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We model the quasicircular inspiral of a compact object into a more massive charged black hole.
Extreme and intermediate mass-ratio inspirals are considered through a small mass-ratio approximation.
Reissner-Nordström spacetime is used to describe the charged black hole. The effect of radiation reaction
on the smaller body is quantified through calculation of electromagnetic and gravitational energy fluxes via
solution of Einstein’s and Maxwell’s equations. Inspiral trajectories are determined by matching the orbital
energy decay rate to the rate of radiative energy dissipation. We observe that inspirals into a charged black
hole evolve more rapidly than comparable inspirals into a neutral black hole. Through analysis of a variety
of inspiral configurations, we conclude that electric charge is an important effect concerning gravitational
wave observations when the charge exceeds the threshold jQj=M ≳ 0.071

ffiffiffi
ϵ

p
, where ϵ is the mass ratio.
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I. INTRODUCTION

Gravitational wave observations of compact binary sys-
tems have triggered a new era of astronomy. Successful
Advanced LIGO [1] and Advanced Virgo [2] observations of
compact binary mergers [3–8] have already solidified the
foundations of gravitational physics [9] and informed studies
of compact object formation and evolution [10,11]. Over the
next decade, ground-based gravitational wave detection rates
will rise sharply through sensitivity enhancements [12],
establishment of the KAGRA [13] detector, and the likely
construction of LIGO-India [14]. Ground-based gravitational
wave detectors are sensitive in the broadband frequency range
10 Hz≲ ν≲ 104 Hz, which is suitable for observation of
compact binary systems with total mass 1 M⊙ ≲M þ μ ≲
103 M⊙ [15], where M and μ are the masses of each binary
component. Ground-based gravitational wave detectors will
be complemented strongly by the space-based LISA detector
[16] to be launched in 2034 as the European Space Agency’s
L3 mission. LISA will be sensitive in the broadband fre-
quency range 10−5 Hz≲ ν≲ 1 Hz, which is suitable for
observation of compact binary systems with total mass
100 M⊙ ≲M þ μ≲ 107 M⊙ [17]. Finally, pulsar timing
arrays such as IPTA [18] probe the lowest gravitational wave
frequencies in the range 10−9 Hz≲ ν≲ 10−6 Hz, which is
suitable for observation of compact binary systems with total
mass 108M⊙≲Mþμ≲1010M⊙ [19].
Regardless of the detection scheme, theoreticalmodels are

instrumental in gravitational wave detection via matched

filtering. Theoretical models are also needed to determine
the parameters describing gravitational wave sources. Com-
pact binary systems are described by a host of parameters
including the mass of each binary component, the spin of
each binary component, and the orbital eccentricity, separa-
tion, and inclination [20]. One potential property that is often
disregarded in theoretical models of compact objects is
electric charge. Indeed, it is straightforward to argue that
any excess electric charge would be neutralized rapidly in
realistic scenarios [21]. However, mechanisms predicting the
existence of charged compact objects have been proposed
through classical arguments [22–24] and more exotic
arguments such as those involving dark matter [25–27].
Furthermore, even if currently proposed charge explanations
were improbable, it would still be useful to investigate the
existence of charged compact objects in case of a charging
mechanism that is yet undiscovered. Therefore, the purpose
of this paper is to quantify how strongly the gravitational and
electromagnetic dynamics of compact binary systems are
affected by introducing electric charge to one of the binary
components.
The above scenario is a version of the relativistic two-

body problem, with solutions accessible through Einstein’s
and Maxwell’s equations (in curved spacetime). Exact
solutions of the relativistic two-body problem are not
generally known, but depending on the properties of the
system, various approximation schemes are available.
When the binary components have comparable masses
and a small separation, no analytic approximation schemes
apply. Instead, numerical approximations are made to solve
the nonlinear Einstein-Maxwell equations on a supercom-
puter. This scheme is called numerical relativity. Numerical*tosburn@emory.edu
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relativity has been used to simulate head-on collisions
of charged black holes [28,29], but little else has been
done with numerical relativity regarding charged compact
binary systems. Also in the comparable mass and small
separation regime, analytic kludges have been used to
develop charged compact binary models that predict electro-
magnetic radiation from nearby accelerated particles [30].
Numerical relativity is not well suited to simulate compact
binary systems when the masses are highly dissimilar or the
separation is large (due to catastrophic separation of time-
scales), but alternate schemes apply in those cases.
When the binary components have a large separation,

post-Newtonian theory describes compact binary dynamics
through an expansion in powers of the small velocity. Some
studies considering charged compact binaries have applied
post-Newtonian theory [31], but very little has concerned
gravitational wave astronomy. When the binary component
masses differ significantly, an expansion in powers of the
small mass ratio, ϵ≡ μ=M, called black hole perturbation
theory (BHPT), is applicable. An advantage of BHPT is
that it imposes no restrictions on the velocity or gravitational
field strength while maintaining validity in the small mass-
ratio regime (ϵ ≪ 1). This work applies BHPT to systems
where the more massive binary component (with massM) is
charged and the lessmassive binary component (withmassμ)
is neutral. Because there is an upper limit on neutron star
masses, the larger binary component must be a black hole
when ϵ ≪ 1 (ifμ ≳ 1 M⊙). For simplicitywe assume that the
charged black hole does not have spin. Such black holes are
described by Reissner-Nordström (RN) spacetime. Note that
some models explaining the presence of electric charge
require a spinning black hole, and for those cases the analysis
of this work would be qualitative in nature.
A number of studies have applied BHPT to RN space-

time. Zerilli was the first to derive the equations describing
gravitational and electromagnetic perturbations of RN
black holes [32]. Zerilli’s equations were then solved to
model radiation from the radial infall of a compact object
into a charged black hole [33,34]. Recent work has
reproduced those results to quantify how electric charge
affects gravitational wave emission from radial plunges
[27]. Moncrief independently studied whether RN space-
time is stable under perturbations [35–37], and that work
was generalized to consider scattering by quasinormal
modes of RN black holes [38,39]. BHPT has also been
applied to describe how RN spacetime is perturbed by a
static particle [40]. Radiation reaction on the smaller binary
component occurs through a mechanism called the self-
force [41–44]. Self-force studies in charged black hole
spacetimes have been developed through scalar field toy
models [45,46], and the groundwork is being laid for
more realistic charged self-force scenarios [47–49]. Leading-
order self-force effects are accessible through an adiabatic
approximation [50]. Adiabatic approximations are equiva-
lent to time averaging the self-force. An advantage of
adiabatic approximations is that they are accessible through

dissipative flux calculations, which converge rapidly and
avoid the complexities of local regularization. Higher order
effects, such as the conservative part of the self-force, enter
through the postadiabatic expansion [51]. This work uses an
adiabatic approximation to model the quasicircular inspiral
of a point mass into a RN black hole.
The novel scientific achievements of this work are

summarized as follows. The master function formalism
originally developed by Moncrief [35–37] to simplify the
RN perturbation equations is generalized to the inhomo-
geneous case (see Appendices B and C). Using this
generalized formalism, we describe numerically the gravi-
tational and electromagnetic radiation from a compact
object in a circular orbit around a RN black hole (see
Sec. IV). From our numerical calculations we quantify the
rate at which orbital energy is dissipated by radiation for
arbitrary electric charge and orbital radius (see Sec. V).
Armed with the energy flux as a function of orbital radius,
we consider radiation reaction on the smaller binary
component through adiabatic and quasicircular approxi-
mations (see Sec. V). Our model is the first to describe the
inspiral of a small compact object into an arbitrarily
charged RN black hole to leading order in the postadiabatic
expansion. Potential observations of electromagnetic radi-
ation from this type of system are considered briefly (see
Sec. VII). Finally, our inspiral model is applied to quantify
the level at which electric charge could affect gravitational
wave observations (see Sec. VII).
Sections II and III and Appendix A establish the theo-

retical background that serves as the foundation for our
analysis. Section VI explains our numerical algorithm
and quantifies computational cost and accuracy. Finally,
Sec. VIII summarizes key results and investigates future
directions of inquiry related to charged compact binary
systems. Throughout this paper we adopt units such that
c ¼ G ¼ 1, μ0 ¼ ε−10 ¼ 4π, and we use the metric signature
ð−þþþÞ.

