
 

Black hole shadow in an expanding universe with a cosmological constant

Volker Perlick,1,* Oleg Yu. Tsupko,2,† and Gennady S. Bisnovatyi-Kogan2,3,‡
1ZARM, University of Bremen, 28359 Bremen, Germany

2Space Research Institute of Russian Academy of Sciences, Profsoyuznaya 84/32, Moscow 117997, Russia
3National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

Kashirskoe Shosse 31, Moscow 115409, Russia

(Received 13 April 2018; published 29 May 2018)

We analytically investigate the influence of a cosmic expansion on the shadow of the Schwarzschild
black hole. We suppose that the expansion is driven by a cosmological constant only and use the Kottler (or
Schwarzschild–de Sitter) spacetime as a model for a Schwarzschild black hole embedded in a de Sitter
universe. We calculate the angular radius of the shadow for an observer who is comoving with the cosmic
expansion. It is found that the angular radius of the shadow shrinks to a nonzero finite value if the comoving
observer approaches infinity.
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I. INTRODUCTION

In recent years, strong evidence for the existence of
supermassive black holes at the centers of most galaxies has
been accumulated. According to theory, an observer should
see such a black hole as a dark disk, known as the “shadow”
of the black hole, in the sky against a backdrop of light
sources. Attempts to actually observing the shadow of the
black-hole candidates at the center of our own galaxy and at
the center of M87 are under way, see the homepages of the
Event Horizon Telescope (http://eventhorizontelescope
.org) and of the BlackHoleCam (http://blackholecam.org).
For the simplest case of a nonrotating black hole, the

shadow is a circular disk in the sky. If the black hole is
uncharged, it is to be modeled by the Schwarzschild metric.
For a static observer in the spacetime of a Schwarzschild
black hole, the angular radius of the shadow was calculated
in a seminal paper by Synge [1]. (Synge calculated what he
called the “escape cone” of light which is just the comple-
ment in the sky of what we now call the shadow.) For a
rotating black hole, the shadow is no longer circular but
rather flattened on one side, as a consequence of the
“dragging” of lightlike geodesics by the black hole. The
shape of the shadow of a Kerr black hole for a stationary
observer at a large distance was first calculated by Bardeen
[2]. More generally, an analytical formula for the shape and
the size of the shadow of a black hole of the Plebański-
Demiański class, for an observer anywhere in the domain of
outer communication, was derived by Grenzebach et al.
[3,4]. In these two papers the observer’s four-velocity was
assumed to be a linear combination of ∂t and ∂φ and in the

plane spanned by the two principal null directions; with this
result at hand, the shadow can then be calculated for
observers with any other four-velocities with the help of
the standard aberration formula, see Grenzebach [5] for
details. For the case of the Kerr metric, which is contained as
a special case in the work by Grenzebach et al., Tsupko [6]
worked out an approximate formula that allows to extract the
spin of the black hole from the shape of the shadow.
In all these works, the black hole is assumed to be

eternal; i.e., the spacetime is assumed to be time indepen-
dent. Then, of course, a static or stationary observer will see
a time-independent shadow. Actually, we believe that we
live in an expanding universe. This gives rise to the
question of how the shadow depends on time. Also, in
an expanding universe the dependence of the shadow on the
momentary position of the observer will no longer be given
by the formulas for a static or stationary black hole. Of
course, for the black-hole candidates at the center of our own
galaxy and at the centers of nearby galaxies the effect of the
cosmological expansion is tiny. However, for galaxies at a
larger distance the influence on the angular diameter of the
shadow may be considerable. In any case, calculating this
influence is an interesting question from a conceptual point
of view. This is the purpose of the present paper. We restrict
to the simplest model of a black hole in an expanding
universe, viz. to the Kottler spacetime (also known as the
Schwarzschild–de Sitter spacetime). This spacetime, which
was found byKottler [7] in 1918, describes a Schwarzschild-
like (i.e., nonrotating and uncharged) black hole embedded
in a de Sitter universe. More precisely, the Kottler metric
depends on two parameters, m and Λ, both of which are
assumed to be positive with 9Λm2 < 1. It is a spherically
symmetric solution of Einstein’s field equation for vacuum
with a cosmological constant. Near the center the spacetime
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geometry is similar to a Schwarzschild black holewith mass
parameterm, and far away from the center it is similar to a de
Sitter universewith cosmological constantΛ.We admit that,
according to the concordance model of cosmology, the de
Sitter universe is a good model only for the late stage of our
Universe, whereas for the present and earlier stages of our
Universe the influence of matter cannot be neglected.
Nonetheless, we believe that it is instructive to consider
thismodel because it allows to determine the influence of the
cosmological expansion on the shadow for the case that this
expansion is driven by the cosmological constant only.
The Kottler metric admits a timelike Killing vector field.

