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The concordance cosmological model has been successfully tested over the last decades. Despite its
successes, the fundamental nature of dark matter and dark energy is still unknown. Modifications of the
gravitational action have been proposed as an alternative to these dark components. The straightforward
modification of gravity is to generalize the action to a function, fðRÞ, of the scalar curvature. Thus one is
able to describe the emergence and the evolution of the large scale structure without any additional
(unknown) dark component. In the weak field limit of the fðRÞ-gravity, a modified Newtonian gravitational
potential arises. This gravitational potential accounts for an extra force, generally called fifth force, that
produces a precession of the orbital motion even in the classic mechanical approach. We have shown that
the orbits in the modified potential can be written as Keplerian orbits under some conditions on the strength
and scale length of this extra force. Nevertheless, we have also shown that this extra term gives rise to the
precession of the orbit. Thus, comparing our prediction with the measurements of the precession of some
planetary motions, we have found that the strength of the fifth force must be in the range ½2.70–6.70�×10−9

with the characteristic scale length to fix to the fiducial values of ∼5000 AU.

DOI: 10.1103/PhysRevD.97.104067

I. INTRODUCTION

Standard cosmology is entirely based on general rela-
tivity. It is capable of explaining both the present period of
accelerated expansion and the dynamics of self-gravitating
systems resorting to dark energy and dark matter, respec-
tively. The model has been confirmed by observations
carried out over the last decades [1]. The need of having
recourse to dark matter to explain the dynamics of stellar
clusters, galaxies, groups and clusters of galaxies, among
others astrophysical objects, has been well known for many
decades now. Such systems show a deficit of mass when the
photometric and spectroscopic estimates are compared with
the dynamical one. Early astronomical candidates proposed
to solve this problem of missing mass were MAssive
Compact Halo Objects (MACHOs) and ReAlly Massive
Baryon Objects (RAMBOs), sub-luminous compact
objects (or clusters of objects) like black holes and neutron

stars that could not have been observed due to several
selection effects. Since the number of the observed sub-
luminous objects was not enough to account for themissing
matter, the idea that this matter was hidden in some exotic
particles, weakly interacting with ordinary matter, emerged.
Many candidates have been proposed such as weakly
interacting massive particle (WIMP), axions, neutralino,
Q-balls, gravitinos and Bose-Einstein condensate, among
the others [2–8], but there are no experimental evidences of
their existence so far [9].
An alternative approach is to modify Newton’s law. Such

a modification naturally arises in the weak field limit of
some modified gravity models [10–14] that attempt to
explain the nature of dark matter and dark energy as an
effect of the space-time curvature. These theories predict
the existence of massive gravitons that may carry the
gravitational interaction over a certain scale depending
by the mass of these particles [15–18]. Thus, in their weak
field limit, a Yukawa-like modification to Newton’s law
emerges. One of those models is fðRÞ-gravity where the
Einstein-Hilbert action, which is linear in the Ricci scalar R,
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is replaced with a more general function of the curvature,
fðRÞ. In its the weak field limit, the modified Newtonian
potential has the following functional form [19]:

ΦðrÞ ¼ −
GM

ð1þ δÞr ð1þ δe−r=λÞ; ð1Þ

where M is the mass of the pointlike source, r the distance
of a test particle (m) from the source, G is Newton’s
constant, δ is the strength of the Yukawa correction, and the
λ represents the scale over which the Yukawa-force acts.
Since fðRÞ-gravity is a fourth-order theory, the Yukawa
scale length arises from the extra degrees of freedom (in the
general paradigm, a (2kþ 2)-order theory of gravity gives
rise to k extra gravitational scales [20]). Both parameters
are also related to the fðRÞ-Lagrangian as [12,19]:

δ ¼ f00 − 1; λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
6f000
f00

s
; ð2Þ

where

f00 ¼
dfðRÞ
dR

����
R¼R0

; f000 ¼
d2fðRÞ
dR2

����
R¼R0

: ð3Þ

Next, considering the field equations and trace of fðRÞ
gravity at the first order approximation in terms of the
perturbations of the metric tensor, and choosing a suitable
transformation and a gauge condition, one can relate the
massive states of the graviton to the fðRÞ-Lagrangian and
to the Yukawa-length:

m2
g ∝

−f00
f000

¼ 2

λ2
: ð4Þ

Therefore, it is customary to identify the Yukawa-length
with the Compton wavelength of the massive graviton
λc ¼ hc=mg. Thus, for example, we have λ ∼ 103 km with
a mass of gravitons mg ∼ 10−22 eV [21,22]. Therefore, the
effect of a modification of the Newtonian potential must
naturally act at galactic and extragalactic scales, where
fðRÞ-gravity has been successfully tested [23–25].
Nevertheless, smaller effects could be detected at shorter
scales [26] where the strength of the Yukawa-correction has
been bounded using the Pioneer anomaly [27,28] and S2
star orbits [29–34]. Obviously, the most interesting systems
to test gravitational theories are binary systems composed
by coalescing compact stars, such as neutron stars, white
dwarfs and/or black holes [35–37], but the study of stable
orbits is equally important since it allows us to study
possible variations of the gravitational interaction in the
weak field limit. In the last decades, the orbital precession
has been used to probe general relativity [38,39], as well as
to place bounds on antigravity due to the cosmological

constant [40–42], on forces proposed as alternatives to dark
matter [43,44] and/or induced from extensions of general
relativity [10,45–50].
In this paper we show, in a semi-classical approach, that

the orbital motion under the modified gravitational poten-
tial in Eq. (1) can be traced back to a Keplerian orbit with
modified eccentricity, but with an orbital precession due to
the Yukawa-term. We consider two pointlike masses
orbiting around each other and we use a Newtonian
approach to compute the equation of the orbit, and a
perturbative approach to compute the precession of the
orbit. Finally, we use the current limits on the orbital
precession of the planetary orbits to place a bound on the
strength of the Yukawa-term. The paper is organized as
follows: in Sec. II we introduce the equations of motion, in
Sec. III we compute the equation of the orbits, in Sec. IV
we compute analytically the precession effect due to the
Yukawa potential, and we use current measurements of the
orbital precession of Solar System’s planets to bound
the parameter δ in Eq. (1). We consider, for each planet,
a 3σ interval around the best fit value of the precession, and
we compute the lower and an upper limit on δ so that the
predicted precession relies in the observed interval. In
Sec. V we discuss some consequences of our results.
Finally, in Sec. VI we give our conclusions.

II. NEWTONIAN APPROACH TO TWO BODY
PROBLEM IN YUKAWA POTENTIAL

The starting point is the equation of motion of a massive
pointlike particle, m, in the gravitational potential well
generated by the particle M, and given in Eq. (1). In polar
coordinates ðr;φÞ and with respect to the center of mass,
the equations of motion read

̈r ¼ −∇ΦðrÞ; ð5Þ

d
dt

ðr2 _φÞ ¼ 0; ð6Þ

and the total energy of the system can be written as [51]

ET ¼ 1

2
μð_r2 þ r2 _φ2Þ − GmM

ð1þ δÞr ð1þ δe−r=λÞ; ð7Þ

where μ ¼ mM
mþM is the reduced mass, and ΦðrÞ is the

modified gravitational potential of Eq. (1). Using the
conservation of the angular momentum L expressed in
Eq. (6), it is straightforward to recast the total energy as a
function of the radial coordinate:

ET ¼ 1

2
μ_r2 þ L2

2μr2
−

GmM
ð1þ δÞ

ð1þ δe−r=λÞ
r

: ð8Þ

Equation (8) is the only one needed to compute the
equation of motion for an unperturbed orbit. Nevertheless,
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we can learn more about the orbits by defining an effective
potential as

VeffðrÞ ¼
L2

2μr2
−

GmM
ð1þ δÞr −GmM

δ

ð1þ δÞr e
−r=λ: ð9Þ

Here, the first term accounts for the repulsive force
associated to the angular momentum, the second term
represents the gravitational attraction, and the third term
can be interpreted as an additional force due to the Yukawa-
like term in the gravitational potential acting on the particle.
The effective potential demands other considerations: first,
one needs δ ≠ −1 in order to avoid a singularity in the
second and third terms; second, if δ assumes negative
values, the second term stays attractive as far as the
condition δ > −1 is satisfied, and the last term becomes
repulsive; third, the condition δ < −1 makes the second
term repulsive, rendering the third term attractive; fourth, if
δ > 0 then both second and third terms are attractive.
For illustration, in Fig. 1(a) and (b) we plot the potential