II. PERTURBATIONS OF A
CHARGED BLACK HOLE

We model the charged binary system using first-order
perturbations of the Einstein-Maxwell equations in RN
spacetime. In this scheme the mass ratio, ϵ≡ μ=M, is used
as a small parameter to expand the spacetime metric, gαβ,
and the electromagnetic potential four-vector, Aα,

gαβ ¼ gð0Þαβ þ gð1Þαβ þOðϵ2Þ; ð2:1Þ

Aα ¼ Að0Þ
α þ Að1Þ

α þOðϵ2Þ: ð2:2Þ

Aα and gαβ are governed by the Einstein-Maxwell equations

∇βFαβ ¼ 4πJα; Gαβ ¼ 8πTαβ; ð2:3Þ
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where Fαβ is the electromagnetic field tensor

Fαβ ¼ ∇αAβ −∇βAα; ð2:4Þ

Jα is the current density four-vector, Gαβ is the Einstein
tensor, and Tαβ is the stress-energy tensor

Tαβ ¼ μ
uαuβ

utr2p sin θp
δðr − rpÞδðθ − θpÞδðφ − φpÞ

þ 1

4π

�
Fα

γFβγ −
1

4
gαβFγνFγν

�
: ð2:5Þ

Here δ is the Dirac delta function, rp, θp, and φp denote the
time-dependent position of the small compact object, and
uα is its four-velocity. The first term in Eq. (2.5) represents
the stress energy of a point mass, and the last term in
Eq. (2.5) is the electromagnetic stress energy. The Einstein
tensor, Gαβ, is generated by applying a nonlinear second-
order differential operator to gαβ. The electromagnetic and
gravitational fields are coupled. The presence of electro-
magnetic terms in the stress-energy tensor introduces Aα

into the gravitational field equations, and the presence of
covariant derivatives (∇α) introduces gαβ into the electro-
magnetic field equations.
The leading-order terms in the small mass-ratio expan-

sion, gð0Þαβ and Að0Þ
α , are exact solutions of Eq. (2.3) describing

the larger binary component. Here gð0Þαβ is the RN metric (we
adopt Boyer-Lindquist coordinates),

gð0Þtt ¼ −f; gð0Þrr ¼ 1

f
; gð0Þθθ ¼ gð0Þφφ

sin2θ
¼ r2; ð2:6Þ

f ≡ 1 −
2M
r

þQ2

r2
: ð2:7Þ

All off-diagonal components of the RN metric vanish

(gð0Þαβ ¼ 0 when α ≠ β). The leading term in the electromag-

netic expansion, Að0Þ
α , is a vacuum solution of Maxwell’s

equations compatible with the RN metric,

Að0Þ
t ¼ Q

r
; Að0Þ

r ¼ Að0Þ
θ ¼ Að0Þ

φ ¼ 0: ð2:8Þ

The first-order gravitational and electromagnetic perturba-

tions, gð1Þαβ and Að1Þ
α , are determined by expanding Eq. (2.3)

through linear order in ϵ. We specialize to the case where the
smaller binary component has no electric charge by requir-
ing that Jα ¼ 0.
The spherical symmetry of RN spacetime admits a tensor

spherical harmonic decomposition of the electromagnetic
and gravitational perturbations. For each spherical harmonic
ðl; mÞ mode there are four radial functions describing the
electromagnetic perturbations and ten radial functions

describing the gravitational perturbations. The field equa-
tions conveniently decouple into two sets, odd-parity and
even-parity, based on how the tensor spherical harmonics
behave under a parity transformation. For equatorial source
motion, the odd-parity source terms vanish when lþm is an
even number, and the even-parity source terms vanish when
lþm is an odd number. In this scenario it is natural to
consider only the odd-parity field equations when lþm is
odd and only the even-parity field equations when lþm is
even. For full details see Appendix A.

III. REISSNER-NORDSTRÖM ORBITAL MOTION

In our perturbative scheme, the stress energy of the
smaller binary component sources the first-order fields.
Description of this source mechanism requires knowledge
of the orbital characteristics of the small compact object.
Ignoring radiation reaction effects, point masses follow
timelike geodesics of the background spacetime. Even
when radiation reaction is included, the trajectory will
continue to resemble a geodesic during short time intervals
(Δt ∼M). Inclusion of radiation reaction in the source
motion affects the system at a higher order than we are
considering. Therefore, our model uses geodesic motion to
describe the source terms present in the field equations.
Both circular and eccentric geodesics will be important

to consider [52], but this work focuses solely on circular
orbital motion. Chandrasekhar’s textbook [53] is a useful
reference for studying this section in detail. For circular
motion the components of the position vector are
rp ¼ const, θp ¼ π=2, and φp ¼ Ωt, where Ω is the
angular speed. Functions of r with a p subscript are
assumed to be evaluated at r ¼ rp (a useful example is
fp ¼ 1 − 2M=rp þQ2=r2p). The orbital specific energy, E,
and specific angular momentum, L, follow from sym-
metries of RN spacetime,

E ¼ rpfpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p − 3rpM þ 2Q2

q ; ð3:1Þ

L ¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpM −Q2

r2p − 3rpM þ 2Q2

s
: ð3:2Þ

It is useful to express uα in terms of the orbital energy and
angular momentum,

ut ¼ E=fp; uφ ¼ L=r2p; ur ¼ uθ ¼ 0: ð3:3Þ
The angular speed is the derivative of φp with respect to t,

Ω ¼ dφp

dt
¼ uφ

ut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpM −Q2

q
r2p

: ð3:4Þ

For each validM and Q there exists an orbital radius below
which circular motion is unstable. This orbit is referred to
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as the innermost stable circular orbit (ISCO), and its radius,
rISCO, satisfies a cubic equation with a single real root,

Mr3ISCO − 6M2r2ISCO þ 9MQ2rISCO − 4Q4 ¼ 0: ð3:5Þ

Under the effect of radiation reaction, the orbit will plunge
rapidly when rp < rISCO.
The angular speed has special importance in the field

equations through a mechanism involving the spherical
harmonic source decomposition. Orthogonality of our
angular basis is used to decompose the stress energy of
the point mass into tensor spherical harmonic modes. This
process involves integrating products of spherical harmonic
complex conjugates and Dirac delta functions, including
δðφ − ΩtÞ. Through this process the time-domain source
terms gain overall factors of e−imΩt. Periodicity of the
source implies periodicity of the solution to the linear
inhomogeneous field equations. The periodic nature of the
solution is amenable to analysis in the frequency domain
via Fourier series. In this scenario the frequency domain is
accessed through the replacement ∂t → −iωm, with
ωm ≡mΩ. See Appendix A for more details.

IV. MASTER EQUATIONS

For each spherical harmonic ðl; mÞ mode, the Einstein-
Maxwell equations reduce to a system of coupled ordinary
differential equations (ODEs) describing gravitational and
electromagnetic radial functions. Even-parity modes
involve ten coupled ODEs describing seven gravitational
and three electromagnetic radial functions, while odd-
parity modes involve four coupled ODEs describing three
gravitational and one electromagnetic radial function. We
reduce the number of even-parity radial functions from ten
to six and similarly reduce the number of odd-parity radial
functions from four to three through a suitable gauge choice
(the Regge-Wheeler gauge). Zerilli [32] and Moncrief
[35–37] demonstrated that further simplifications are pos-
sible by introducing gravitational and electromagnetic
“master functions.” Here we extend Moncrief’s master
function formalism to the inhomogeneous case (although
some alternate mathematical choices are made in this
work). For each even- or odd-parity mode, the radial

functions associated with gð1Þαβ are constructed from a single

gravitational master function, hevenlm ðrÞ or hoddlm ðrÞ, and the

radial functions associated with Að1Þ
α are constructed from

a single electromagnetic master function, aevenlm ðrÞ or
aoddlm ðrÞ. In order for the Einstein-Maxwell equations
to be satisfied, the master functions must satisfy a sim-
plified system of ODEs called the “master equations.”
Because the even-parity master equations have the same

general form as the odd-parity master equations, the even/
odd superscripts are omitted in this section. For full details
concerning the master equations see Appendix B. The
dipole (l ¼ 1) modes require some special treatment; see
Appendix C.
The master functions satisfy the following system of

ODEs:

�
d2

dr2�
þ ω2

m þ
�
αlm βlm

γlm σlm

���
hlm
alm

�
¼
�
Slm
Zlm

�
; ð4:1Þ

where r� is the tortoise coordinate

r� ¼ rþ r2þ
rþ− r−

ln

�
r− rþ
M

�
−

r2−
rþ− r−

ln

�
r− r−
M

�
: ð4:2Þ

The radial positions r� represent the inner (−) and outer (þ)
event horizons of the RN black hole,

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð4:3Þ

Note that dr�dr ¼ f−1. Also note the limiting behavior of r�,

lim
r→rþ

r� ¼ −∞; lim
r→∞

r� ¼ þ∞: ð4:4Þ

The ODE coefficients, αlm, βlm, γlm, σlm, and source terms,
Slm, Zlm, are each functions of r. The ODE coefficients and
source terms have different forms depending on the parity
(even/odd) of themaster function. One property shared by all
ODE coefficients is that they vanish approaching r ¼ rþ and
r ¼ ∞,

lim αlm
r�→�∞

¼ lim βlm
r�→�∞

¼ lim γlm
r�→�∞

¼ lim σlm
r�→�∞

¼ 0: ð4:5Þ

This property, in the context ofEq. (4.1), requires thathlm and
alm behave as traveling waves in the near horizon zone
(r − rþ ≪ M) and wave zone (r ≫ jωmj−1) with a wave-
length (measured according to r�) of 2π=jωmj. The r
dependence of the ODE sources involves Dirac delta
functions