Observers whose worldlines are integral curves of this
Killing vector field see a static (i.e., time-independent)
spacetime geometry. We refer to them as to the static
observers in the Kottler spacetime. When we consider the
Kottler spacetime as a model for a black hole embedded in
an expanding universe, we are not interested in these static
observers, but rather in observers that are comoving with
the cosmic expansion. However, the existence of the static
observers gives us a useful tool for calculations: We may
first consider the shadow as it is seen by a static observer.
This was calculated for the Schwarzschild black hole
without a cosmological constant by Synge [1], as was
already mentioned above, and generalized to the case of a
Kottler black hole by Stuchlík and Hledík [8]. From these
results we can then calculate the angular radius of the
shadow for an observer that is comoving with the cosmic
expansion by applying the standard aberration formula.
In this paper,wewant to concentrate on the influenceof the

cosmic expansion, as driven by the cosmological constant,
on the shadow. Therefore, we simplify all other aspects as far
as possible. In particular, we consider a black hole that is
characterized by its mass only; i.e., it is nonspinning and
carries no (electric, magnetic, gravitomagnetic,…) charges.
It is certainly possible to consider, more generally, a
Plebański-Demiański black hole, which may be spinning
and carrying various kinds of charges, and to transform the
above-mentioned results of Grenzebach et al. [3,4] with the
help of the aberration formula to anobserver that is comoving
with the cosmic expansion. Then, however, it would be
difficult to disentangle the influence of the various param-
eters on the result and to extract the effect of the Λ-driven
expansion. Also, it would be possible to take the influence of
a plasma onto the light rays into account. The shadow in a
plasma for a static or stationary observer was calculated for
nonrotating and rotating black holes by Perlick, Tsupko and
Bisnovatyi-Kogan [9,10], cf. [11]. Again, wewill not do this
because here we want to concentrate on the effect of the
cosmic expansion driven by a cosmological constant.
As a starting point for our calculations we need the

equation for lightlike geodesics in the Kottler spacetime,
written in coordinates adapted to the static observers. It is
well known that the set of solution curves of this differential
equation is independent of Λ, see Islam [12]. It was widely

believed that, as a consequence, Λ has no influence on the
lensing features. However, it was realized by Rindler and
Ishak [13] that this is not true: Although the coordinate
representation of the lightlike geodesics is unaffected by Λ,
the cosmological constant does influence the lensing fea-
tures because it changes the angle measurements. Therefore
it should not come as a surprise that also the angular radius of
the shadow does depend on Λ. When changing to the
observers that are comoving with the cosmic expansion we
have to apply the aberration formula. A detailed study of this
formula in the Kottler spacetime was brought forward
recently by Lebedev and Lake [14,15] and wewill comment
on the relation of our work to theirs in an appendix.
The paper is organized as follows. In Sec. II, we calculate

the shadow in the Kottler spacetime for a static observer.
The results are not new, but we have to repeat them here
because we want to use them later. Section III contains the
main results of this paper: Here we calculate the shadow in
the Kottler spacetime as it is seen by an observer that is
comoving with the cosmic expansion. An approximation
for these results is given in Sec. IV for the case that the
observer is far away from the black hole. We conclude with
a discussion of our results in Sec. V. In the Appendix, we
point out how our work is related to the above-mentioned
work by Lebedev and Lake. Throughout the paper, we use
Einstein’s summation convention for greek indices taking
values 0,1,2,3. Our choice of signature is ð−;þ;þ;þÞ.

II. SHADOW IN THE KOTTLER SPACETIME AS
SEEN BY A STATIC OBSERVER

The Kottler metric is the unique spherically symmetric
solution to Einstein’s vacuum field equation with a cos-
mological constant. In its standard form, it reads

gμνdxμdxν ¼ −fðrÞc2dt2 þ dr2

fðrÞ þ r2dΩ2 ð1Þ

where

fðrÞ ¼ 1 −
2m
r

−
Λ
3
r2; dΩ2 ¼ sin2ϑdφ2 þ dϑ2: ð2Þ

m is the mass parameter,

m ¼ GM
c2

ð3Þ

where M is the mass of the central object and Λ is the
cosmological constant. (As usual, G is Newton’s gravita-
tional constant and c is the vacuum speed of light). We
assume throughout that

0 < Λ <
1

9m2
: ð4Þ

Then the Kottler metric has two event horizons, given by
the zeros of the function fðrÞ, an inner one at a radius rH1

PERLICK, TSUPKO, and BISNOVATYI-KOGAN PHYS. REV. D 97, 104062 (2018)

104062-2



and an outer one at a radius rH2 where 2m < rH1 <
3m < rH2 < ∞. The region between the two horizons is
called the “domain of outer communication” because any
two observers in this region may communicate with each
other without being hindered by a horizon. In this region,
the function fðrÞ is positive; i.e., the vector field ∂t is
timelike. As a consequence, the integral curves of the
vector field ∂t may be interpreted as the worldlines of
observers. Since ∂t is a Killing vector field, these observers
see a time-independent universe. As mentioned already in
the introduction, we will refer to them as to the static
observers in the Kottler spacetime. For the following, it is
crucial that the static observers exist only in the domain of
outer communication.
The horizon at r ¼ rH1 consists of a future inner horizon

that separates the domain of outer communication from a
black-hole region and of a past inner horizon that separates
it from a white-hole region. (For literature on white holes,
see e.g. [16–18].) Similarly, the horizon at r ¼ rH2 consists
of a future outer horizon and a past outer horizon. In this
paper, we are interested in the shadow of the black hole. It
is constructed under the assumption that there are light
sources only in the domain of outer communication. As the
light emitted from such a light source can never reach one
of the two past horizons, the regions beyond the past
horizons will be of no relevance for us. We will be
concerned only with the domain of outer communication,
tagged I in Fig. 1, and to the regions beyond the future

horizons, tagged II and III in Fig. 1. We will refer to the
future inner horizon as the black-hole horizon and to the
future outer horizon as the (future) cosmological horizon.
Before introducing moving observers in the next section,

we will now calculate the shadow as it is momentarily seen
by a static observer at a spacetime point ðtO; rO; ϑO ¼
π=2;φO ¼ 0Þ in the domain of outer communication.
Because of the symmetry, it is no restriction to place the
observer in the equatorial plane and it suffices to consider
lightlike geodesics in the equatorial plane. Geodesics in the
equatorial plane derive from the Lagrangian