and the effective potential as a function of r=λ showing
their dependence on the strength of the Yukawa term.
Notice that the minimum of the effective potential depends
on the strength parameter δ of the Yukawa-term [Fig. 1(b)].
As expected, a negative value of δ makes the potential well
deeper as compared to the Newtonian case (δ ¼ 0), while
a positive value makes it flatter. This can be under-
stood looking at Eq. (1), for −1 < δ < 0 the effective
mass M0 ¼ M=ð1þ δÞ becomes larger, while for δ > 0 it
becomes smaller than the “Newtonian mass” M.
Differentiating with respect to the radial coordinate and

looking for the minimum, one finds the condition:

dVeffðrÞ
dr

¼0⇒
L2

μr
¼GmMðδe−r

λþ1Þ
ðδþ1Þ þδGmMe−

r
λ

ðδþ1Þλ r: ð10Þ

The second derivative and the previous condition on the
angular momentum leads to obtain the following expression

d2VeffðrÞ
dr2

¼ GmMe−
r
λ

ðδþ 1Þr3 ½δð−λ
−2r2 þ λ−1rþ 1Þ þ e

r
λ�: ð11Þ

A minimum in the effective potential exists if the following
condition is satisfied

gðxÞ≡ δð−x2 þ xþ 1Þ þ ex > 0; ð12Þ

where we have defined x≡ r=λ. Eq. (12) is satisfied in the
following cases: (i) δ > −1 for x → 0, (ii) δ > −e for x → 1,
and (iii) ∀δ in the limit x → ∞. Let us notice that the first
case, meaning r ≪ λ, is the common configuration of an
astrophysical system with its dynamics happening at scales
much lower than the Compton wavelength of the massive
graviton, such as planetary motion around the Sun. On the
contrary, the second case (r ∼ λ) represents systems such as
S-Stars around the Galactic center, with their dynamics
happening at scales of the order of parsecs. Finally, the last
case (r ≫ λ) can be associated to the extragalactic and
cosmological scales. Since we are interested in studying
systems on distance scales much smaller than the Compton
scale of a massive graviton, the exponential term in previous
equations Taylor expanded as

e�x ≈ 1� xþ x2

2
þOðx3Þ: ð13Þ

When replacing Eq. (13) in to Eq. (1), the first term gives the
Newtonian force, the second term induces a shift in the
energy of the system, and the third term gives rise to a
constant radial acceleration (often called fifth force) that can
be written as follows

acorr ¼ −
a�δ

2ð1þ δÞ
r�2

λ2
; ð14Þ

where a� is the Newtonian acceleration of an object at
distance r�. As an example, this correction can be applied to

(a) (b)

FIG. 1. Modified gravitational and effective potentials as a function of the distance from the gravitational source M. Solid black lines
indicate the Newtonian case (δ ¼ 0), dashed colored lines depict the corrections.
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the Pioneer anomaly, thus obtaining a strength jδj ≤ 1.7 ×
10−4 at λ ∼ 200 AU [27,28]. It is important to remark that
the approximation in Eq. (13) is valid only for dynamics at
the scale of planetary systems or stars with orbits having
their semi-major axis much smaller than λ. In contrast, to
study the dynamics of systems on larger scales, one cannot
use the approximation in Eq. (13) but rather, the equations of
motion must be integrated numerically.
Let us analyze the condition for the existence a minimum

in the effective potential at both Oðx2Þ and Oðx3Þ orders:
Oðx2Þ order: at this order of approximation, the effective

potential becomes

VeffðrÞ ¼
L2

2μr2
−
GmM
r

þ δGmM
ðδþ 1Þλ ; ð15Þ

and we find the minimum at the radius

rmin ¼
L2

2μGmM
; ð16Þ

which is the same as the one of Newtonian gravity (as
expected), while the effective potential at the minimum is
shifted with respect to the Newtonian one