�
SlmðrÞ
ZlmðrÞ

�
¼
�
Blm

Dlm

�
δðr− rpÞþ

�
Flm

Hlm

�
δ0ðr−rpÞ; ð4:6Þ

where Blm, Dlm, Flm, and Hlm are constants determined by
the orbital characteristics, and a prime denotes differentiation
with respect to r. Note that the θ and φ Dirac delta functions
present in Eq. (2.5) have been eliminated from Eq. (4.6)
through decomposition of the point mass stress energy into
spherical harmonic modes. Derivatives of the r Dirac delta
functions appear because the field equations are differ-
entiated in our master function formalism.
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Equation (4.1) has four independent homogeneous
solutions. We denote each independent homogeneous
solution with a superscript that implies certain boundary
behavior. The two “outgoing” homogeneous solutions
propagate toward r� ¼ þ∞ when r ≫ jωmj−1,
"
h0þlm
a0þlm

#
≃ eþiωmr�

�
1

0

�
;

"
h1þlm
a1þlm

#
≃ eþiωmr�

�
0

1

�
; ð4:7Þ

The two “downgoing” homogeneous solutions propagate
toward r� ¼ −∞ when r − rþ ≪ M,

"
h0−lm
a0−lm

#
≃ e−iωmr�

�
1

0

�
;

"
h1−lm
a1−lm

#
≃ e−iωmr�

�
0

1

�
: ð4:8Þ

This outgoing and downgoing set of homogeneous sol-
utions is not unique. We could form a new basis of
homogeneous solutions through linear combinations of
Eqs. (4.7) and (4.8). However, our chosen basis is con-
venient for finding the inhomogeneous solution represent-
ing wave propagation away from the source (the retarded
solution). We expand each homogeneous solution in a
power series near the boundary (either r ≃∞ or r ≃ rþ) to
generate initial values for numerical integration of
Eq. (4.1). These numerical integrations determine the
global homogeneous solutions. See Appendix D for full
details of the boundary expansions.
Because the source terms involve Dirac delta functions

with no more than one derivative, the inhomogeneous
solution can be expressed as a piecewise function of
homogeneous solutions,

�
hlm
alm

�
¼
 
C0þ
lm

"
h0þlm
a0þlm

#
þ C1þ

lm

"
h1þlm
a1þlm

#!
Θðr − rpÞ

þ
 
C0−
lm

"
h0−lm
a0−lm

#
þ C1−

lm

"
h1−lm
a1−lm

#!
Θðrp − rÞ;

ð4:9Þ

where Θ is the Heaviside step function. Our specific basis
of homogeneous solutions was chosen so that Eq. (4.9)
represents the retarded solution of the field equations. The
normalization coefficients, Cj�

lm , are determined by requir-
ing that the Dirac delta functions (and derivatives) vanish
when Eq. (4.9) is substituted into Eq. (4.1) (recall that the
Dirac delta function is the derivative of the Heaviside step
function). This is equivalent to applying variation of
parameters by integrating Green’s function against the
ODE sources. The result of this procedure is the following
linear system (involving the Wronskian matrix) that is
satisfied by the normalization coefficients:

2
666664

h0þlm h1þlm h0−lm h1−lm
a0þlm a1þlm a0−lm a1−lm

∂r�h
0þ
lm ∂r�h

1þ
lm ∂r�h

0−
lm ∂r�h

1−
lm

∂r�a
0þ
lm ∂r�a

1þ
lm ∂r�a

0−
lm ∂r�a

1−
lm

3
777775
p

2
666664

C0þ
lm

C1þ
lm

−C0−
lm

−C1−
lm

3
777775

¼ 1

r3pf2p

2
666664

r3pFlm

r3pHlm

r3pfpBlm − 2ðQ2 −MrpÞFlm

r3pfpDlm − 2ðQ2 −MrpÞHlm

3
777775; ð4:10Þ

where all r dependent functions have been evaluated at
r ¼ rp (as implied by the p subscripts), and ∂r� represents
an ordinary derivative with respect to r�.

V. QUASICIRCULAR INSPIRALS

Radiation reaction arises through the interaction of the
small body with the gravitational and electromagnetic
perturbations. This mechanism is called the self-force.
For a thorough treatment of the self-force, see [44]. In
this work we make a leading-order approximation equiv-
alent to averaging the self-force called the adiabatic
approximation. Furthermore, we assume that the motion
of the small body is well approximated by a circular
geodesic with a slowly changing radius throughout the
inspiral. Under these adiabatic and quasicircular approx-
imations, the inspiral dynamics are encoded by the rate of
radiative energy dissipation. By solving the Einstein-
Maxwell equations we are able to calculate this energy
dissipation rate.
After choosing an orbital radius, rp, and finding the

particular solution of Eq. (4.1) for all spherical harmonic
modes, the rate of radiative energy dissipation can be
calculated. We refer to this average power measurement as
the energy flux, h _Ei. In this work angle brackets, hi,
indicate a time (t) average and an overdot indicates a time
(t) derivative. The total energy flux has four components:
the gravitational flux propagating toward r ¼ ∞, h _Eþ

Gi, the
electromagnetic flux propagating toward r ¼ ∞, h _Eþ

EMi,
the gravitational flux propagating toward the event horizon
of the charged black hole, h _E−

Gi, and the electromagnetic
flux propagating toward the event horizon of the charged
black hole, h _E−

EMi,

h _Ei ¼ h _Eþ
Gi þ h _Eþ

EMi þ h _E−
Gi þ h _E−

EMi: ð5:1Þ

Each of these flux components is given by Poynting’s
theorem and its gravitational equivalent.
The r-component of the Poynting vector appears as the

tr-component of the stress-energy tensor, Ttr. Integrating
Ttr over the 2-sphere at r ¼ ∞ determines the outgoing
electromagnetic energy flux, h _Eþ

EMi,
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h _Eþ
EMi ¼

�
lim
r→∞

Z
Ttrr2dΩ

�
: ð5:2Þ

In this scenario, the stress-energy tensor is expanded
through order ϵ2. The same procedure applies at the event
horizon, although care must be taken to ensure that the
surface integral involves a suitable proper area. Our chosen
radial coordinate, r, gives the correct proper area at any
radius r ≥ rþ (when using the naive area element r2dΩ).
Therefore, it is straightforward to generalize Eq. (5.2) to the
horizon flux case

h _E−
EMi ¼

�
lim
r→rþ

Z
Ttrr2dΩ

�
: ð5:3Þ

The only terms that survive the time and angle averaging
processes are those involving the product of an ðl; mÞmode
with an ðl;−mÞ mode, resulting in the following equation
for the electromagnetic energy fluxes in terms of the
normalization constants,

h _E�
EMi ¼

X∞
l¼1

Xl
m¼1

lðlþ 1Þω2
mjC1�

lm j2
2π

: ð5:4Þ

To derive Eq. (5.4) we leveraged the fact that the coef-
ficients Cj�

l;m and Cj�
l;−m are complex conjugates of each

other. Note that we have not distinguished between the odd-
parity, even-parity, or dipole master functions in Eq. (5.4).
The definitions of aoddlm and aevenlm were chosen specifically to
satisfy the same flux equations.
Similar techniques apply to the gravitational energy flux.

An effective gravitational stress-energy tensor can be
constructed from the nonlinear part of the Einstein tensor,
Gμν. Through a similar averaging process the following
relationship is derived for the gravitational energy fluxes,

h _E�
Gi ¼

X∞
l¼2

Xl
m¼1

ðlþ 2Þðlþ 1Þlðl − 1Þω2
mjC0�

lm j2
32π

: ð5:5Þ

The dependence of the electromagnetic energy flux on
C1�
lm and the gravitational energy flux on C0�

lm is a
consequence of our chosen basis of homogeneous solu-
tions; see Eqs. (4.7)–(4.9).
The energy flux is used to drive the orbital evolution by

enforcing the first law of thermodynamics. If energy is
carried away by gravitational and electromagnetic waves,
then the orbital energy must decrease accordingly,

μ
dE
dt

¼ −h _Ei: ð5:6Þ

The orbital specific energy, E, depends on rp, which we
promote from a constant to a function of time to represent
the inspiral. It is useful to cast the evolution equation in
terms of rpðtÞ by analyzing Eq. (3.1),

drp
dt

¼ −
h _Ei
μ

� ∂E
∂rp
�

−1
;

¼ −
h _Ei
μ

2r2pðr2p − 3Mrp þ 2Q2Þ3=2
ðMrpðr2p − 6Mrp þ 9Q2Þ − 4Q4Þ : ð5:7Þ

The azimuth of the small body, φpðtÞ, is calculated by
integrating the slowly evolving angular speed given in
Eq. (3.4),

dφp

dt
¼ ΩðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpM −Q2

q
r2p

: ð5:8Þ

Equations (5.7) and (5.8) form a system of ODEs that,
when solved numerically, approximate the position of the
inspiraling small body to leading order in the postadiabatic
expansion. One strategy is to couple Eq. (5.7) directly to
Eqs. (5.4) and (5.5) by re-solving the field equations at each
integration step during the orbital evolution. One downside
of that strategy is, when a large number of different orbital
integrations are performed, the same field equations would
often be re-solved at the same radii during different inspiral
evolutions. Considering that solving the field equations is
the most time-consuming step numerically, it would be
advantageous to avoid redundancy in that area. Our strategy
is to presolve the field equations for a large variety ofQ and
rp values, and then interpolate h _Ei as a function of rp for
each Q (the ϵ dependence of h _Ei factors out). Then the
interpolant of h _Ei is coupled to Eq. (5.7), which avoids
redundantly re-solving the field equations.