Lðx; _xÞ ¼ 1

2

�
−fðrÞc2_t2 þ _r2

fðrÞ þ r2 _φ2

�
: ð5Þ

The t and φ components of the Euler-Lagrange equation
give us two constants of motion,

E ¼ fðrÞc2_t; L ¼ r2 _φ: ð6Þ

For lightlike geodesics, we have

−fðrÞc2_t2 þ _r2

fðrÞ þ r2 _φ2 ¼ 0: ð7Þ

Solving for _r2= _φ2 ¼ ðdr=dφÞ2 and inserting (6) yields the
orbit equation for lightlike geodesics,

�
dr
dφ

�
2

¼ r4
�

E2

c2L2
þ Λ

3
−

1

r2
þ 2m

r3

�
: ð8Þ

We see thatΛ can be absorbed into a new constant of motion
C ¼ E2=ðc2L2Þ þ Λ=3, i.e., that the set of all lightlike
geodesics is independent of Λ in the chosen coordinate
representation. This, however, does not mean that Λ has no
influence on the lensing features because angle measure-
ments do depend on Λ, see Rindler and Ishak [13].
By evaluating the equations dr=dφ ¼ 0 and d2r=dφ2 ¼ 0

we find that there is a circular lightlike geodesic at radius
r ¼ 3m and that the constants ofmotion for this circular light
ray satisfy

E2

c2L2
¼ 1

27m2
−
Λ
3
: ð9Þ

This circular light ray is unstable in the sense that a slight
perturbation of the initial direction in the equatorial plane
gives a light ray that moves away from the circle at r ¼ 3m
and crosses one of the two horizons. If we take all three
spatial dimensions into account, we find that there is such an
unstable circular light ray in any plane through the origin.
These circular light rays fill the photon sphere at r ¼ 3m.
For constructing the shadow, we consider all light rays

that go from the position of the static observer at
ðtO; rO; ϑO ¼ π=2;φO ¼ 0Þ into the past. They leave the

FIG. 1. Carter-Penrose diagram of the Kottler spacetime. The
picture shows only the part of spacetime that is of relevance to us:
The domain of outer communication I, the black-hole region II
and the region beyond the (future) cosmological horizon III. A
signal (i.e., a future-oriented causal worldline) that starts some-
where in the domain of outer communication may do one of three
things: (i) It may stay inside I forever, approaching future
timelike infinity iþ; examples are the circular lightlike geodesics
at r ¼ 3m. (ii) It may cross the black-hole horizon and end up in
the singularity at r ¼ 0; examples are the ingoing radial lightlike
geodesics. (iii) It may cross the cosmological horizon and go to
future null infinityIþ; examples are the outgoing radial lightlike
geodesics.—The Carter-Penrose diagram of the (maximal)
Kottler spacetime was first determined by Gibbons and
Hawking [19].

BLACK HOLE SHADOW IN AN EXPANDING UNIVERSE … PHYS. REV. D 97, 104062 (2018)

104062-3



observer at an angle θ with respect to the radial line that
satisfies

tan θ ¼ lim
Δx→0

Δy
Δx

; ð10Þ

see Fig. 2. From the Kottler metric (1) we read that Δx and
Δy satisfy, in the desired limit,

tan θ ¼ rdφ

ð1 − 2m
r − Λ

3
r2Þ−1=2dr

����
r¼rO

: ð11Þ

Expressing dr=dφ with the help of the orbit equation (8)
results in

tan2θ ¼ rO − 2m − Λ
3
r3O

ð E2

c2L2 þ Λ
3
Þr3O − rO þ 2m

: ð12Þ

By elementary trigonometry,

sin2θ ¼
1 − 2m

rO
− Λ

3
r2O

E2

c2L2 r2O
: ð13Þ

The shadow is constructed in the following way, see
Fig. 3. We assume that there are light sources everywhere in
the domain of outer communication but not between the
observer and the black hole. Each point in the observer’s
sky corresponds to a light ray issuing from the observer
position into the past. We assign darkness (respectively
brightness) to those directions which correspond to light
rays that go to the horizon at rH1 (respectively to the
horizon at rH2). The boundary of the shadow corresponds
to light rays that spiral asymptotically towards circular
lightlike geodesics at r ¼ 3m. Therefore, the angular radius
of the shadow is found be equating E2=L2 to the constant of
motion that corresponds to the circular light ray at r ¼ 3m.
Substituting from (9) into (13) yields the angular radius θstat
of the shadow as it is seen by a static observer,

sin2θstat ¼
1 − 2m

rO
− Λ

3
r2O

ð 1
27m2 − Λ

3
Þr2O

: ð14Þ

θstat varies from 0 (bright sky) to π (dark sky) when the
observer position rO varies from rH2 to rH1. For rO ¼ 3m,
we have θstat ¼ π=2, i.e., half of the sky is dark; see Fig. 4.
Eq. (14) is equivalent to a result found by Stuchlík and

Hledík [8]. For Λ → 0, (14) reduces of course to the
formula for the shadow of a Schwarzschild black hole
which was first calculated by Synge [1]. The word
“shadow” is used neither by Synge nor by Stuchlík and
Hledík. They calculated what they called the “escape cone”
of light which is the complement of the shadow.

FIG. 2. Definition of the angle θ.