Veff;min ¼ −
1

2
GmM

�
GμmM
L2

−
2δ

ðδþ 1Þλ
�
; ð17Þ

Oðx3Þ order: the effective potential can be recast as

VeffðrÞ ¼
L2

2μr2
−
GmM
r

þ δGmM
ðδþ 1Þλ −

δGmMr
2ðδþ 1Þλ2 : ð18Þ

Since we are looking for a strength force in the regime
δ ≪ 1, thus meaning a small deviation from Newtonian
dynamic, the shift in rmin is absolutely negligible. Thus,
replacing Eq. (16) in to Eq. (18) we get

Veff;min ¼ −
GmM
2

�
GμmM
L2

−
2δ

ðδþ 1Þλ
�
−

L2δ

2ð1þ δÞλ2μ :

ð19Þ

Therefore, at both Oðλ−2Þ and Oðλ−3Þ orders, the
minimum of the effective potential always exists and it
is located at the same radius (rmin) than in the Newtonian
case. Finally, Eqs. (17) and (19) show that the minimum of
the effective potential is shifted as qualitatively explained
above and shown in Fig. 1(b).

III. EQUATION OF THE ORBITS

Hereby, we compute the equation of the closed orbit in
both Oðx2Þ and Oðx3Þ approximations, and we show that,
under some conditions on the eccentricity and the position
of latus rectum, the orbit can be recast into the usual

Keplerian form, where the correction due to the Yukawa-
term getting hidden into the orbital parameters. We work in
the regime r ≪ λ in order to replace the exponential term in
Eq. (8) with Eq. (13).

A. Approximation at O(x2)-order

To compute the equation of the orbit we rewrite the radial
component of the velocity as

_r ¼ −
L
μ

d
dφ

1

r
; ð20Þ

then, at second order in the approximation of the Yukawa-
term, the total energy of the system can be recast as

ET ¼ L2

2μ

�
d
dφ

1

r

�
2

þ L2

2μr2
−
GmM
r

þ GmMδ

ð1þ δÞλ : ð21Þ

From the previous equation we can obtain the following
differential equation

u02 þ u2 − 2β0u ¼ β1; ð22Þ

where u≡ 1=r, u0 ¼ du=dφ and

γ¼GmM; β0¼
μγ

L2
; β1¼

2μET

L2
−
2μγ

L2λ

δ

1þδ
: ð23Þ

Differentiating Eq. (22), we get

u0ðu00 þ u − β0Þ ¼ 0: ð24Þ

As we are looking for a Keplerian solution, we make the
following ansatz:

u≡ 1

r
¼ 1

l
ð1þ ϵ cosφÞ; ð25Þ

where l is the latus rectum and ϵ is the eccentricity.
Therefore, inserting the Eq. (25) in Eq. (24), we obtain
the following condition for the latus rectum:

l ¼ 1

β0
: ð26Þ

Then, we substitute Eqs. (25) into Eq. (22) thus obtaining
the following expression for the eccentricity:

ϵ2 ¼ 1þ l2β1; ð27Þ

that in terms of energy of the system is

ϵ2 ¼ 1 −
2L2

μγ

δ

ð1þ δÞλþ
2ETL2μ

μ2γ2
; ð28Þ

which for δ ¼ 0 gets reduced to the Newtonian value:
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ϵ2 ¼ 1þ 2ETL2μ

μ2γ2
: ð29Þ

This shift is clearly not testable with observations given that
we measure the orbital parameters, whereas the total energy
is a theory dependent parameter. Nevertheless, looking at
Eq. (28), it is straightforward to understand that, if the total
energy and angular momentum are fixed then they corre-
spond to an orbital motion with an eccentricity that would
vary depending on the strength of the Yukawa correction,
as shown in Fig. 2.

B. Approximation at O(x3) order

Approximating the Yukawa-term at third order, the
differential equation (22) becomes

u02 þ u2 − 2β0u − β2
1

u
¼ β1; ð30Þ

where β0 and β1 are given in Eq. (23), and

β2 ¼
μγδ

2L2λð1þ δÞ : ð31Þ

By taking the derivative of Eq. (30) we obtain

u0
�
u00 þ uþ β2

u2
− β0

�
¼ 0: ð32Þ

Let us introduce Eq. (25) into Eq. (32) and evaluate the
expression at φ ¼ ½0; π�, which respectively correspond to
the minimum and maximum distance between the two
masses. Thus, we obtain two conditions:

ð1 − lβ0Þϵ2 þ 2ð1 − lβ0Þϵ − lβ0 þ l3β2 þ 1 ¼ 0; ð33Þ

ð1 − lβ0Þϵ2 − 2ð1 − lβ0Þϵ − lβ0 þ l3β2 þ 1 ¼ 0: ð34Þ

Subtracting Eqs. (33) and (34) we obtain the latus rectum
which turns out to have the same expression as in Eq. (26).
Finally, introducing Eq. (25) in Eq. (30) and evaluating it,
once again, at φ ¼ ½0; π� we obtain the following condition
for the eccentricity

(a)

(b)

FIG. 2. Illustration of the effect of the modified gravitational
potential on the orbital parameters. Panel (a) shows the orbits for
different values of δ. The angular momentum and the total energy
are set to those values that give rise to an elliptical orbit with
eccentricity ϵ ¼ 0.5 in Newtonian mechanics (δ ¼ 0) showing
that such an orbital solution would show a difference in the
eccentricity when the Yukawa term is taken in to account. Panel
(b) shows the relative difference with the Newtonian mechanics
along the orbit.

(a)

(b)

FIG. 3. The plots and panels replicate the ones in Fig. 2 for the
Oðλ−3Þ approximation order.
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ϵ2 ¼ 1þ l2β1 − 4β2: ð35Þ

Let us note that the previous expression reduces to Eq. (27)
when β2 ¼ 0, and thus to the Newtonian value when δ ¼ 0.
The previous equation can be straightforwardly recast in
terms of energy of the system as

ϵ2 ¼ 1þ 2ETL2μ

μ2γ2
−
2L2

μγ

δ

ð1þ δÞλ −
2μγδ

L2λð1þ δÞ : ð36Þ

The Oðx3Þ order the shift is larger than at Oðx2Þ order, and
the difference due to the order of approximation is not
negligible (see Fig. 3).

IV. PRECESSION IN YUKAWA POTENTIAL

To compute analytically the periastron advance due to
the Yukawa-like term in the gravitational potential, we
study small perturbations to the circular orbit. Thus, let us
recast the total energy as

u02 þ u2 þ gðuÞ
L2

¼ 2μET

L2
−
2μγ

L2λ

δ

1þ δ
; ð37Þ

where gðuÞ account for the gravitational interaction. Let us
impose a close orbit defined by a minimum and a maximum
distance from the center: r−jφ¼0 ¼ að1 − ϵÞ and rþjφ¼π ¼
að1þ ϵÞ, respectively. Here a is the semimajor axis of the
orbit. Thus, those correspond to u0 ¼ 1=r− and u1 ¼ 1=rþ.
Being u0ju¼u0 ¼ u0ju¼u1 ¼ 0, the Eq. (37) gives rise to the
following two conditions

u20 þ
gðu0Þ
L2

¼ 2μET

L2
−
2μγ

L2λ

δ

1þ δ
; ð38Þ

u21 þ
gðu1Þ
L2

¼ 2μET

L2
−
2μγ

L2λ

δ

1þ δ
; ð39Þ

from which one obtains

L2 ¼ gðu0Þ − gðu1Þ
u21 − u20

; ð40Þ

ET ¼ u21gðu0Þ − u20gðu1Þ
2μðu21 − u20Þ

þ μγδ

μð1þ δÞλ : ð41Þ

Then, the differential equation (37) becomes

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðu0; u1; uÞ

p
; ð42Þ

where Gðu0; u1; uÞ is
Gðu0; u1; uÞ

¼ gðu0Þðu21 − u2Þ þ gðu1Þðu2 − u20Þ − ðb2 − u20ÞgðuÞ
gðu0Þ − gðu1Þ

:

ð43Þ
We can find the amount of angle required to pass from r−

to rþ by integrating Eq. (42):

φðrþÞ − φðr−Þ ¼
Z

u1

u0

Gðu0; u1; uÞ−1=2du: ð44Þ

Hence the particle will move from r− to rþ and back every
time φ → φþ 2π, thus rðφÞ is periodic with period 2π.
Therefore, the precession for each revolution is

ω ¼ 2jφðrþÞ − φðr−Þj − 2π: ð45Þ
In the case of approximating the exponential term at