VI. NUMERICAL ALGORITHM

The numerical tools we employ include PYTHON 3 (with
NUMPY and SCIPY) and Mathematica. PYTHON is used to
solve the field equations and calculate the energy flux while
Mathematica is used to evolve the inspiral. The following
list details our numerical procedure:
(1) A charge in the range jQj < M is chosen.
(2) An orbital radius in the range rp ≥ rISCO is chosen.
(3) A tensor spherical harmonic ðl; mÞ mode is chosen.

(a) l is restricted to the range l ≥ 1.
(b) m is restricted to the range 1 ≤ m ≤ l.
(c) If lþm is even, we use the even-parity

equations.
(d) If lþm is odd, we use the odd-parity equations.

(4) A custom PYTHON function is used to generate
initial values for numerical integration of the homo-
geneous solutions.
(a) Equation (D1) (with jmax ¼ 30) generates initial

data for the solutions described by Eq. (4.7).
(b) Equation (D4) (with jmax ¼ 30) generates initial

data for the solutions described by Eq. (4.8).
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(c) Independent solutions are produced by selecting
independent sets of starting coefficients in the
recurrence relations; see Appendix D.

(5) The homogeneous version of Eq. (4.1) is integrated
numerically using scipy.integrate.odeint in PYTHON
(with accuracy tolerance ¼ 10−13) for each set of
initial values.
(a) The initial position ri ¼ 30=jωmj þ 10M is used

for the solutions described by Eq. (4.7).

(b) The initial position ri ¼ rþ þ 10−8M is used for
the solutions described by Eq. (4.8).

(c) The final position rf ¼ rp is used for all homo-
geneous integrations.

(6) The inhomogeneous solution is found using
Eq. (4.9).
(a) The Wronskian matrix is generated using the

homogeneous solutions evaluated at r ¼ rp.
(b) The source vector is generated using the orbital

characteristics implied by Q and rp.
(c) The normalization coefficients are calculated by

solving Eq. (4.10) using numpy.linalg.solve in
PYTHON.

(7) Steps (3)–(6) are repeated for all l and m values
through lmax ¼ 25.

(8) h _Ei is calculated using Eqs. (5.1), (5.4), and (5.5).
(9) Steps (2)–(8) are repeated for a grid of rp values up

to a maximum of 20M with grid spacing Δrp ¼
0.1M (∼150 total grid points).

(10) The Mathematica function Interpolation (with in-
terpolation order¼ 11) is used to interpolate h _Ei as a
function of rp. Figure 1 demonstrates that the
interpolation has a maximum relative error of 10−7.

(11) The Mathematica function NDSolve (with accuracy
goal ¼ 7 digits) is used to solve Eqs. (5.7) and (5.8)
numerically for arbitrary mass ratios ϵ < 1.
(a) The initial value for rpðtÞ is chosen to be

rpð0Þ ¼ 20M.
(b) The initial value for φpðtÞ is chosen to be

φpð0Þ ¼ 0.
(c) When rpðtÞ ≤ rISCO, the integration terminates.

(12) Steps (1)–(11) are repeated for a set ofQ=M values: 0,
10−7, 10−6, 10−4, 0.001, 0.01, 0.1, 0.3, 0.5, 0.6, 0.9.

VII. RESULTS

A. Inspiral dynamics and electromagnetic radiation

Figure 1demonstrates that the electromagnetic energy flux
is proportional toQ2whenQ is small. This additional energy
flux is onemechanism that could distinguish charged inspiral
dynamics. To minimize dephasing during the comparison of
gravitational waveforms from differently charged binaries,
we require that the two inspirals have the same initial angular
speed. Often comparisons are between an inspiral with
neutral charge and one with nonzero charge. For these
comparisons we hold ϵ and M constant. According to
Eq. (3.4), the initial orbital radii must satisfy the following
equation to have the same initial angular speed:

rQ¼0
p ð0Þ ¼

�
MrQ≠0

p ð0Þ4
MrQ≠0

p ð0Þ −Q2

�1=3

: ð7:1Þ

Figure 2 illustrates how electric charge affects the inspiral
dynamics of charged binary systems with matched initial
angular speed.

FIG. 1. Top: The maximum relative error from energy flux
interpolation is plotted as a function of orbital radius for two
different charge values, Q. For this calculation we reduced the
density of interpolation data by half to facilitate independent
comparison of interpolant with unused flux data. This lower
density interpolant has a maximum relative error of 10−7. For
inspiral calculations we use the full density interpolant to further
improve accuracy. Bottom: Gravitational and electromagnetic
energy fluxes are plotted as a function ofQ. The fluxes are scaled
relative to the Q ¼ 0 gravitational flux. The orbital radius for this
comparison is rp ¼ 7M. We observe that the electromagnetic
energy flux is proportional to Q2 when Q is small.
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Considering that this system emits light, it is natural to
consider possible observations in the electromagnetic spec-
trum. Ignoring nearby charged particles, charged binary
systems radiate electromagnetic waves with extremely low

radio frequencies. The frequency is maximized in the case of
stellar mass binary components. Existing radio observatories
are capable ofmeasuring signals with frequencies as low as a
fewMHz. Figure 3 demonstrates that charged binary systems
emit dipole radiation in the kHz range when M ≃ μ ≃M⊙
(where our small mass-ratio approximation breaks down). In
any other scenario the frequency is lower. Even considering
higher harmonics, significant advancements in low fre-
quency radio astronomy would be necessary to detect radio
signals from charged binary systems. Potentially small
amplitudes are another probable observational challenge.
A more likely mechanism of electromagnetic radiation
associated with charged binary systems is acceleration of
nearby charged particles via the Lorentz force [30].

B. Gravitational wave dephasing

Gravitational wave detectors use theoretical waveform
templates to extract signals from noisy data via matched
filtering. Source characteristics are also determined through
this process. In order to make successful detections with
accurate source parameter estimation, the accumulated wave-
form phase difference between theoretical models and gravi-
tational wave signals must be less than approximately one
radian. For systems studied in this work, the phase of the
waveform is calculated from the azimuth of the smaller
binary component. Therefore, we estimate the importance of

FIG. 2. Comparison of inspiral trajectories for binaries with two
differently charged central black holes. The charges areQ ¼ 0 and
Q ¼ 0.9M. Both inspirals have mass ratios of ϵ ¼ 0.1 and central
black holes with mass M. Notice that rþ (the radius of the event
horizon) and rISCO are smaller when the charge is larger. The initial
orbital radii are chosen so that they have the same initial angular
speed: rQ≠0

p ð0Þ¼ 11M, rQ¼0
p ð0Þ¼ 11.2841M. Note that this larger

mass ratio stretches the limits of our perturbative scheme, so this
comparison shouldbe interpretedaccordingly.Similarly, itwouldbe
extraordinary to find an astrophysical blackholewithQ¼0.9M, but
such a comparison is an effective illustration of how electric charge
affects inspiral dynamics.

FIG. 3. The electromagnetic dipole radiation frequency, ap-
proximated by ν ¼ Ω=ð2πÞ, is plotted vs time for a variety of
black hole masses, M. To demonstrate that even the highest
possible frequencies are too low to be observed by radio
observatories, we consider a case that maximizes the angular
speed by minimizing the total mass (blue curve). Because the
smallest possible masses (therefore the highest possible frequen-
cies) involve M ∼ μ ∼M⊙, we stretch our small mass-ratio
approximation beyond its strict regime of applicability as an
order of magnitude approximation by choosing ϵ ¼ 0.5. Larger
masses with even lower frequencies are shown for comparison.
Each depicted inspiral has a charge Q ¼ 0.1M.
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including charge in theoretical waveform templates by
calculating the orbital phase difference between charged
and uncharged inspirals with matched initial angular speeds.
The initial separation could be chosen to reflect a signal’s
entrance into a detector’s passband, but instead we will
adopt a uniform initial separation rpð0Þ ¼ 20M as an appro-
ximation. In actuality we fix rQ¼0

p ð0Þ ¼ 20M and determine
rQ≠0
p ð0Þ from Eq. (7.1).
Figure 4 shows the orbital phase difference between

charged and uncharged inspirals as a function of time for a
given mass ratio. We repeated the analysis of Fig. 4 for a
wide range of mass ratios. We observe that the phase of
charged inspirals accumulates faster than that of uncharged
inspirals. We also observe that, whenQ and ϵ are small, the
total accumulated phase difference, Δφtotal, can be deter-
mined from a simple empirical relationship

