þ δÞr2sin2θ

2RSðer
λ þ δÞ þ e

r
λð1þ δÞr ; ð25Þ

Γ1
00 ¼

RS½ðer
λ þ δÞλþ δr�

λr½2RSðer
λ þ δÞ þ e

r
λð1þ δÞr� ; ð26Þ

Γ2
21 ¼

1

r
; ð27Þ

Γ2
33 ¼ − cos θ sin θ; ð28Þ

Γ3
31 ¼

1

r
; ð29Þ

Γ3
32 ¼ cot θ; ð30Þ

Γ0
01 ¼

RS½ðer
λ þ δÞλþ δr�

λr½er
λð1þ δÞr − 2RSðer

λ þ δÞ� : ð31Þ

Here, we have introduced the definition of the general
relativistic Schwarzschild radius: RS ¼ GM=c2 and we
have eliminated the proper time. Finally, the geodesics
equations are

̈r ¼ Δ−1½RSð_r2 − _t2Þðδðλþ rÞ þ e
r
λλÞ

þ e
r
λλð1þ δÞr3ð_θ2 þ sin2θ _ϕ2Þ�; ð32Þ

θ̈ ¼ cos θ sin θ _ϕ2 −
2_r _θ
r

; ð33Þ

ϕ̈ ¼ −
2 _ϕ

r
½_rþ cot θr_θ�; ð34Þ

̈t ¼ Δ−1½2RS½ðer
λ þ δÞλþ δr�_r _t�; ð35Þ

where, for the sake of convenience, we have defined

Δ≡ λr½2RSδþ e
r
λð2RS − ð1þ δÞrÞ�: ð36Þ

The above equations can be integrated numerically to
obtain the orbital motion and precession of a two-body
system. Although this represents a powerful tool to study
the orbital motion of the stars around a massive object, such
as the S-stars around the SMBH at the center of the
Milky way galaxy, an analytical solution to predict the
periastron advance would be more convenient for studies of
binary systems of neutron stars and/or white dwarfs. To this
aim, we must define the Lagrangian associated to the metric
elements of Eq. (20)

2L¼½1þΦðrÞ�_t2− ½1−ΦðrÞ�_r2−r2 _θ2−r2sin2θ _ϕ2: ð37Þ

Then, the canonical momenta are

pt ≡ ∂L
∂_t ¼ ½1þΦðrÞ�_t; ð38Þ

pr ≡ ∂L
∂ _r ¼ −½1 −ΦðrÞ�_r; ð39Þ

pθ ≡ ∂L
∂ _θ ¼ −r2 _θ; ð40Þ

pϕ ≡ ∂L
∂ _ϕ ¼ −r2sin2θ _ϕ: ð41Þ

Next, if we write the Euler-Lagrange equations for the time
component we obtain

d
ds

½ð1þΦðrÞÞ_t� ¼ 0: ð42Þ

The latter implies there is a conserved quantity we will call
energy:

pt ≡ ½1þΦðrÞ�_t≡ E: ð43Þ

Then, we find the ϕ component of the Euler-Lagrange
equation

d
ds

∂L
∂ _ϕ ¼ ∂L

∂ϕ ¼ 0; ð44Þ

which also leads us to define a conserved quantity:

pϕ ≡ r2sin2θ _ϕ≡ L; ð45Þ

where L is the angular momentum per unit mass of the two
bodies. From the equation for the θ component we find

d
ds

∂L
∂ _θ ¼ ∂L

∂θ ≠ 0; ð46Þ

which is not a conserved quantity. Thus, the θ equation
reads:

d
ds

ðr2 _θÞ ¼ r2 _ϕ2 sin θ cos θ: ð47Þ

Finally we need to compute the r equation, which is quite
involved because of the heavy explicit dependence on r in
the metric.
Since we want to study the orbits, as a first step we may

simplify the problem by using its symmetries. Therefore,
we fix the coordinate system so that the orbit of the particle
lies on the plane (r − ϕ), and fix the θ coordinate to be π=2
so that _θ ¼ 0. Since we are interested on studying only
timelike geodesics [87], we use the constants of motion
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defined in the above equations to obtain the following
identity:

E2½1þΦðrÞ�−1 − L2

r2
−
½ΦðrÞ − 1�2
1 −ΦðrÞ _r2 ¼ 1: ð48Þ

Finally, by solving Eq. (48), we get an explicit equation
for _r2:

_r2 ¼ L2½ΦðrÞ þ 1� − E2r2

r2½ΦðrÞ − 1�½ΦðrÞ þ 1� : ð49Þ

The equations we have built are needed to compute the
periastron shift discussed/calculated in Sec. V.