Oðx2Þ order, the function gðuÞ only depends by a
Newtonian term:

gðuÞ ¼ −2μγu ¼ 2μΦNð1=uÞ; ð46Þ
where ΦNð1=uÞ is the classical Newtonian potential. Thus,
the precession does not exist as expected for the Newtonian
potential.
Nevertheless, when approximating the exponential term

at Oðλ−3Þ order we have

gðuÞ ¼ 2μΦNð1=uÞ −
μγδ

λð1þ δÞ
1

u
: ð47Þ

TABLE I. This table reports for different planets the observed values of the: semimajor axis (a), orbital period (P), tilt angle (i),
eccentricity (e), orbital precession in columns 2–6, respectively. In column 8 we give the predicted precession in general relativity, and
finally in the last column we give the bounds on δ. Currently no data are available for the other Solar System planets. The table has been
adapted from [48].

Precession (100=100 yr)

Planet a (AU) P (yr) i (deg) ϵ _ωobs _ωGR ½δmin; δmax�
Mercury 0.39 0.24 7.0 0.206 43.1000� 0.5000 43.5 ½1.02; 1.09� × 10−2

Venus 0.72 0.62 3.4 0.007 8.0000� 5.0000 8.62 ½−0.76; 2.51� × 10−3

Earth 1.00 1.00 0.0 0.017 5.0000� 1.0000 3.87 ½1.45; 5.79� × 10−4

Mars 1.52 1.88 1.9 0.093 1.3624� 0.0005 1.36 ½5.90; 5.92� × 10−5

Jupiter 5.20 11.86 1.3 0.048 0.0700� 0.0040 0.0628 ½0.92; 1.30� × 10−7

Saturn 9.54 29.46 2.5 0.056 0.0140� 0.0020 0.0138 ½2.70; 6.70� × 10−9
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In order to solve the integral in Eq. (46) we perform a
change of variables

u1 ¼ u0 þ η; u ¼ u0 þ ηυ; ð48Þ
with 0 < υ < 1. Then, the Eq. (44) can be recast as

Δφ≡φðrþÞ−φðr−Þ¼η

Z
1

0

gðu0;u0þη;λ;δ;u0þηυÞdυ;

ð49Þ

where

gðu0;u0þ η;λ;δ;u0þ ηυÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðu0;u0þ η;λ;δ;u0þ ηυÞp :

ð50Þ

Finally, defining the auxiliary variable ξ≡ ð1þ δÞλ2,
we find

FIG. 4. Planetary precession in the Yukawa-like gravitational potential as a function of the force strength δ. The blue dotted lines show
the 99% confidence level (C.L.) of the measurements; the red lines give the theoretical prediction as in Eq. (51). The shaded zones depict
the allowed range of the strength parameter.
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Δφ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

−3δþ 2u20ξ

s  
1 −

2u0δξ
3δ2 − 8u20δξþ 4u40ξ

2
ηþ δð−3δ3 þ 16u20δ

2ξ − 124u40δξ
2 þ 144u60ξ

3Þ
16ð3u0δ2 − 8u30δξþ 4u50ξ

2Þ2 η2

!
: ð51Þ

To bound the strength δ, we use the motion of the Solar
system’s planets. Specifically, we use Mercury, Venus,
Earth, Mars, Jupiter and Saturn for which the orbital
precession has been measured [48]. We identify the
allowed region of δ for which the predicted precession
does not contradict the data. In Fig. 4 we show the
allowed zone of parameter space for each planet (light
blue shades), and we also show that for −1 < δ < 0 the
precession in ongoing in the opposite direction with
respect the observed one, while δ > 0 give rise to a
precession in the right direction confirming the results
found for Rn gravity using the S-stars orbiting around the
Galactic center [29,30]. This results was rather expected
since the effect produced by the modification of the
gravitational potential must be greater or lower than the
Newtonian one that is zero. The scale length has been
fixed to the confidence value λ ¼ 5000 AU [31], and a
lower and upper limit on δ is inferred, and reported in
Table I. The tightest interval on δ is obtained with Saturn
that is located at the highest distance from the Sun. This
restricts δ to vary in the range from 2.70 × 10−9 to
6.70 × 10−9. With these values of the strength we have
also predicted the precession for Uranus, Neptune and
Pluto,1 and we found a precession up to three order of
magnitude larger than the one predicted by general
relativity meaning that the strength must be even smaller
than fews × 10−9 to match the general relativistic con-
straints. All results are summarized in Table II.

