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In this work, we have derived the evolution equation for gravitational perturbation in four-dimensional
spacetime in the presence of a spatial extra dimension. The evolution equation is derived by perturbing the
effective gravitational field equations on the four-dimensional spacetime, which inherits nontrivial higher-
dimensional effects. Note that this is different from the perturbation of the five-dimensional gravitational
field equations that exist in the literature and possess quantitatively new features. The gravitational
perturbation has further been decomposed into a purely four-dimensional part and another piece that
depends on extra dimensions. The four-dimensional gravitational perturbation now admits massive
propagating degrees of freedom, owing to the existence of higher dimensions. We have also studied the
influence of these massive propagating modes on the quasinormal mode frequencies, signaling the higher-
dimensional nature of the spacetime, and have contrasted these massive modes with the massless modes in
general relativity. Surprisingly, it turns out that the massive modes experience damping much smaller than
that of the massless modes in general relativity and may even dominate over and above the general relativity
contribution if one observes the ringdown phase of a black hole merger event at sufficiently late times.
Furthermore, the whole analytical framework has been supplemented by the fully numerical Cauchy
evolution problem, as well. In this context, we have shown that, except for minute details, the overall
features of the gravitational perturbations are captured both in the Cauchy evolution as well as in the
analysis of quasinormal modes. The implications on observations of black holes with LIGO and proposed
space missions such as LISA are also discussed.
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I. INTRODUCTION

Unification of forces has been the most challenging task
the science community has ever faced. So far, that quest has
successfully brought the electromagnetic, strong, and weak
forces under one roof. However, the unification scheme
hits a wall when one tries to incorporate in it the only other
fundamental force, namely, gravity. There have been
numerous attempts, so far, to incorporate gravity in the
above picture, as well, leading to a unified quantum theory
of nature. This has resulted in a large number of candidate
theories for quantum gravity but without much success.
This issue, broadly speaking, originates from the peculiar
fact that the energy scale associated with grand unified
theories is ∼Oð103Þ GeV, whereas the natural energy scale
for gravity is the Planck scale ∼Oð1018Þ GeV. This huge

difference between the respective energy scales manifests
itself into unnatural fine tunings in various physical
parameters of the model, e.g., in the mass of the Higgs
Boson. Thus, it seems legitimate to understand the origin of
this fine tuning problem (known as the gauge hierarchy
problem) before delving into quantization of gravity [1–7].
One such natural candidate for resolving the gauge

hierarchy problem in this regard corresponds to extra
spatial dimensions, which can bring down the Planck scale
to the realm of grand unified theories. Such a possibility
was considered in [8–12], where the extra dimensions were
large enough, such that the volume spanned by them could
suppress the Planck scale of the higher-dimensional space-
time (known as bulk) to the TeV scale. However, this
proposal harbors two conceptual drawbacks: First, it seems
that the problem of energy scale hierarchy has merely been
transferred to another form, the volume hierarchy; e.g., if
one wants to reduce the energy scale to 1 TeV, the size of
the extra dimensions would be ∼1011 m, and more impor-
tantly, it causes the higher-dimensional spacetime to be flat
[1]. The second one is indeed a serious issue, as gravity
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cannot be shielded, and hence, if it is present in four
dimensions, gravity is bound to propagate in higher
spacetime dimensions, as well. In order to cure this
problem, Randall and Sundrum proposed a very natural
solution to the hierarchy problem with warped extra
dimensions, where the presence of gravity in higher
dimensions forces the effective Planck scale to reduce to
TeV scale in the four-dimensional hypersurface we live in
(known as brane) [13,14]. This scenario has been exten-
sively studied in the literature in the past years in various
contexts, starting from black holes [15–22] and cosmology
[23–32] to particle phenomenology as well as possible
signatures in Large Hadron Collider (LHC) [33–35]. Much
attention has also been devoted to the higher curvature
generalization of this scenario, obtained by introducing
terms like R2, RabcdRabcd in the gravitational action, as well
as to the stabilization of these extra dimensions [23,36–40].
Even though LHC provides us an observational window