IV. NUMERICAL SOLUTIONS OF THE GEODESIC
EQUATIONS OF MOTION

In order to show how the Yukawa correction to the
Newtonian potential affects the orbital motion, we solve
numerically the geodesic equations (32)–(35). Those para-
metric differential equations are nonlinear, thus, in order to
have a well-posed Cauchy problem, we have to define the
initial and boundary conditions. We solve the Cauchy
problem, as in the classical case, with the initial conditions
_rðτ¼ 0Þ¼ 0, _ϕðτ ¼ 0Þ ¼ 0, _θðτ ¼ 0Þ ¼ 0, and θðτ ¼ 0Þ ¼
π=2, obtaining a not planar solution (θ̈ ≠ 0). We perform a
set of simulations varying the parameters fM;E;ϵ; _rðτ¼ 0Þ;
_ϕðτ¼ 0Þ; _θðτ¼ 0Þg to account for the high nonlinearity of
the geodesic equations, and to obtain a set of parameters that
guarantee the stability of the solution. Once the numerical
integration of the geodesic equation has been optimized, we
are able to highlight the specific contributions of Yukawa-
correction to orbital motion. Usually, one uses the orbital
motion and the pulsar timing to study the properties of the
SMBH at the center of the Milky Way (for detailed
explanations on pulsar timing and other pulsar observing
techniques see [42]). Here, we are going to use an inverse
approach. We fix a priori the parameters of the SMBH to
study the orbital motion of a pulsar-like object. Specifically,
we consider the SMBH at the center of the Milky Way
galaxy, SgrA*, having a mass M ¼ ð4.5� 0.6Þ × 106 M⊙
[88] and located at a distance of R0 ∼ 8 kpc from the Sun
[89]. For convenience, we have fixed the scale length λ ¼
5000AU [68], and set G ¼ c ¼ 1. Thus, all results in the
figures are given in physical units.
In Fig. 2,we illustrate the phase portrait of _rðτÞversus rðτÞ

for theGR solution (δ ¼ 0, black line), and for δ ¼ −0.1 and
δ ¼ 0.1 shown in red and blue lines, respectively. For both
values of the δ the orbit assumes a stable configuration and,
the Yukawa correction term induces departures form the
configuration of the orbits obtained in GR. Specifically, for
δ ¼ −0.1, the semimajor axis is shorter, while for δ ¼ 0.1 is
longer, than the GR one (δ ¼ 0.1).

The orbital precession is easily discernible drawing
orbits. Thus, in Figs. 3 and 4, we illustrate the periastron
advance for both δ ¼ −0.1 and δ ¼ 0.1 with a comparison
with the general relativistic one. Let us note that the effect
of the Yukawa-term is always to enhance the orbital
precession while its sign can change from being positive
(δ > 0) to being negative (δ < 0). The numerical integra-
tion of geodesic equations qualitatively confirms previous
results found in semi-classical approaches [68–71]. This
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FIG. 2. Phase space diagram of a closed orbit in the Yukawa
potential.
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FIG. 3. Numerical solution of the geodesic equation illustrating
the periastron advance in the Yukawa-potential. Here, we
compare the GR solution (δ ¼ 0) and the one for δ ¼ −0.1.
The black dot point indicates the central object.
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effect is due to the exponential term in the gravitational
potential and it is negligible in binary systems. Nevertheless,
it becomes viewable when simulating an object orbiting
around a SMBH on scales comparable with λ, and it can be
used to reduce further the parameter space of fðRÞ gravity as
previously suggested by [68–71].

V. PERIASTRON SHIFT IN YUKAWA-LIKE
POTENTIAL

The most suitable candidates to test theories of gravity
are binary systems constituted by a SMBH and an orbiting
star [90]. Even just finding one normal pulsar around the
BH will be phenomenally interesting to test alternative
theories of gravity. Generally speaking, an orbit closes if
the angle ϕ sweeps out exactly 2π in the passage between
two successive inner or two successive outer radial turning
points. If the orbits precess, ϕ changes by more than 2π
between successive radial turning points.
To obtain an analytic formula for the periastron advance

we need to obtain the orbits r ¼ rðϕÞ. Thus, we replace the
variable τ by ϕ with the aid of the angular momentum law
Eq. (45) and of Eq. (43), and we obtain