FIG. 3. Formation of the shadow as seen by a static observer in the Kottler spacetime. The Kottler metric has a black hole event horizon
at rH1 and a cosmological event horizon at rH2. The observer is at radial coordinate rO. Without loss of generality, we consider light rays
in the equatorial plane and we assume that the observer is located on the x-axis. If the observer “emits light rays into the past,” some of
them go towards the horizon at rH1 while others, after approaching the black hole, go towards the horizon at rH2. The borderline cases
between these two classes are light rays which asymptotically spiral towards the photon sphere at r ¼ 3m which is filled with unstable
circular light orbits. In the case of light sources distributed everywhere in the domain of outer communication but not between the black
hole and the observer, the cone bounded by light rays that spiral towards the photon sphere will be empty, so the observer will see the
shadow as a black disk of angular radius θstat. We have extended the tangents to the initial directions of these light rays in the coordinate
picture by straight dashed lines up to the plane x ¼ 0. This dashed cone has no coordinate-independent meaning, but it shows that
application of the naive Euclidean formula tan θstat ¼ 3m=rO gives an angular radius of the shadow that is smaller than the correct one.
Also note that the Euclidean formula is independent of Λ whereas the correct one, given by (14), is not.
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III. SHADOW IN THE KOTTLER SPACETIME
AS SEEN BY AN OBSERVER COMOVING

WITH THE EXPANDING UNIVERSE

We will now turn to the shadow as it is seen by an
observer who is comoving with the cosmic expansion. To
that end we introduce on the Kottler spacetime a new
coordinate system ðt̃; r̃; ϑ̃ ¼ ϑ; φ̃ ¼ φÞ which is related to
the old coordinate system by

r ¼ r̃eH0 t̃

�
1þ m

2r̃
e−H0 t̃

�
2

; ð15Þ

t ¼ t̃þ
Z

r̃eH0 t̃

w0

H0ð1þ m
2wÞ6wdw

c2ð1 − m
2wÞ2 −H2

0w
2ð1þ m

2wÞ6
ð16Þ

where

H0 ¼
ffiffiffiffi
Λ
3

r
c ð17Þ

and w0 is an integration constant that has to be chosen
appropriately. If we differentiate (15) and (16), we find the
relation between the coordinate differentials,

dr ¼ eH0 t̃

�
1 −

m2

4r̃2
e−2H0 t̃

�
ðdr̃þ r̃H0dt̃Þ; ð18Þ

cdt¼ð1− m
2r̃e

−H0 t̃Þ2cdt̃þH0

c r̃e
2H0 t̃ð1þ m

2r̃e
−H0 t̃Þ6dr̃

ð1− m
2r̃e

−H0 t̃Þ2−H2
0

c2 r̃
2e2H0 t̃ð1þ m

2r̃e
−H0 t̃Þ6

: ð19Þ

Inserting these expressions into (1) gives us the Kottler
metric in the new coordinates,

g̃μνdx̃μdx̃ν ¼ −
�
1 −

m
2r̃

e−H0 t̃

�
2
�
1þ m

2r̃
e−H0 t̃

�
−2
c2dt̃

þ e2H0 t̃

�
1þ m

2r̃
e−H0 t̃

�
4

ðdr̃þ r̃dΩ2Þ: ð20Þ

In this coordinate system, observers on t̃ lines see an
exponentially expanding universe with a (time-independent)
Hubble constant H0. We call them the comoving observers,
where “comoving” refers to the cosmic expansion, see Fig. 5.
The twiddled coordinates are known as the McVittie coor-
dinates, referring to the 1933work byMcVittie [20] on amore
general class of spacetimes, although for the Kottler metric,
Robertson [21] had used these coordinates already in 1928.
ForH0 → 0, theKottler spacetime in the Robertson-McVittie
representation (20) reduces to the Schwarzschild spacetime in
isotropic coordinateswhile form → 0 it reduces to the steady-
state universe, i.e., to one half of the de Sitter spacetime in
Robertson-Walker coordinates adapted to a spatially flat
slicing.
If solved for the differentials of the twiddled coordinates,

(18) and (19) can be expressed as

dt̃ ¼ dt −
H0rdr

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q �
1 − 2m

r − H2
0
r2

c2

� ; ð21Þ

dr̃
r̃
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q
dr

r
�
1 − 2m

r − H2
0
r2

c2

� −H0dt: ð22Þ

This transformation can be equivalently rewritten in terms
of the Gaussian basis vector fields as

∂
∂ t̃ ¼

ð1 − 2m
r Þ�

1 − 2m
r − H2

0
r2

c2

� ∂
∂tþH0r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r ∂
∂r ; ð23Þ

FIG. 4. Angular radius θstat of the shadow plotted against the
observer position rO. The picture is for

ffiffiffiffiffiffiffiffiffi
Λ=3

p ¼H0=c¼0.15m−1.
The dashed (red) lines mark the horizons at r¼rH1 and r¼rH2.

FIG. 5. Worldlines of the comoving observers in the r−t
coordinate system. As in Fig. 4, we have chosen

ffiffiffiffiffiffiffiffiffi
Λ=3

p ¼H0=c¼
0.15m−1. Theworldlines of the comovingobservers are shownhere
in the region between the two horizonswhich are, again, marked by
dashed (red) lines. This corresponds to the region I in Fig. 1. If
extended beyond the cosmological horizon, the worldlines of the
comoving observers fill the regions I and III in Fig. 1 and terminate
at Iþ.
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r̃
∂
∂r̃ ¼