Δφtotal ≃ 198ϵ−1
�
Q
M

�
2

; ð7:2Þ

where the coefficient is approximate. Observations will be
affected when dephasing exceeds Δφtotal ≳ 1. For each ϵ
andM there is aQ for whichΔφtotal ¼ 1 calledQdephase. We
determine the functional form of Qdephase by substituting
Δφtotal ¼ 1 into Eq. (7.2)

jQdephasej ≃ 0.071M
ffiffiffi
ϵ

p
: ð7:3Þ

Figure 4 demonstrates that our numerical data approxi-
mately satisfy Eq. (7.3). As an example consider an
extreme mass-ratio inspiral with M ¼ 105 M⊙ and μ ¼
1 M⊙ (therefore ϵ ¼ 10−5). For those parameters Eq. (7.3)
predicts jQdephasej ≃ 3.8 × 1021 Coulombs, or 2.4 × 1040

electron charges.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we calculated quasicircular inspiral trajecto-
ries of a small compact object into a charged black hole for
the first time. Our inspiral model incorporates radiation
reaction through an adiabatic approximation involving first
order in the mass-ratio gravitational and electromagnetic
field perturbations. We applied our model to quantify the
potential effect of electric charge on gravitational wave
observations.We observed that inspirals into a charged black
hole evolve more rapidly than comparable inspirals into a
neutral black hole. Through analysis of a variety of inspiral
configurations, we conclude that charge is an important
factor when the amount exceeds the threshold jQj≳
0.071M

ffiffiffi
ϵ

p
. Above this threshold, waveform templates that

exclude charge would noticeably dephase relative to actual
signals from charged binaries, and dephasing beyond this
levelwould adversely affect gravitationalwave detection and
source parameter estimation. We also observe that this
system emits light, but at frequencies too low to be detected
by modern radio observatories.
A straightforward extension of this project would be to

consider the case where both binary components are
charged. In that case, the smaller body would be a massive
point charge, which would introduce a nonzero current
density four-vector, Jα. Instead of geodesic motion, the
point charge would obey the Lorentz force law. One
interesting feature of that extension would be the possibility
of opposite or like charges. Another useful extension of this
project would be to consider eccentric orbits as small mass-
ratio inspirals can be eccentric [52].
The analysis of this work largely focuses on waveform

templates with total dephasing Δφtotal ≃ 1 radian over an
inspiral. Achieving phase accuracy at that level requires
waveform templates to venture beyond the adiabatic
approximation. These postadiabatic effects rely on self-
force calculations in charged black hole spacetimes.
Calculating the self-force would require significant exten-
sions of this work including consideration of m ¼ 0
perturbations and incorporation of a local regularization
scheme. Knowledge of gravitational and electromagnetic

FIG. 4. Top: The phase difference between inspirals with and
without charge is plotted as a function of time for various Q=M
values. The mass ratio of each inspiral is ϵ ¼ 0.01. The total
accumulated phase difference, Δφtotal, is approximated by the
following equation when Q and ϵ are small: Δφtotal≃
198ϵ−1ðQ=MÞ2. We observe that the phase of charged inspirals
accumulates faster than that of uncharged inspirals. Bottom: The
charge threshold above which Δφtotal exceeds 1 radian (Qdephase)
is plotted vs mass ratio (ϵ). We determineQdephase for a given ϵ by
computing a variety of inspirals with different Q values and
observing the behavior ofΔφtotal. Note that whenQ or ϵ are large,
Eqs. (7.2) and (7.3) have reduced validity.
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self-forces would also facilitate analysis of the cosmic
censorship mechanisms that prevent overcharging [54]
through extension of recent work [55].
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APPENDIX A: TENSOR SPHERICAL
HARMONIC DECOMPOSITION

Here we determine the field equations governing the

Fourier and spherical harmonic amplitudes of Að1Þ
α and

gð1Þαβ via separation of variables. We perform this analysis
in the frequency domain, but the procedures described here
can be readily generalized to the time domain. We adopt the
conventions of Martel and Poisson [56] where lowercase
Latin indices ða; bÞ refer to t and r tensor components and
uppercase Latin indices ðA;BÞ refer to θ and φ tensor
components,

Að1Þ
b ðt; r; θ;φÞ ¼

X
lm

almb ðrÞYlmðθ;φÞe−iωmt; ðA1Þ

Að1Þ
B ðt; r; θ;φÞ ¼

X
lm

½alm♯ ðrÞYlm
B ðθ;φÞ

þ aoddlm ðrÞXlm
B ðθ;φÞ�e−iωmt; ðA2Þ

gð1Þab ðt; r; θ;φÞ ¼
X
lm

hlmabðrÞYlmðθ;φÞe−iωmt; ðA3Þ

gð1ÞaBðt; r; θ;φÞ ¼
X
lm

½jlma ðrÞYlm
B ðθ;φÞ

þ hlma ðrÞXlm
B ðθ;φÞ�e−iωmt; ðA4Þ

gð1ÞABðt; r; θ;φÞ ¼
X
lm

½r2KlmðrÞΩABðθ;φÞYlmðθ;φÞ

þ r2GlmðrÞYlm
ABðθ;φÞ

þ hlm2 ðrÞXlm
ABðθ;φÞ�e−iωmt: ðA5Þ

Here Ylm is the spherical harmonic, Ylm
B is the even-parity

vector spherical harmonic, Xlm
B is the odd-parity vector

spherical harmonic, Ylm
AB is the even-parity tensor spherical

harmonic, Xlm
AB is the odd-parity tensor spherical harmonic,

and ΩAB is the 2-sphere metric. Because the source is
periodic we use a Fourier series to describe the time

dependence of Að1Þ
α and gð1Þαβ . For circular motion the source

behavior fixes the angular frequency asωm ¼ mΩ. The odd-
parity spherical harmonic amplitudes (radial functions) are
aoddlm , hlmt , hlmr , and hlm2 , and the even-parity spherical
harmonic amplitudes are almt , almr , alm♯ , hlmtt , hlmtr , hlmrr , jlmt ,

jlmr ,Klm, andGlm. The metric perturbation is not unique due
to the 4 degrees of gauge freedom. We adopt the Regge-
Wheeler gauge where hlm2 ¼ jlmt ¼ jlmr ¼ Glm ¼ 0.
Similarly, there is 1 degree of electromagnetic gauge free-
dom, and we adopt the gauge where alm♯ ¼ 0.
In terms of these spherical harmonic amplitudes,