�
dr
dϕ

�
2

¼ −
r2½r2ðΦðrÞ − E2 þ 1Þ þ L2ðΦðrÞ þ 1Þ�

L2½ΦðrÞ2 − 1� ;

that explicitly assumes the following form

�
dr
dϕ

�
2

¼ 2δGMe−
r
λ

c2ðδþ 1ÞL2r
þ 2GM
c2ðδþ 1ÞL2r

þ 2δGMe−
r
λ

c2ðδþ 1Þr3

þ 2GM
c2ðδþ 1Þr3 þ

E2

L2
−

1

L2
−

1

r2
: ð50Þ

Let us perform the change of variable u ¼ 1=r, so that the
previous equation reads

�
du
dϕ

�
2

¼ E2 − ½ΦðuÞ þ 1�½L2u2 þ 1�
L2u4½ΦðuÞ2 − 1� : ð51Þ

After some simplifications and imposing ðdu=dϕÞ2 ¼ 0 we
obtain

2δGMue−
1
λu

c2ðδþ 1ÞL2
þ 2GMu
c2ðδþ 1ÞL2

þ 2δGMu3e−
1
λu

c2ðδþ 1Þ

þ 2GMu3

c2ðδþ 1Þ þ
E2

L2
−

1

L2
− u2 ¼ 0: ð52Þ

The most fruitful way to proceed is to rewrite the previous
equation in terms of orbital parameters. We introduce the
eccentricity e and the latus rectum l of the orbit, and we
define the parameter μ≡M=l. By definition, we use the
ansatz that

u ¼ 1þ e cos χ
l

; ð53Þ

where χ is the so called relativistic anomaly. Thus, χ ¼ 0
and 2π correspond to successive periastron passages, and
χ ¼ π at intermediate apoastron. Then, inserting Eq. (53) in
Eq. (52), we obtain

�
dχ
dϕ

�
2

¼ ½1 − ðe2 þ 3Þμþ 2μðe cos χ þ 1Þ2�ϒ

þ ðe2 − 1Þð1 − 4μÞμ2 − μ2ðe cos χ þ 1Þ2; ð54Þ

where we have defined the auxiliary variable

ϒ ¼ 2μ2ðe cos χ þ 1Þ
δþ 1

ðϒ1 þ 1Þ; ð55Þ

ϒ1 ¼ δ

�
1

2λ2μ2ðecosχþ1Þ2−
1

λμðecosχþ1Þþ1

�
: ð56Þ

Note that as we want to get an analytical solution and to
study very close orbiting binary objects, we have expanded
in Taylor series the exponential e−

1
λu up to the second order.

Therefore, the use of the previous formula is restricted to
the cases in which the semimajor axis of the orbit is much
lower than the Yukawa scale length. It is also important to
note that when δ ¼ 0 one recovers the well-known results
of GR [87]

�
dχ
dϕ

�
2

¼ 1 − 2μð3þ e cos χÞ; ð57Þ

that leads to the likewise well-known result

ΔϕGR ¼ 6πGM
ac2ð1 − e2Þ : ð58Þ

200 150 100 50 0
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y
0.1
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FIG. 4. The plot follows the conventions adopted for Fig. 3,
while comparing the GR with the Yukawa solution for δ ¼ 0.1.
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The integration of Eq. (54) can be performed trivially,
and finally it is possible to obtain the expression for the
periastron advance

Δϕ ¼ ΔϕGR

ðδþ 1Þ
�
1þ 2δG2M2

3a2c4ð1 − e2Þ2 −
2πδG2M2

ac4ð1 − e2Þλ

−
3δGM

ac2ð1 − e2Þ −
δG2M2

6c4ðδþ 1Þλ2 þ
δGM
3λc2

�
: ð59Þ

The Eq. (59) shows explicitly that it reduces to Eq. (58)
for δ ¼ 0. Next, the amount of relativistic precession
depends on

(i) the values M for the central mass,
(ii) tight orbits (small values of a),
(iii) large eccentricities e,
(iv) the Yukawa scale length λ,
(v) the Yukawa strength δ.

Therefore, the parameter space is larger than the one in the
general relativistic case due to the presence of two extra
parameters δ and λ that affect the precession. As already
mentioned in Sec. IV, the Yukawa-correction can change
the sign of the precession as found in semiclassical
approaches [68–71,86].