H0r2

c2
�
1 − 2m

r − H2
0
r2

c2

� ∂
∂tþ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r ∂
∂r : ð24Þ

We want to find the angular radius θcomov of the shadow
as it is seen by a comoving observer. We have calculated in
(14) the angular radius θstat of the shadow for a static
observer. The angle θcomov we are looking for is related to
θstat by the standard aberration formula

sin2θcomov ¼
�
1 −

v2

c2

�
sin2θstat

ð1 − v
c cos θstatÞ2

ð25Þ

where v is the three-velocity of the comoving observer with
respect to the static observer at the same observation event.
Here we have to be careful when expressing cos θstat with
the help of our formula (14) for sin2 θstat: We know from the
preceding section that θstat lies between π=2 and π for
rH1 < rO < 3m and that it lies between 0 and π=2 for
3m < rO < rH2. Therefore, we rewrite (25) as

sin2θcomov ¼
�
1 −

v2

c2

�
sin2θstat

ð1� v
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2θstat

p
Þ2

ð26Þ

wherewe have to choose the upper sign in the domain rH1 <
rO < 3m and the lower sign in the domain 3m < rO < rH2.
The three-velocity v has to be calculated from the

special-relativistic equation

gμνU
μ
statUν

comov ¼
−c2ffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2

q ð27Þ

where Uμ
stat∂=∂xμ is the four-velocity vector of the static

observer andUμ
comov∂=∂xμ is the four-velocity vector of the

comoving observer. The former is proportional to ∂=∂t
while the latter is proportional to ∂=∂ t̃,

Uμ
stat

∂
∂xμ ¼ Nstat

∂
∂t ; ð28Þ

Uμ
comov

∂
∂xμ¼Ncomov

∂
∂ t̃

¼Ncomov

0
B@ ð1−2m

r Þ�
1−2m

r −
H2

0
r2

c2

� ∂
∂tþH0r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2m
r

r ∂
∂r

1
CA;

ð29Þ

where in the last equality we have used (23). The factors
Nstat and Ncomov follow from the normalization condition,

−c2 ¼ gμνU
μ
statU

ν
stat

¼ −c2N2
stat

�
1 −

2m
r

−
H2

0r
2

c2

�
; ð30Þ

−c2 ¼ gμνU
μ
comovUν

comov ¼ −c2N2
comov

�
1 −

2m
r

�
; ð31Þ

hence, (28) and (29) yield

Uμ
stat

∂
∂xμ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r − H2
0
r2

c2

q ∂
∂t ; ð32Þ

Uμ
comov

∂
∂xμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q
�
1 − 2m

r − H2
0
r2

c2

� ∂
∂tþH0r

∂
∂r : ð33Þ

Inserting these expressions for Uμ
stat and Uν

comov into (27)
results in

1 −
v2

c2
¼ 1 − 2m

r − H2
0
r2

c2

1 − 2m
r

ð34Þ

which is equivalent to

v ¼ H0rffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r

q : ð35Þ

From (34) we read that v tends to c if one of the two horizons
is approached; this is clear because on the horizons the
worldlines of the static observers become lightlike. Between
the two horizons, v is decreasing from c to a local minimum
at the photon sphere and then increasing again to c, see Fig. 6.
We can now calculate θcomov by inserting (14) and (35)

with r ¼ rO into (26).After some elementary algebrawe find

sin θcomov ¼
ffiffiffiffiffi
27

p
m

rO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
rO

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

27H2
0m

2

c2

s

∓
ffiffiffiffiffi
27

p
mH0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

27m2

r2O

�
1 −

2m
rO

�s
: ð36Þ

This equation makes sense for all momentary observer
positions rO with rH1 < rO < ∞, although for the deriva-
tion it was assumed that rH1 < rO < rH2. This reflects the

FIG. 6. Three-velocity v of a comoving observer relative to a
static observer at the same event, plotted as a function of the
radius coordinate rO. As in the preceding pictures, we have
chosen

ffiffiffiffiffiffiffiffiffi
Λ=3

p ¼ H0=c ¼ 0.15 m−1 and the dashed (red) lines
mark the horizons.
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fact that the worldlines of the comoving observers may be
analytically extended beyond the cosmological horizon. In
(36), we have to choose the upper sign in the domain rH1 <
rO < 3m and the lower sign in the domain 3m < rO < ∞;
for rO ¼ 3m the term with the∓ sign is equal to zero. (36)
gives us the angular radius of the shadow as it is seen by a
comoving observer on his way from the inner horizon
through the outer horizon to infinity. Recall that a comov-
ing observer has a constant twiddled radius coordinate,
r̃O ¼ constant; hence, when we express rO in terms of r̃O
and t̃O with the help of (15) we get from (36) the angle
θcomov as a function of the time coordinate t̃O.
If one of the horizons is approached,

1

rO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
rO

s
→

H0

c
: ð37Þ

For the inner horizon, we have to use the upper sign in
(36). Then (37) yields

sin θcomov → 0 for rO → rH1: ð38Þ

The angle θcomov itself goes to π. For the outer horizon,
however, we have to use the lower sign in (36). Then (37)
yields

sinθcomov→2
ffiffiffiffiffi
27

p H0m
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

27H2
0m

2

c2

s
for rO→rH2: ð39Þ

Moreover, from (36) with the lower sign we read that

sin θcomov →
ffiffiffiffiffi
27

p H0m
c

for rO → ∞: ð40Þ

When the comoving observer starts at the inner horizon, the
shadow covers the entire sky, θcomov ¼ π. On his way out to
infinity, the shadow monotonically shrinks to a finite value
given by (40), see Fig. 7. Nothing particular happens when
the observer crosses the outer horizon. Note that the
(future) cosmological horizon is an event horizon for all
observers who stay forever in the domain of outer com-
munication, in particular for the static observers, but not for
the comoving observers. This can be clearly seen from
Fig. 1: Even after crossing this horizon a comoving
observer can receive light signals from region I.
According to Eq. (40), the angular radius θcomov of the

shadow of very distant black holes is determined by the
cosmological constant and of course, by the mass of
the black hole. With a value of Λ ≈ 1.1 × 10−46 km−2,
which is in agreement with present day observations, (17)
gives us a Hubble time ofH−1