Maxwell’s equations (with Jα ¼ 0) are

0 ¼ f2
d2aoddlm

dr2
þ 2fðMr −Q2Þ

r3
daoddlm

dr
þ
�
ω2
m −

f
r2
lðlþ 1Þ

�
aoddlm −

fQ
r2

dhlmt
dr

þ 2fQ
r3

hlmt −
iωmfQ

r2
hlmr ; ðA6Þ

0 ¼ −iωm
dalmt
dr

þ iωmQ
2r2f

hlmtt −
iωmfQ
2r2

hlmrr þ iωmQ
r2

Klm þ
�
ω2
m −

f
r2

lðlþ 1Þ
�
almr ; ðA7Þ

0 ¼ f2r3
dalmr
dr

þ iωmr3almt − 2fðQ2 −MrÞalmr ; ðA8Þ

0 ¼ f2
d2almt
dr2

þ 2f2

r
dalmt
dr

þ iωmf2
dalmr
dr

−
flðlþ 1Þ

r2
almt þ 2iωmf2

r
almr

−
fQ
2r2

dhlmtt
dr

þ f3Q
2r2

dhlmrr
dr

−
f2Q
r2

dKlm

dr
−
QðQ2 −MrÞ

r5
ðhlmtt þ f2hlmrr Þ; ðA9Þ

and the linearized Einstein equations are

Pt
lm ¼ d2hlmt

dr2
þ iωm

dhlmr
dr

þ 2iωm

r
hlmr −

lðlþ 1Þr2 − 4Mrþ 2Q2

fr4
hlmt −

4Q
r2

daoddlm

dr
; ðA10Þ
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Pr
lm ¼ iωm

dhlmt
dr

−
2iωm

r
hlmt −

�
ω2
m −

f
r2

ðlþ 2Þðl − 1Þ
�
hlmr −

4iωmQ
r2

aoddlm ; ðA11Þ

Plm ¼ f
dhlmr
dr

−
2ðQ2 −MrÞ

r3
hlmr þ iωm

f
hlmt ; ðA12Þ

Qtt
lm ¼ −

d2Klm

dr2
−
2Q2 þ rð3r − 5MÞ

fr3
dKlm

dr
þ f

r
dhlmrr
dr

þ ðlþ 2Þðl − 1Þ
2fr2

Klm −
4Q2 − rð4M þ rðlðlþ 1Þ þ 2ÞÞ

2r4
hlmrr

−
Q2

r4f2
hlmtt þ 2Q

r2f
dalmt
dr

þ 2iωmQ
r2f

almr ; ðA13Þ

Qtr
lm ¼ −iωm

dKlm

dr
−
lðlþ 1Þ
2r2

hlmtr þ iωmf
r

hlmrr −
iωmð2Q2 þ rðr − 3MÞÞ

r3f
Klm; ðA14Þ

Qrr
lm ¼ fðr −MÞ

r2
dKlm

dr
−
f
r
dhlmtt
dr

þ
�
ω2
m −

fðlþ 2Þðl − 1Þ
2r2

�
Klm −

f2

r2
hlmrr −

2Q2 − rð4M þ rlðlþ 1ÞÞ
2r4

hlmtt

−
2iωmf

r
hlmtr −

2fQ
r2

dalmt
dr

−
2iωmfQ

r2
almr ; ðA15Þ

Qt
lm ¼ −

dhlmtr
dr

− iωmhlmrr þ 2ðQ2 −MrÞ
r3f

hlmtr −
iωm

f
Klm þ 4Q

r2
almr ; ðA16Þ

Qr
lm ¼ dhlmtt

dr
− f

dKlm

dr
−
r −M
r2f

hlmtt þ iωmhtr þ
fðr −MÞ

r2
hlmrr −

4Q
r2

almt ; ðA17Þ

Q♭
lm ¼ f

d2Klm

dr2
−
d2hlmtt
dr2

þ 2ðr −MÞ
r2

dKlm

dr
−
�
2

r
−
r −M
r2f

�
dhlmtt
dr

−
fðr −MÞ

r2
dhlmrr
dr

− 2iωm
dhlmtr
dr

þ lðlþ 1Þ
2r2f

ðhlmtt − f2hlmrr Þ

þ 2ðr −MÞðQ2 −MrÞ
f2r5

ðhlmtt þ f2hlmrr Þ þ ω2
mhlmrr þ ω2

m

f
Klm −

2iωmðr −MÞ
r2f

hlmtr þ 4Q
r2

dalmt
dr

þ 4iωmQ
r2

almr ; ðA18Þ

Q♯
lm ¼ 1

f
hlmtt − fhlmrr : ðA19Þ

The source terms, P�
lm and Q�

lm, arise from spherical
harmonic decomposition of the stress-energy tensor. It is
important to note that our source terms do not include the
electromagnetic part of the stress-energy tensor, only the
stress energy of the point mass. In this work the source
terms represent a point mass following a circular geodesic.
They are related to the definitions of Martel and Poisson
[56] by P�

lm ¼ P�
lme

−iωmt (for a point mass following a
circular geodesic) and similar forQ�

lm. The source terms are
related by four conservation laws that follow from the
Einstein-Maxwell equations,

0¼ iωmPt
lm−

2

r
Pr

lmþ
ðlþ2Þðl−1Þ

r2
Plm−

dPr
lm

dr
; ðA20Þ

0 ¼ iωmQtt
lm þ 2ðM − rÞ

r2f
Qtr

lm þ lðlþ 1Þ
2r2

Qt
lm −

dQtr

dr
;

ðA21Þ

0 ¼ fðQ2 −MrÞ
r3

Qtt
lm þ iωmQtr

lm þ
�
r −M
r2f

−
3

r

�
Qrr

lm

þ lðlþ 1Þ
2r2

Qr
lm þ f

r
Q♭

lm −
dQrr

lm

dr
; ðA22Þ

0 ¼ iωmQt
lm −

2

r
Qr

lm −Q♭
lm þ ðlþ 2Þðl − 1Þ

2r2
Q♯

lm −
dQr

lm

dr
:

ðA23Þ

Notice that the even-parity and odd-parity perturbations
are not coupled to one another. Our goal is to reduce the
field equations for each parity to a system of two coupled
second-order differential equations. These master equations
will describe the gravitational and electromagnetic master
functions from which the gravitational and electromagnetic
fields are constructed.
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APPENDIX B: MASTER FUNCTION
DECOMPOSITIONS

Equations (A6) and (A10)–(A12) describe the odd-parity
perturbations. The odd-parity gravitational master function,
hoddlm , enters through relationships with hlmt and hlmr ,

hlmt ¼ rf
2

dhoddlm

dr
þ f

2
hoddlm −

fr2

ðlþ 2Þðl − 1ÞP
t
lm; ðB1Þ

hlmr ¼ −
iωmr
2f

hoddlm þ r2

fðlþ 2Þðl − 1ÞP
r
lm: ðB2Þ

The homogeneous version of hoddlm is equivalent to the master
function “πg” of Moncrief [35] up to a constant factor. The
electromagnetic master function, aoddlm , has already appeared
in the spherical harmonic decomposition. The homogeneous
version of aoddlm is equivalent to the master function “πf” of
Moncrief [35] up to a constant factor. Under these definitions
Eqs. (A6) and (A11) govern the odd-parity electromagnetic
and gravitational perturbations,

4fðMr −Q2Þ
r2ðlþ 2Þðl − 1ÞP

t
lm −

2iωmr
ðlþ 2Þðl − 1ÞP

r
lm

þ 2f2r
ðlþ 2Þðl − 1Þ

dPt
lm

dr

¼ d2hoddlm

dr2�
þ
�
ω2
m −

fðlðlþ 1Þr2 − 6Mrþ 4Q2Þ
r4

�
hoddlm

−
8fQ
r3

aoddlm ; ðB3Þ

0 ¼ d2aoddlm

dr2�
þ
�
ω2
m −

fðlðlþ 1Þr2 þ 4Q2Þ
r4

�
aoddlm

−
fQðlþ 2Þðl − 1Þ

2r3
hoddlm : ðB4Þ

It is straightforward to show that if Eq. (B3) is satisfied, then
Eqs. (A10) and (A12) will also be satisfied. The odd-parity
ODE coefficients and source terms are determined by
comparing Eq. (4.1) with Eqs. (B3) and (B4),

αoddlm ðrÞ ¼ −
fðlðlþ 1Þr2 − 6Mrþ 4Q2Þ

r4
;

βoddlm ðrÞ ¼ −
8fQ
r3

; ðB5Þ

σoddlm ðrÞ ¼ −
fðlðlþ 1Þr2 þ 4Q2Þ

r4
;

γoddlm ðrÞ ¼ −
fQðlþ 2Þðl − 1Þ

2r3
; ðB6Þ

Soddlm ðrÞ¼ 4fðMr−Q2Þ
r2ðlþ2Þðl−1ÞP

t
lm−

2iωmr
ðlþ2Þðl−1ÞP

r
lm

þ 2f2r
ðlþ2Þðl−1Þ

dPt
lm

dr
; Zodd

lm ðrÞ¼ 0: ðB7Þ

Notice that αoddlm reduces to the Regge-Wheeler potential
when Q ¼ 0. The Dirac delta function coefficients are
determined by analyzing Soddlm and Zodd

lm in the case of a point
mass following a circular geodesic,

Bodd
lm ¼ 32πμfpLðQ2 − r2pÞ

r4pðlþ 2Þðlþ 1Þlðl − 1Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðl −mÞ

p
Yl;mþ1

�
π

2
; 0

�
;

Dodd
lm ¼ 0; ðB8Þ

Fodd
lm ¼ 32πμf2pL

rpðlþ 2Þðlþ 1Þlðl − 1Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðl −mÞ

p
Yl;mþ1

�
π

2
; 0

�
;

Hodd
lm ¼ 0. ðB9Þ

Equations (A7)–(A9) and (A13)–(A19) describe the
even-parity perturbations. The spherical harmonic ampli-
tudes hlmtt , hlmtr , and hlmrr are expressed in terms of Klm by
forming linear combinations of Eqs. (A13)–(A19) and
their r derivatives,

hlmrr ¼
r2

2f
d2Klm

dr2
þ r−M

f2
dKlm

dr

þ
�
r2ω2

m

2f3
−
ðlþ2Þðl−1Þ

2f2

�
Klm−

2Q
f2

dalmt
dr

−
4Q
rf2

almt

−
2iωmQ
f2

almr þ r
2f

dQ♯
lm

dr
þ r2

2f
Qtt

lm

−
4Q2− rð12Mþ rðlðlþ1Þ−4ÞÞ

4r2f2
Q♯

lm

−
r2

2f3
Qrr

lm−
r
f2

Qr
lm; ðB10Þ

hlmtr ¼ 2

lðlþ 1Þ
�
iωmrfhlmrr − iωmr2

dKlm

dr

−
iωmð2Q2 þ rðr − 3MÞÞ

rf
Klm − r2Qtr

lm

�
; ðB11Þ

hlmtt ¼ f2hlmrr þ fQ♯
lm: ðB12Þ

The even-parity gravitational master function, hevenlm , enters
through a relationship with Klm,
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Klm ¼ ½2rð−2Q2rð2M þ λrÞ þ ðλþ 1Þr3ð3M þ λrÞ þ 2Q4Þ�−1
�
2fðλþ 1Þr3ðrð3M þ λrÞ − 2Q2Þ dh

even
lm

dr

− ðλþ 1Þ½−2r2ð6M2 þ 3λMrþ λðλþ 1Þr2Þ þ 2Q2rð11M þ 2ðλ − 1ÞrÞ − 8Q4�hevenlm

þ 4r5fQ
dalmt
dr

þ 4iωmr5fQalmr − 2r7f2Qtt
lm − 2r3fQ2Q♯

lm

�
; ðB13Þ

where λ≡ ðlþ 2Þðl − 1Þ=2. The homogeneous version of hevenlm is equivalent to the master function “Q” of Moncrief [36] up
to a constant factor. Similarly, the spherical harmonic amplitudes almt and almr are expressed in terms of the electromagnetic
master function aevenlm ,

almt ¼ −f
d
dr

�
aevenlm þ Q

2r
hevenlm

�
; almr ¼ iωm

f

�
aevenlm þ Q

2r
hevenlm

�
: ðB14Þ

The homogeneous version of aevenlm is equivalent to the master function “H” of Moncrief [36] up to a constant factor. It can be
shown that, under the definitions of Eqs. (B13) and (B14), the linearized Einstein-Maxwell equations are satisfied when the
following ODE coefficients and source terms are adopted for use with Eq. (4.1):