A. Toy model stars around the Galactic center

Herewe have particularized the periastron shift for a set of
three toy model stars orbiting around the BH in the Galactic
center. Let us remarks that being λ ∼ 103 AU we cannot
apply the Eq. (59) to the S-stars orbiting around the Galactic
center for which one should solve the geodesic equations
numerically. TheBHmass is fixed toMBH ¼ 4.5 × 106 M⊙.
The orbital parameters of the threemodels are summarized in
Table I. In Fig. 5, we show the contribution of fðRÞ gravity to
the general relativistic periastron advance as a function of the
strength of the Yukawa potential. Here, the scale length has
been fixed to the confidence value λ ¼ 5000 AU [68]. The
figure shows that for δ > 0 the contribution of the Yukawa-
correction increases the periastron shift, while for δ < 0 it
decreases it. The shift in the periastron advance in fðRÞ
gravitywith respect toGRcan reach an order ofmagnitude of
∼10% for δ ¼ �0.1, and it could be measurable with
forthcoming observations of EHTC.

Finally, in Fig. 6, we demonstrate that the impact of the
scale length is negligible, confirming the known degen-
eracy between δ − λ that cannot be constrained at the same
time using the orbital motion [71].

B. Constraining Yukawa potential with
pulsars in binary systems

Binary systems composed by double pulsars or by a
pulsar and a companion star provide a excellent laboratory

TABLE I. Values of periastron advance for different objects. In
the table are reported the measured values of the eccentricity e,
semi-major axis a in meters, the general relativistic periastron
advance, and the predicted values of Δϕ for δ ¼ �0.01 from
Eq. (59).

Toy
model e

a
(1011 m)

ΔϕGR
ð°=orbitÞ

Δϕδ¼−0.01
ð°=orbitÞ

Δϕδ¼0.01
ð°=orbitÞ

A 0.678 14.96 8.880 59 8.970 53 8.792 42
B 0.786 7.48 25.1087 25.3642 24.8583
C 0.888 1.496 226.918 229.303 224.580
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FIG. 5. The plot illustrate the change of the periastron advance
with respect to the GR one as function of δ. We used Eq. (59) to
compute analytically the periastron advance for a set of three toy
model stars orbiting around the black hole at the Galactic center.
The orbital parameters are given in Table I.
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FIG. 6. We illustrated the dependence of the periastron advance
in Eq. (59) from both the strength and the scale length of the
Yukawa potential. The plot is particularized for the toy model A
in Table I.

DE LAURENTIS, DE MARTINO, and LAZKOZ PHYS. REV. D 97, 104068 (2018)

104068-8



to study alternative theories of gravity. It is well known that
pulsars act as very precise clocks. Monitoring one such a
clock allows us to measure the time of arrival (TAO) of
pulses at the telescopes and to obtain the pulse profile. In
case the pulsar is part of a binary system, the pulse profile
shows a periodic variation in the arrival time. This variation
is related to the orbital motion around the center of mass of
the binary system, and it needs to be modeled. Binary
systems can be described in terms of the Keplerian
parameters: the orbital period Pb, the projected semi-major
axis ap sin i, the eccentricity of the orbit e, the periastron,
ω, and the time of the transition at periastron T0.
Nevertheless, when considering close binary systems
relativistic effects due to the strong field regime must be
introduced. It is customary to parametrize the timing model
using the post-Keplerian (PK) parameters: the time varia-
tion of the orbital period _Pb, the advance of the periastron
_ω, the time delay γ, and other two parameters, r and s,
related to the Shapiro delay due to the gravitational field of
the companion star. Although GR is capable of describing
those systems, alternative theories of gravity can be probed
using specific generalizations of the PK parameters. The
main difference is that, in GR, the two masses are the only
free parameters. Therefore, observing two PK parameters
leads to estimating the masses uniquely. Clearly, precise
measurements of the all PK parameters will provide an
accurate estimation of the masses. Nevertheless, in fðRÞ-
gravity this is not true. The two masses are not the only free
parameters, one also has the parameters of the gravitational
potential (δ, λ) or alternatively, their expression in terms of
the Taylor coefficients (f00; f

00
0), and they are degenerate

with the masses. The only way to break this degeneracy is
to fix the masses [44,45]. Therefore, calculating more PK
parameters in alternative theories of gravity will give a
powerful tool to estimate the masses of the two stars and, at
same time, to constrain/rule our theory.
The theoretical expression for the periastron advance in

the case of binary systems is obviously dependent on the
pulsar mass mp and on the mass of the companion star mc.
To generalize the periastron advance in Eq. (59) to the case
of a binary system we have to use Kepler’s law and the fact
that the total mass in Eq. (59) can be recast as
M ¼ mc þmp. Thus, Eq. (59) becomes