V. IMPLICATIONS FOR f(R) GRAVITY

To make compatible fðRÞ models with local gravity
constraints, these theories usually require a “screening
mechanism.” When considering theories with a non-
minimally coupled scalar field, one has to impose strong
conditions on the effective mass of the scalar field that
must depend on the space-time curvature or, alternatively,
on the matter density distribution of the environment
[52,53]. Thus, the scalar field can have a short range at
Solar System scale escaping the experimental constraints,
and have a long range at the cosmological scale, where
it can propagate freely affecting the cosmological
dynamics, and driving the accelerated expansion (see
for details [54]). With the same aim, similar mechanisms
have been proposed for other models, such as the

symmetron and the braneworld [55–57]. Nevertheless,
these mechanisms are introduced ad hoc and particular-
ized for each theory. In fðRÞ gravity, the need of
introducing a screening mechanism arises when, instead
of working with higher order field equations, one
performs a conformal transformation from the Jordan
to the Einstein frame, where the field equations are of
second order but a scalar field, related to the f0ðRÞ term,
appears. Although it is simpler to work with second order
field equations, and the two frames are mathematically
equivalent, one should remember that the physical equiv-
alence is not guaranteed in general [58–60]. Thus, one
could prefer to work with high order field equations,
staying in the Jordan frame, and handling the extra
degrees of freedom as free parameters to be constrained
by the data. In such a case, the scale dependence of these
parameters plays the role of the screening mechanism.
The screening mechanism is traced by the density of the
self gravitating systems [61].
Relatively, the results in Table I can be straightfor-

wardly interpreted as the fact that the Yukawa correction
term to the Newtonian gravitational potential is screened
at planetary scales. Indeed, the departure from Newtonian
gravity is of the order of 10−9 in δ. Finally, the values of
the strength and the scale of the Yukawa potential highly
degenerate at such small scales. To illustrate this degen-
eracy we have computed the lower and upper limit on δ
varying λ from 100 AU to 104 AU. The results are shown
in Fig. 5, where we have highlighted the parts of the
parameter space that are (and are not) allowed. We show
that a change of one order of magnitude in the scale
length is reflected in change up to two order of magnitude
in δ. The plot is particularized for Saturn.

TABLE II. This table reports observations from [48] as well.
The last two columns report the prediction of the precession from
general relativity and from the Yukawa-like gravitational poten-
tial. The latter have been computed using the tight bounds of δ
from Saturn (see Table I) and fixing the characteristic length to
λ ¼ 5000 AU.

Precession (100=100 yr)

Planet a (AU) P (yr) i (deg) ϵ _ωGR ½ _ωmin; _ωmax�j
Uranus 19.2 84.10 0.8 0.046 0.0024 ½0.05; 0.12�
Neptune 30.1 164.80 1.8 0.009 0.000 78 ½0.18; 0.45�
Pluto 39.4 247.70 17.2 0.250 0.000 42 ½0.11; 0.30�

1Although the latter is not a planet, its large distance from the
Sun and its small mass makes the object very useful to show the
impact of the modified gravitational potential.
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VI. CONCLUSIONS AND REMARKS

Measurements of the orbital precession of Solar System
bodies can be used to compare observations with theoreti-
cal predictions arising from alternative theories of gravity.
Specifically, fðRÞ gravity models that, in their weak field
limit, show a Yukawa-like correction to the Newtonian
gravitational potential can be used to compute the orbital
precession with a classical mechanics approach. We have
computed an analytical expression for the orbital pre-
cession and compared its prediction with the values for
the Solar System’s planets. We found that, fixing the

characteristic scale length to λ ¼ 5000 AU [31], the
strength must rely in the range ½2.70; 6.70� × 10−9.
Nevertheless, we must point out the presence of a degen-
eracy between the strength and the scale of the Yukawa
potential. We find the direction of the orbital precession
changing with the sign of the strength, confirming previous
results [29,30]. If the change of the direction of the orbital
precession can be used as an effective way to discriminate
between general relativity and its alternative, should be
studied in a full relativistic approach where the motion
happens along the geodesics [62].
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