for the existence of extra spatial dimensions, it is important
to know if there exists any other observational tests that
can either prove or disprove their existence independently.
It is obvious that in order to probe these effects, one has to
investigate the high-energy/high-curvature regime, which
can originate from either high-energy collisions such as in
LHC or physics near black holes. The second possibility
opens up a few interesting observational avenues: (a) the
black hole continuum spectrum, originating from accretion
disc around a supermassive black hole, (b) strong gravita-
tional lensing around supermassive black holes, and finally,
(c) gravitational waves from the collision of two massive
black holes. We have already elaborated on the continuum
spectrum from supermassive black holes and their implica-
tions regarding the presence of extra dimensions in [41],
whereas strong gravitational lensing has been discussed in
detail in [42]. In this work, we aim to address the third
possibility, i.e., the effect of higher dimensions on gravita-
tional waves, in light of the recent detections [43–47] of the
same in Advanced Laser Interferometer Gravitational-Wave
Observatory (aLIGO). The whole process of collision
between two black holes can broadly be divided into three
categories: inspiral phase, merger phase, and ringdown
phase. The first two phases are best described by a
combination of post-Newtonian and numerical approaches
[48–63], which we leave for the future, concentrating here on
the ringdown phase only. In this situation, the quasinormal
mode frequencies play a very fundamental role in determin-
ing the ringdown phase, and in this work, we will concen-
trate on deriving the quasinormal mode frequencies for this
higher-dimensional scenario [16,19,64–67].
To understand the behavior of quasinormal mode frequen-

cies in the context of higher spacetime dimensions, one can
follow two possible approaches. (a) One starts from the
gravitational field equations in the bulk and then considers
its perturbation around a bulk solution, which manifests
itself as a black hole on the brane. This one we refer to as the

bulk-based approach. (b) Otherwise, one projects the bulk
gravitational field equations on the brane hypersurface,
resulting in an effective description of the brane dynamics
inherited from the bulk, referred to as the brane-based
approach. In this case, as well, one perturbs the effective
gravitational field equations on the brane, around a given
bulk solution representing again a brane black hole. Some
aspects of this problem along the first line of attack have
already been elaborated and explored in [68–74]; however,
to our knowledge, the second avenue is hitherto unexplored.
In this work, we wish to fill this gap by providing a thorough
analysis of the second approach in relation to the black hole
perturbation theory and possible discords with the bulk-
based approach. In particular, we will try to understand
whether the results derived in [68] using Cauchy evolution of
initial data matches with our quasinormal mode frequency
analysis. Further for completeness, we will present the
Cauchy evolution for the brane-based approach, as well.
This will not only help to contrast these two approaches but
also will depict whether the quasinormal mode analysis and
the Cauchy evolution are compatible with each other.
Besides providing yet another independent route towards
understandings of higher dimensions, this will also be of
significant interest to the gravitational wave community.
The paper is organized as follows: We start in Sec. II with

a brief introduction of the effective equation formalism in the
context of higher spatial dimensions, and then we build up
our gravitational perturbation equation based on the above.
This has been applied in Sec. III to derive the evolution
equations for the master variables associated with spherically
symmetric brane and possible effects from higher dimen-
sions. In Sec. IV, we have studied these perturbation
equations in Fourier space and have derived the quasinormal
mode frequencies using the continued fraction method as
well as the direct integration scheme. Using these quasi-
normal mode frequencies, the time evolution of the master
variable has been determined for both the bulk- and the
brane-based approach in Sec. V. Section VI deals with
Cauchy evolution of the initial data and its possible harmony
with the quasinormal mode analysis. We conclude with a
discussion and implications of the results obtained in
Sec. VII. Some detailed calculations pertaining to derivation
of gravitational perturbation equation on the brane have been
presented in Appendix A, and those associated with con-
tinued fraction method have been elaborated in Appendix B.
Note that we will set the fundamental constant c as well

as the combinationGM to unity, whereM is the mass of the
black hole. Indices running over all the bulk coordinates are
denoted by uppercase Latin letters, and all the brane indices
are denoted by Greek letters. Any geometrical quantity
associated with the brane hypersurface alone is being
denoted with a superscript (4). Further, all the matrix
valued quantities will be denoted by boldfaced letters.
Finally, the signature convention adopted in this work is the
mostly positive one.

CHAKRABORTY, CHAKRAVARTI, BOSE, and SENGUPTA PHYS. REV. D 97, 104053 (2018)

104053-2



II. PERTURBING EFFECTIVE GRAVITATIONAL
FIELD EQUATIONS ON THE BRANE

We start this section by providing a very brief introduction
to the effective gravitational field equations on the brane,
which will be necessary for our later purposes. Because we
are interested in signatures of higher dimensions only, it will
be sufficient to work within the context of Einstein gravity in
five spacetime dimensions, in which case the gravitational
Lagrangian density is the five-dimensional Ricci scalar R.
Thus, the five-dimensional gravitational field equations will
read GAB ¼ 8πGð5ÞTAB, where TAB stands for the matter
energy momentum tensor, which may be present in the bulk,
andGð5Þ is the five-dimensional gravitational constant. In the
specific context when the bulk energy momentum tensor
originates from a negative cosmological constant Λ, one
arrives at the following static and spherically symmetric
solution on the brane:

ds2unperturbed ¼ e−2ky
�
−fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2

�
þ dy2;