_ω ¼ _ωGR

ðδþ 1Þ
�
1þ 2δ

ð1 − e2Þ2
�
2π

Pb

�
4=3 G4=3

c4
ðmp þmcÞ4=3

−
2δ

ð1 − e2Þλ
�
2π

Pb

�
2=3 G5=3

c4
ðmp þmcÞ2=3

−
2δ

ð1 − e2Þ
�
2π

Pb

�
2=3G2=3

c2
ðmp þmcÞ2=3

−
δ

2λ2
G2

c4
ðmp þmcÞ2 þ

δ

λ

G
c2

ðmp þmcÞ
�
; ð60Þ

where the massesmp andmc are expressed in solar masses,
and we have defined

_ωGR ¼
�
2π

Pb

�
5=3G2=3

c2
ðmp þmcÞ2=3

ð1 − e2Þ : ð61Þ

The previous equation can be further simplified using the
constant T⊙ ¼ GM⊙=c3 ¼ 4.925490947 μs, and can be
expressed in term of f00 and f000. The previous equation,
together with the equation of the time variation of the
orbital period in [44] provides a very powerful tool to test
fðRÞ-gravity with current observations from the Parkes
Pulsar Timing Array (PPTA) and, in particular, with next-
generation facilities such as the Square-Kilometre-Array
(SKA) [91–93].

VI. CONCLUSION AND REMARKS

In this paper we have investigated the impact of the
Yukawa-like gravitational potential on the periastron shift
of an orbiting body. The Yukawa-like correction to the
Newtonian potential is a very well established result of
many different alternative theories of gravity. Here, we
have particularized our calculation to the framework of
fðRÞ-gravity where the gravitational potential assumes the
functional form given in Eq. (14). Thus, the modifications
due to the fðRÞ gravity is encoded in two parameters: the
strength δ and the scale length λ of the Yukawa-term.
First, we have computed the geodesic equations and we

have solved them numerically to visually show the pres-
ence of stable orbits and the orbital precession of a test
particle moving around a massive body. Second, we have
computed an analytic formula for the periastron shift in the
limit that the orbital radius is much lower that the scale
length λ. Since the most suitable candidates to test the
theory are binary systems composed by a SMBH and an
orbiting star, we have computed the periastron advance
particularizing the Eq. (59) for three toy models of stars
orbiting around the Galactic center. We have illustrated our
results in the Fig. 5 fixing λ ¼ 5000AU. Let us remark that
our results are showing the capability of the periastron shift
to constrain the Yukawa strength once the scale length is
fixed. Then, we have generalized the expression of the
periastron advance for a binary systems composed by two
neutron stars or pulsars with comparable masses. Finally,
the results showed above will represent a fundamental tool
to be used with forthcoming observations of pulsars near
the Galactic center.
We have considered idealized systems, where the inter-

nal structure of the two masses and others effects that can
affect their motion (like as tidal effect, dusts, etc.) have not
been taken into account. Nevertheless, even in a realistic
system, the internal structure of the stars is decoupled from
the orbital motion not producing relevant difference in the
precession. Moreover, we have particularized our plots for
pulsars near to the SMBH at Galactic center. However, one
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should have in mind that finding pulsars near the SMBH is
difficult due to the relatively high density of free electrons
in the gas around the Galactic center. Radio waves scatter
off of these electrons, smearing out the sharp pulses from a
pulsar in a phenomenon known as interstellar dispersion.
Because of searches for pulsars rely on detecting periodic
bursts, if the pulses are smeared out over the entire pulse
period, a pulsar becomes essentially undetectable. More
stable radio pulsars in the region would allow astronomers
to sample more areas of the accretion disk and to make
accurate measurements of the curvature of space-time [94].
Also, estimates of the pulsar population around Sgr A*

range from the hundreds to the thousands [95]. To find these
pulsars and overcome the high dispersion of pulses near the
galactic center, astronomers will use further searches in high
frequency X-rays as well as computer-intensive attempts to
“dedisperse” observations by testing different estimates of
the density of free electrons between earth and the pulsar at
each observed point. Thus, we will soon have many more
pulsars to map out the area around the SMBH. Forthcoming
observations of the EHTC may provide a measure of the
periastron shift, and other pulsar’s observables such as the
time dependence of the orbital period and the time delay, for

these pulsars. Therefore they will provide the ultimate test
for GR and alternative theories of gravity.
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