0 ≈ 5 × 1017 s. Upon inserting
this value into (40) we find for a supermassive black
hole of 1010 Solar masses in the limit rO → ∞ an angular
radius of θcomov ≈ 0.1 microarcseconds. Present-day VLBI
technology allows to resolve angles of a few dozen

microarcseconds, so a resolution of 0.1 microarcseconds
cannot be achieved at the moment but it could come into
reachwithin one or two decades. Also, the existence of black
holeswithmasses ofmore than 1010 Solarmasses, for which
the shadow would be bigger, cannot be ruled out. Note,
however, that this line of argument does not necessarily
imply that the shadows of very distant black holes will
become observable with VLBI instruments in a few years’
time. Firstly, we have to keep in mind that our calculation
was done in a universewhere the cosmic expansion is driven
by the cosmological constant only. In a realistic model of the
Universe, taking the matter content into account, the Hubble
“constant” is a function of time; the chosen value of the
Hubble time, H−1

0 ≈ 5 × 1017 s is a reasonably good
approximation for the present time (and an even better
approximation for later times, when the cosmological
constant dominates even more over matter), but at earlier
times the Hubble time had different values. So one would
have to repeat our calculation in a universe with a time-
dependent Hubble “constant” to see how the matter content
influences our result. Secondly, for the observability of the
shadow it is necessary not only that the angular radius of the
shadow is big enough but also that there are sufficiently
bright light sources that can serve as a backdrop against
which the shadow can be observed. This requires calculat-
ing, for a realisticmodel of ourUniverse, the influence of the
spacetime geometry on the surface brightness of distant light
sources.

IV. SHADOW FOR OBSERVERS
AT LARGE DISTANCES

In the preceding sections, we have calculated the shadow
for any possible observer position, i.e. rH1 < rO < rH2 for
static observers and rH1 < rO < ∞ for comoving observ-
ers. In this section, we want to derive approximate formulas
for the case that the observer is far away from the black
hole, rO ≫ m. Physically this means that over a large part
of a light ray to the observer the effect of the cosmic
expansion dominates over the gravitational attraction

FIG. 7. Angular radius θcomov of the shadow plotted against the
observer position rO. As before, we have chosen

ffiffiffiffiffiffiffiffiffi
Λ=3

p ¼
H0=c ¼ 0.15 m−1 and the dashed (red) lines mark the horizons.
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by the black hole. Clearly, for a static observer the
condition rO ≫ m can be satisfied only if rH2 ≫ m. No
such restriction is necessary for comoving observers.
Therefore, we will consider the cases of static and comov-
ing observers separately.

A. Static observer

As a preliminary note, we want to discuss an important
difference between the black-hole shadow in Schwarzschild
and Kottler spacetimes that arises from the fact that
the former is asymptotically flat whereas the latter is not.
In the case of the Schwarzschildmetric, the angular radius of
the shadow (as seen by a static observer) can be written as

ðSchwarzschildÞ sin2θstat ¼
ð1 − 2m

rO
Þb2cr

r2O
; ð41Þ

where bcr is the critical value of the impact parameter b ¼
cL=E corresponding to photons on unstable circular orbits
filling the photon sphere. In the Schwarzschild metric, the
radius of the photon sphere equals 3m and

ðSchwarzschildÞ bcr ¼ 3
ffiffiffi
3

p
m; ð42Þ

see (9) with Λ ¼ 0.
With increasing distance rO, both the sine of the angular

radius of the shadow and the angular radius itself tend to
zero. This is because the denominator of the fraction in (41)
increases while the factor in brackets in the numerator tends
to unity. Therefore, for large distances the angular size of
the shadow can be written as

ðSchwarzschildÞ sin2θstat ≈
b2cr
r2O

; rO ≫ m: ð43Þ

This approach reduces the determination of the angular
size of the shadow at large distances to the calculation of the
critical value of the impact parameter: knowing the critical
impact parameter, one gets an approximate value for sin θstat
after dividing by rO. Bardeen [2] has used this approach for
the more general case of the Kerr metric. In this case, the
shadow is not circular; its shape for distant observers is
determined by two impact parameters. Accordingly, the
angular radii of the shadow can be approximately found by
dividing these impact parameters by the (Boyer-Lindquist)
radius coordinate rO of the observer.
This method works for metrics that are asymptotically

flat at infinity. The Kottler spacetime, however, is not
asymptotically flat; the metric coefficient fðrÞ does not
tend to unity for large r. In this metric, the angular radius of
the shadow (as seen by a static observer) can be written as

ðKottlerÞ sin2θstat ¼
ð1 − 2m

rO
− Λ

3
r2OÞb2cr

r2O
; ð44Þ

where the critical value of the impact parameter b ¼ cL=E
is given by (9),

ðKottlerÞ bcr ¼
3

ffiffiffi
3

p
m

ð1 − 9Λm2Þ1=2 : ð45Þ

This value of the critical impact parameter for the Kottler
metric is well known, see e.g. [22,23].
For Λ ≠ 0, the dependence of the shadow size on rO is

very different from the Schwarzschild case. With increasing
rO, the denominator of the fraction in (44) increases, while
the factor in brackets in the numerator tends to zero if rO
approaches its maximal value rH2. Therefore for the Kottler
spacetime the determination of the angular size of the
shadow at large distances does not reduce to the calculation
of the critical value of the impact parameter:

ðKottlerÞ sin2θstat ≉
b2cr
r2O

; rO ≫ m: ð46Þ

Note that in the above argument we implicitly assume that
Λ is sufficiently small such that rH2 ≫ m because other-
wise the condition rO ≫ m could not hold for a static
observer.
Let us now approximate formula (14) for static observers

at large distances, rO ≫ m. As this requires rH2 ≫ m, the
equation for the outer horizon

1 −
2m
rH2

−
Λ
3
r2H2 ¼ 0 ð47Þ

can be approximated by

1 −
Λ
3
r2H2 ≈ 0; r2H2 ≈

3

Λ
: ð48Þ

Combining (48) with the condition that rH2 ≫ m, we
obtain a restriction on the value of Λ:

Λm2 ≪ 1: ð49Þ

With rO ≫ m and (49), Eq. (14) for the angular size of the
shadow for static observers can be simplified to

sin2θstat ≈
27m2

r2O

�
1 −

Λ
3
r2O

�
for rO ≫ m: ð50Þ

B. Comoving observer

In the case of comoving observers, the condition rO ≫ m
does not require any restriction on rH2 because such
observers can exist both inside and outside the cosmological
horizon.
For rO ≫ m, Eq. (36) for the angular size of the shadow

for comoving observers is simplified to
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sin θcomov ≈
ffiffiffiffiffi
27

p
m

rO

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

27H2
0m

2

c2

s
þH0rO

c

1
CA: ð51Þ

Here we have to choose the þ sign in (36) because the
condition rO ≫ m implies that rO > 3m. For rO → ∞, we
recover, of course, (40).
If we want to apply the approximation formula (51) for

comoving observers near rH2, we need to assume that
rH2 ≫ m. As we already know, this requires (48) and (49)
which read, in terms of H0,

rH2 ≈
c
H0

;
H2

0m
2

c2
≪ 1: ð52Þ

Then we obtain from (51) the approximate formula

sin θcomov ≈ 2
ffiffiffiffiffi
27

p H0m
c

for rO ≈ rH2 ≫ m: ð53Þ

V. CONCLUSIONS

In this paper, we have calculated the angular radius of the
shadow for an observer that is comoving with the cosmic
expansion in Kottler (Schwarzschild–de Sitter) spacetime.
As far as we know, the shadow for a comoving observer in
an expanding universe was not calculated before. The
resulting expression is presented in formula (36).
Quite generally, the cosmic expansion has a magnifying

effect on the shadow. This is in agreement with the well-
known fact that the image of an object is magnified by
aberration if the observer moves away from the object.
Moreover, it is found that the shadow shrinks to a finite
value if the comoving observer approaches infinity, see
formula (40). As a consequence, even the most distant
black holes have a shadow whose angular radius is bigger
than the bound given by (40).
The magnification effect caused by a cosmological

constant of Λ ≈ 10−46 km−2 is rather strong: for a black
hole of 1010 Solar masses we found that even in the limit
rO → ∞ the angular radius of the shadow is not smaller
than θcomov ≈ 0.1 microarcseconds. This is only two orders
of magnitude beyond the resolvability of present-day VLBI
technology. However, there are two caveats. Firstly, our

calculations where done in the Kottler spacetime in which
the cosmic expansion is driven by the cosmological
constant only. It has to be checked how our results are
to be modified in a more realistic spacetime model, taking
the matter content of the Universe into account. Secondly,
the shadow can be observed only if there is a backdrop of
sufficiently bright light sources against which the shadow
can be seen as a dark disk. Therefore, when doing the
calculations in a realistic model of our Universe one would
also have to estimate the influence of the spacetime
geometry on the surface brightness of light sources.
Note that a comoving observer in the Kottler spacetime

can exist behind the cosmological event horizon, in contrast
to a static observer, and that he can see the shadow until he
ends up at future null infinity. Simplified approximative
formulas for distant observers, both static and comoving,
are presented in Sec. IV.
In an Appendix, we demonstrate that our results for the

angular size of the shadow can be also obtained by using
formulas for the deflection angle in Kottler spacetime
derived by Lebedev and Lake [14,15].
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APPENDIX: DERIVATION OF THE ANGULAR
SIZE OF THE SHADOW USING RESULTS

OF LEBEDEV AND LAKE

Here we show how to obtain formulas (26), (36) and (51)
using results from Lebedev and Lake [14] (cf. [15]) on the
deflection of light in the Kottler (Schwarzschild–de Sitter)
spacetime.
(i) Formula (128) from [14] is

cosðαradialÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ
r2
0

− fðrÞ
r2

q
þ
� ffiffiffiffiffiffiffiffi

fðr0Þ
r2
0

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ
r2
0

− fðrÞ
r2

q ��
Ur2

fðrÞ −
Urffiffiffiffiffiffi
fðrÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ur2

fðrÞ
q �

� ffiffiffiffiffiffiffiffi
fðr0Þ
r2
0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ur2

fðrÞ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ
r2
0

− fðrÞ
r2

q
Urffiffiffiffiffiffi
fðrÞ

p
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Ur2

fðrÞ
q

− Urffiffiffiffiffiffi
fðrÞ

p
� : ðA1Þ

Here αradial is the angle, as measured by a radially
moving observer in the Kottler spacetime, between a
radial light ray and a light ray with r0 as radial coordinate
of the point of closest approach. The observer’s radial

coordinate is r and the observer’s four-velocity is
U ¼ ðUt; Ur; 0; 0Þ. In this appendix, we follow Lebedev
and Lake and choose units such that c ¼ 1. Then the
function fðrÞ is
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fðrÞ ¼ 1 −
2m
r