αevenlm ðrÞ ¼ 2f½r4ðrð3M þ λrÞ − 2Q2Þ2�−1ðQ2r2ð21M2 þ 16λMrþ 2ðλ − 1Þλr2Þ
− r3ð9M3 þ 9λM2rþ 3λ2Mr2 þ λ2ðλþ 1Þr3Þ − 2Q4rð8M þ 3λrÞ þ 4Q6Þ; ðB15Þ

βevenlm ðrÞ ¼ 8fQð−3M2rþMðQ2 þ 3r2Þ þ λðλþ 2Þr3Þ
r2ðrð3M þ λrÞ − 2Q2Þ2 ; ðB16Þ

σevenlm ðrÞ ¼ −
2fð−2Q2r2ð9M2 þ 8λMrþ ðλ − 1Þλr2Þ þ 2Q4rð8M þ 3λrÞ þ ðλþ 1Þr4ð3M þ λrÞ2 − 4Q6Þ

r4ðrð3M þ λrÞ − 2Q2Þ2 ; ðB17Þ

γevenlm ðrÞ ¼ λfQð−3M2rþMðQ2 þ 3r2Þ þ λðλþ 2Þr3Þ
r2ðrð3M þ λrÞ − 2Q2Þ2 ; ðB18Þ

Sevenlm ðrÞ ¼ ½rð3M þ λrÞ − 2Q2�−1
�
r2fQr

lm þ r3Qrr
lm −

fðrð3M þ λrÞ − 2Q2Þ
r

Q♯
lm −

iωmr4f
λþ 1

Qtr
lm þ r4f3

λþ 1

dQtt
lm

dr

−
f2rðr2ð12M2 þ 3ðλ − 3ÞMrþ ðλ − 1Þλr2Þ þ 2Q2rð5r − 8MÞ þ 4Q4Þ

ðλþ 1Þðrð3M þ λrÞ − 2Q2Þ Qtt
lm

�
; ðB19Þ

Zeven
lm ðrÞ ¼ rQ½2ðrð3M þ λrÞ − 2Q2Þ�−1

�
iωmr2f
λþ 1

Qtr
lm − fQr

lm − rQrr
lm −

f3r2

λþ 1

dQtt

dr

þ f2ðrð2ðλþ 3ÞQ2 þ λðλþ 1Þr2Þ −Mð2Q2 þ ðλþ 3Þr2ÞÞ
ðλþ 1Þðrð3M þ λrÞ − 2Q2Þ Qtt

lm

�
: ðB20Þ

Notice that αevenlm reduces to the Zerilli potential when Q ¼ 0. The Dirac delta function coefficients are determined by
analyzing Sevenlm and Zeven

lm in the case of a point mass following a circular geodesic:

Beven
lm ¼ 8πμfp½Eλðλþ 1Þr3pðrpðrpλþ 3MÞ − 2Q2Þ2�−1ðL2fpðm2 − λ − 1Þðrpð3M þ λrpÞ − 2Q2Þ2

− E2λr2p½r2pð12M2 þ 5λMrp þ λðλþ 1Þr2pÞ þQ2rpð2rp − 4λrp − 21MÞ þ 8Q4�ÞYlm

�
π

2
; 0

�
; ðB21Þ

Feven
lm ¼ 8πμr2pf2pE

ðλþ 1Þðrpðrpλþ 3MÞ − 2Q2ÞY
lm

�
π

2
; 0

�
; ðB22Þ

Deven
lm ¼ 4πμfpEQðr2pð6M2 þ 3ðλþ 1ÞMrp þ λðλþ 2Þr2pÞ −Q2rpð14M þ 3λrpÞ þ 6Q4Þ

ðλþ 1Þr2pðrpðλrp þ 3MÞ − 2Q2Þ2 Ylm

�
π

2
; 0

�
; ðB23Þ

Heven
lm ¼ −

4πμrpf2pQE

ðλþ 1Þðrpðrpλþ 3MÞ − 2Q2ÞY
lm

�
π

2
; 0

�
: ðB24Þ
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Past work takes additional steps by defining alternate pairs
of master functions from linear combinations of hlm and alm
[35,36] (for both even and odd parities). These mixedmaster
function pairs satisfymaster equations that are not coupled to
one another (which may be simpler mathematically). We
choose to sacrifice a level of mathematical simplification in
favor of a clearer delineation between gravitational and
electromagnetic master functions that instead satisfy a
coupled equation, specifically Eq. (4.1).

Appendix C: THE DIPOLE (l = 1) MODES

The dipole modes require special treatment. We focus
here on the even-parity dipole mode (l ¼ 1, m ¼ �1)
because the odd-parity dipole mode (l ¼ 1, m ¼ 0) does
not radiate for circular orbital motion. The dipole mode

requires special treatment because the even-parity tensor
spherical harmonic, Ylm

AB, vanishes when l ¼ 1. One con-
sequence of vanishing Y1m

AB is that Eq. (A19) does not
appear in the system of differential equations. Another
consequence of vanishing Y1m

AB is that G1m vanishes in all
gauges. One of the usual Regge-Wheeler gauge conditions
requires that Glm ¼ 0. The automatic vanishing of G1m

relinquishes that degree of gauge freedom. In this work we
fix the gauge by instead requiring that K1m ¼ 0 in addition
to j1mt ¼ j1mr ¼ a1m♯ ¼ 0.
The dipole perturbations are described by Eqs. (A7)–

(A9) and (A13)–(A18) with l ¼ 1. The spherical
harmonic amplitudes h1mtt and h1mtr can be expressed in
terms of h1mrr by forming linear combinations of
Eqs. (A13)–(A18),

h1mtt ¼ r4f
Q2 − 3Mr

�
f
r3
ðr3ω2

m −MÞh1mrr −
2Q
r2

da1mt
dr

−
4Q
r3

a1mt −
2iωmQ

r2
a1mr −

1

f
Qrr

1m þ iωmrQtr
1m −

1

r
Qr

1m

�
; ðC1Þ

h1mtr ¼ iωmrfh1mrr − r2Qtr
1m: ðC2Þ

The electromagnetic master function aeven1m enters through a relationship with a1mt and a1mr ,

a1mt ¼ −f
daeven1m

dr
þ 2fQ2

rð2Q2 − 3MrÞ a
even
1m −

rf2Q
2ð2Q2 − 3MrÞ h

1m
rr þ r3f2Q

2ð2Q2 − 3MrÞQ
tt
1m; ðC3Þ

a1mr ¼ iωm

f
aeven1m −

iωmr2fQ
2ð2Q2 − 3MrÞ h

1m
rr : ðC4Þ

The homogeneous version of aeven1m is equivalent to the (dipole) master function “H” of [37] up to a constant factor. Under
these definitions, the Einstein-Maxwell equations reduce to the following master equations describing h1mrr and aeven1m :

r
f
Qtt

1m ¼ dh1mrr
dr

þ
�

3M
2Q2 − 3Mr

þ 5r − 4M
r2f

−
2

r

�
h1mrr −

4Q
r3f2

aeven1m ; ðC5Þ

Q
2Q2 − 3Mr

�
r3f3

2

dQtt
1m

dr
−
rf2ð2MQ2 − 6Q2rþ 3Mr2Þ

2ð2Q2 − 3MrÞ Qtt
1m −

iωmr3f
2

Qtr
1m þ r2

2
Qrr

1m þ rf
2
Qr

1m

�

¼ d2aeven1m

dr2�
þ
�
ω2
m þ 2fð4Q6 − 16MQ4rþ 18M2Q2r2 − 9M2r4Þ

r4ð2Q2 − 3MrÞ2
�
aeven1m : ðC6Þ

Notice that Eq. (C6) is not coupled to h1mrr . Furthermore, and despite very different derivation procedures, the second
component of Eq. (4.1) for arbitrary even-parity modes reduces to Eq. (C6) for (l ¼ 1,m ¼ �1) modes. The decoupling of
Eq. (4.1) for (l ¼ 1, m ¼ �1) modes is a consequence of the relationship γeven1m ¼ 0. Unfortunately, the first component of
Eq. (4.1) involving heven1m is not obviously related to h1mrr . Our strategy is to solve Eq. (4.1) as usual for (l ¼ 1, m ¼ �1)
modes, then disregard heven1m (which has no obvious physical meaning), and use aeven1m to find the electromagnetic dipole
energy flux. The dipole metric perturbations are then recovered through Eq. (C5),