−H2
0r

2: ðA2Þ

Note that in our notation the observer’s radial coordinate is
denoted rO which should not be confused with the r0 of
Lebedev and Lake.
To rederive the formula for the sine of the angular radius

of the shadow, sin θcomov, we have to choose the minimal
coordinate distance as r0 ¼ 3m, the observer’s position as
r ¼ rO, and the observer’s four-velocity asUr ¼ H0rO, see
(33). With these substitutions αradial in (A1) gives us θcomov.
To rewrite (A1) in a more compact way, we use the

equation

Ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
fðrOÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ur2

fðrOÞ

s
; ðA3Þ

and we introduce the notation

w1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

h2ð3mÞ
h2ðrOÞ

s
; wt ≡

ffiffiffiffiffiffiffiffiffiffiffiffi
fðrOÞ

p
Ut;

wr ≡ Urffiffiffiffiffiffiffiffiffiffiffiffi
fðrOÞ

p : ðA4Þ

Here the function hðrÞ is defined by

h2ðrÞ ¼ r2

fðrÞ ¼
r2

1 − 2m
r −H2

0r
2
; ðA5Þ

similar to our previous work [9].
The quantities w1, wt, wr are introduced for convenience

only and have no specific physical meaning. In particular,
they are not the covariant components of any four-vector.
Note that the expression h2ð3mÞ=h2ðrOÞ coincides with
sin2 θstat from formula (14). With this notation the expres-
sion (A1) takes the following form (compare with Eq. (129)
of [14]):

cos θcomov ¼
w1 þ ð1þ w1Þwrðwr − wtÞ
ðwt − w1wrÞðwt − wrÞ

: ðA6Þ

From UμUμ ¼ −1, we find that w2
t − w2

r ¼ 1, hence

ðwt − w1wrÞðwt − wrÞ ¼ 1þ ð1þ w1Þwrðwr − wtÞ: ðA7Þ

This allows us to rewrite (A6) as

cos θcomov ¼
w1 þ zw
1þ zw

; zw ≡ ð1þ w1Þwrðwr − wtÞ:

ðA8Þ

As a consequence,

sin2θcomov ¼ 1 −
ðw1 þ zwÞ2
ð1þ zwÞ2

¼ 1þ 2zw − w2
1 − 2w1zw

ð1þ zwÞ2

¼ ð1 − w2
1Þðwt − wrÞ2

ð1þ zwÞ2
¼ 1 − w2

1

ðwt − w1wrÞ2
: ðA9Þ

Note that the numerator 1 − w2
1 coincides with sin2 θstat

from formula (14).
From these results, we can reobtain a formula for the

shadow in the form of (26) in the following way. We
substitute Ur ¼ H0rO into (A3) and (A4) and obtain:

wt ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ; wr ¼

vffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ðA10Þ

Here we have introduced for compactness the variable v in
the same way as in (34) and (35). With these expressions,
we can transform formula (A9) to (26) with v given by (35).
Lebedev and Lake assume that the radial coordinate of

the observer is bigger than the radial coordinate of the point
of the closest approach of the light ray. In our problem, this
means that rO > 3m. Therefore we get from their approach
Eq. (26) only with the minus sign in the denominator. If
rH1 < rO < 3m, we have to use Eq. (26) with the plus sign
because cos θstat < 0 in this case.
(ii) If we want to obtain a formula for the shadow in the

form of (36), we can perform the following transformation:

sin θcomov ¼
sin θstat

wt � w1wr
¼ sin θstatðwt ∓ w1wrÞ

w2
t − w2

1w
2
r

¼ sin θstatðwt ∓ w1wrÞ
1þ w2

rsin2θstat
: ðA11Þ

By substituting Ur ¼ H0rO into (A3) and (A4) we re-
cover (36).
(iii) Our approximative formula (51) for the size of the

shadow as seen by a distant observer can also be derived
using formula (132) from [14]:

cosðαcomovingÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ
r2
0

− fm¼0ðrÞ
r2

q
−

ffiffiffiffiffiffiffiffi
fðr0Þ
r2
0

q ffiffiffi
Λ
3

q
rffiffiffiffiffiffiffiffi

fðr0Þ
r2
0

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ
r2
0

− fm¼0ðrÞ
r2

q ffiffiffi
Λ
3

q
r;

ðA12Þ

where

fm¼0ðrÞ ¼ 1 −
Λ
3
r2: ðA13Þ

Then the four-velocity of a comoving observer in static
coordinates is

Uμ
comoving ¼

�
1

fm¼0ðrÞ
;

ffiffiffiffi
Λ
3

r
r; 0; 0

�
: ðA14Þ

Substituting r0 ¼ 3m, r ¼ rO and
ffiffiffi
Λ
3

q
¼ H0 we rewrite

(A12) in our notation as

PERLICK, TSUPKO, and BISNOVATYI-KOGAN PHYS. REV. D 97, 104062 (2018)

104062-10



cos θcomov ¼
w1 −H0rO
1 − w1H0rO

; ðA15Þ

where

w1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

9m2fm¼0ðrOÞ
r2Ofð3mÞ

s
: ðA16Þ

By applying the transformation

sin θcomov ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

0r
2
O

p
1 − w1H0rO

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

0r
2
O

p
ð1þ w1H0rOÞ

1 − w2
1H

2
0r

2
O

ðA17Þ

and simplifying sin θcomov with rO ≫ m, we recover (51).
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