8πμE
rpf2p

Y1m

�
π

2
; 0

�
δðr − rpÞ þ

4Q
r3f2

aeven1m ¼ dh1mrr
dr

þ
�

3M
2Q2 − 3Mr

þ 5r − 4M
r2f

−
2

r

�
h1mrr ; ðC7Þ

where we have specialized to a circular geodesic and we now treat aeven1m as a source term. Equation (C7) has one
homogeneous solution, h1mrr;H,
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h1mrr;H ¼ 2Q2 − 3Mr

r3f5=2

�
r − r−
r − rþ

�
M=ðrþ−r−Þ

: ðC8Þ

Notice that h1mrr;H is regular at r ¼ rþ, but not at r ¼ ∞. The
inhomogeneous solution of Eq. (C7) can be expressed as a
piecewise function,

h1mrr ¼ h1mrr;IþΘðr − rpÞ þ ðh1mrr;I− þ Crr;H
1m h1mrr;HÞΘðrp − rÞ:

ðC9Þ

The function h1mrr;Iþ represents an inhomogeneous solution
that is valid when r > rp, while the function h1mrr;I−
represents an inhomogeneous solution that is valid when
r < rp,

h1mrr;I� ¼ h1mrr;H

Z
r�

�∞

4QC1�
1ma

1�
1m

r3f2h1mrr;H
fdr�; ðC10Þ

where the integrand can be considered a function of r�. The
coefficient C1m

rr;H is fixed to satisfy the jump condition
implied by the Dirac delta function source term

Crr;H
1m ¼ −

1

h1mrr;Hjr¼rp

�
8πμE
rpf2p

Ym
1

�
π

2
; 0

�

þ h1mrr;Iþjr¼rp − h1mrr;I−jr¼rp

�
: ðC11Þ

The homogeneous solution is restricted to the region r < rp
to ensure regularity at r ¼ ∞.

APPENDIX D: BOUNDARY EXPANSIONS

The outgoing homogeneous solutions are expanded in
the following form when r ≫ jωmj−1:
�
hlmðr� → þ∞Þ
almðr� → þ∞Þ

�
≃ eþiωmr�

Xjmax

j¼0

1

ðωmrÞj
"
blmj

clmj

#
: ðD1Þ

The expansion coefficients, blmj and clmj , are found via the
method of Frobenius. The starting coefficients in the
expansion, blm0 and clm0 , can be chosen freely. Higher order
coefficients are determined by recurrence relations. As an
example we present recurrence relations describing the
odd-parity expansion coefficients,

2jblmj ¼ ½12ωmMðj−1Þ− iðjþ lÞðj− l−1Þ�blmj−1þ8iωmQclmj−2−48iω2
mMQclmj−3þ24iω3

mQ½4M2þQ2�clmj−4
−2ωm½3ωmðj−2Þð4M2þQ2Þ− iMðjð4j−11Þ−3ðl2þ l−1ÞÞ�blmj−2−32iω4

mMQ½2M2þ3Q2�clmj−5
− iω2

m½12M2ðjð2j−9Þ− ðl−2Þðlþ3ÞÞþQ2ð2jð2j−9Þ−3lðlþ1Þþ14Þþ8iωmMðj−3Þð2M2þ3Q2Þ�blmj−3
þ2iω3

m½4M3ðjð4j−25Þ− lðlþ1Þþ27Þþ3MQ2ðjð4j−25Þ−2lðlþ1Þþ29Þþ3iωmQ2ðj−4Þð4M2þQ2Þ�blmj−4
− iω4

m½12M2Q2ð4jðj−8Þ− lðlþ1Þþ50Þþ3Q4ð2jðj−8Þ− lðlþ1Þþ26Þþ12iωmMQ4ðj−5Þ
þ16M4ðj−6Þðj−2Þ�blmj−5þ24iω5

mQ3½4M2þQ2�clmj−6þ2iω5
mQ2½3MQ2ðjð4j−39Þ− lðlþ1Þþ79Þ

þ iωmQ4ðj−6Þþ4M3ðj−7Þð4j−11Þ�blmj−6−48iω6
mMQ5clmj−7−2iω6

mQ4½Q2ð4j2−46j− lðlþ1Þþ114Þ
þ12M2ðj−8Þð2j−7Þ�blmj−7þ8iω7

mQ7clmj−8þ2iω7
mMQ6ðj−9Þð4j−17Þblmj−8− iω8

mQ8ðj−10Þðj−5Þblmj−9; ðD2Þ

4jclmj ¼½24ωmMðj−1Þ−2iðjþ lÞðj− l−1Þ�clmj−1þ iωmQðlþ2Þðl−1Þblmj−2−6iω2
mMQðlþ2Þðl−1Þblmj−3

þ4iωm½Mðjð4j−11Þ−3ðlþ2Þðl−1ÞÞþ3iωmðj−2Þð4M2þQ2Þ�clmj−2þ3iω3
mQðlþ2Þðl−1Þ½4M2þQ2�blmj−4

−2iω2
m½12M2ðjð2j−9Þ− lðlþ1Þþ9ÞþQ2ð2jð2j−9Þ−3lðlþ1Þþ14Þþ8iωmMðj−3Þð2M2þ3Q2Þ�clmj−3

þ4iω3
m½3MQ2ðjð4j−25Þ−2ðl2þ l−16ÞÞþ4M3ðjð4j−25Þ− lðlþ1Þþ36Þþ3iωmQ2ðj−4Þð4M2þQ2Þ�clmj−4

−2iω4
m½12M2Q2ð4jðj−8Þ−ðlþ8Þðl−7ÞÞþ3Q4ð2jðj−8Þ− lðlþ1Þþ26Þþ12iωmMQ4ðj−5Þ

þ16M4ðj−5Þðj−3Þ�clmj−5þ4iω5
mQ2½3MQ2ðjð4j−39Þ− lðlþ1Þþ82Þþ iωmQ4ðj−6Þþ4M3ðjð4j−39Þþ86Þ�clmj−6

−4iω4
mMQðlþ2Þðl−1Þ½2M2þ3Q2�blmj−5þ3iω5

mQ3ðlþ2Þðl−1Þ½4M2þQ2�blmj−6−6iω6
mMQ5ðlþ2Þðl−1Þblmj−7

−2iω6
mQ4½Q2ð4j2−46j− lðlþ1Þþ114Þþ12M2ðjð2j−23Þþ59Þ�clmj−7þ iω7

mQ7ðlþ2Þðl−1Þblmj−8
þ4iω7

mMQ6½jð4j−53Þþ156�clmj−8−2iω8
mQ8ðj−5Þðj−10Þclmj−9: ðD3Þ

The even-parity recurrence relations have a similar form, but with increased complexity. After choosing blm0 and clm0 ,
Eqs. (D2) and (D3) determine all higher order coefficients under the condition blmj ¼ clmj ¼ 0 when j < 0. The downgoing
homogeneous solutions are expanded in the following form when r − rþ ≪ M:
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�
hlmðr� → −∞Þ
almðr� → −∞Þ

�
≃ e−iωmr�

Xjmax

j¼0

ðr − rþÞj
"
klmj

plm
j

#
: ðD4Þ

The expansion coefficients, klmj and plm
j , are similarly

found via the method of Frobenius. The starting coeffi-
cients in the expansion, klm0 and plm

0 , can be chosen freely.
Higher order coefficients are determined by recurrence
relations, which we omit for brevity. The dipole expansions
follow from the same procedure, but are expanded inde-
pendently from the other modes due to vanishing terms in
the recurrence relations.
Our basis of homogeneous solutions is specified by

successive independent choices of starting coefficients in
the expansions. The outgoing homogeneous solutions of
Eq. (4.7) imply the following choices of starting coeffi-
cients for use with Eq. (D1):

"
blm0
clm0

#
¼
�
1

0

�
→

"
h0þlm
a0þlm

#
;

"
blm0
clm0

#
¼
�
0

1

�
→

"
h1þlm
a1þlm

#
: ðD5Þ

The downgoing homogeneous solutions of Eq. (4.8) imply
the following choices of starting coefficients for use with
Eq. (D4):

"
klm0
plm
0

#
¼
�
1

0

�
→

"
h0−lm
a0−lm

#
;

"
klm0
plm
0

#
¼
�
0

1

�
→

"
h1−lm
a1−lm

#
: ðD6Þ

Numerical values for hj�lm , a
j�
lm , and their derivatives are

provided by the expansions at an appropriate initial position
ri. These numerical data serve as initial values for numeri-
cal integration to determine a complete independent set of
global homogeneous solutions.
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