ð1Þ

with fðrÞ ¼ 1 − ð2=rÞ and k ∝
ffiffiffiffiffiffiffi
−Λ

p
. Note that from the

perspective of a brane observer located on a y ¼ constant
hypersurface, the spacetime structure on the brane is given
by the Schwarzschild solution.
This raises the following interesting question: What

happens to the gravitational field equations on the brane,
given the gravitational field equations on the bulk? It has
been answered for Einstein gravity in [75] and has been
extended recently to various other scenarios involving
alternative gravity theories [76–78]. The derivation goes
as follows, one first chooses the brane hypersurface, say
y ¼ 0, and determines the normal nA ¼ ∇Ay, yielding the
induced metric on the brane hypersurface to be hAB ¼
gAB − nAnB, such that nAhAB ¼ 0. Given the induced metric,
one can introduce the notion of covariant derivative on a
brane hypersurface and hence a notion of brane curvature
using commutator between the brane covariant derivatives.
This enables one to express the bulk curvature in terms of
the brane curvature and extrinsic curvatures associated with
the brane hypersurface. Further contractions will enable
one to relate the bulk Einstein’s equations with curvatures
on the brane, referred to as the effective gravitational field
equations on the brane. The effective equations in vacuum
brane differ from four-dimensional Einstein’s equations by
an additional term inherited from the bulk Weyl tensor and
takes the following form:

ð4ÞGμν þ Eμν ¼ 0: ð2Þ

Here, Eμν stands for a particular projection of the bulk Weyl
tensor CABCD on the brane hypersurface (commonly known
as the electric part) given by

Eμν ¼ CABCDeAμnBeCν nD; ð3Þ

where nA is the normalized normal introduced earlier
and eAμ ¼ ∂xA=∂yμ is the bulk to brane projector, with xA

being the bulk coordinates and yμ the brane coordi-
nates [79,80].
At this stage, it is worth mentioning that in order to arrive

at the above relation we have assumed that the bulk
cosmological constant and the brane tension cancels each
other, leading to a vanishing effective cosmological con-
stant on the brane hypersurface [13,75]. The above can-
cellation has its origin in the fact that in the effective field
equation the effective cosmological constant is the differ-
ence between bulk cosmological constant and brane ten-
sion, and this difference has to be zero for the stability of
the background spacetime. Further, note that even though
Eq. (2) acts as the effective field equations on the brane, to
solve it explicitly, one does require information of the bulk,
hidden in Eμν through the bulk Weyl tensor.
There are two ways to solve this equation: (a) Assume

certain bulk geometry as ansatz [which for our case
corresponds to Eq. (1)] and then try to see what sort of
brane configuration solves Eq. (2). (b) Take Eμν as an
arbitrary tensor, and try to solve Eq. (2) with Eμν treated as
a source; e.g., in the context of spherical symmetry, one
often divides Eμν into an energy density (known as dark
radiation) and pressure (known as dark pressure). Even
though one can have very interesting results emerging from
the second scenario [81], it has the drawback that the
bulk metric remains unknown, and in general, it is not even
clear whether there exists a bulk metric that would satisfy
Einstein’s equations in the bulk. Thus, we will adopt the
first scenario and shall take Eq. (1) as the background
metric which indeed satisfies (2), as well [76,81–84].
This procedure must be contrasted with the perturbation

of bulk Einstein’s equations around the solution presented
in Eq. (1) because, in the case of effective field equations,
the perturbation of the bulk Weyl tensor will play a crucial
role. Thus, it is not at all clear a priori how the perturbed
equations in the brane-based approach will behave in
contrast to those in the bulk-based approach, even though
they are being perturbed around the same solution. With
this motivation in the backdrop, let us concentrate on
perturbation of Eq. (3) around the bulk metric gAB given in
Eq. (1), such that

gAB → gAB þ hAB: ð4Þ

Here, hAB is the perturbed metric around gAB, and all the
expressions to follow will be evaluated to the first order in
the perturbed metric hAB.

1

1In principle, one should write down gAB → gAB þ ϵhAB, with
small ϵ and then keep only terms linear in ϵ.
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It is also well known that not all of the components of
hAB are dynamical; there are redundant gauge degrees of
freedom. These gauge choices must be made according to
convenience of calculations. In this particular situation, the
following gauge conditions will turn out to be useful later:

∇AhAB ¼ 0; hAA ¼ 0; hAB ¼ hαβeαAe
β
B; ð5Þ

which is known as the Randall-Sundrum gauge. The
usefulness of this gauge condition can also be anticipated
from the fact that these imply hABnA ¼ 0, and hence the
perturbed bulk metric takes the following form,

ds2perturbed ¼ ½qαβðy; xμÞ þ hαβðy; xμÞ�dxαdxβ þ dy2; ð6Þ

where qαβ solves Eq. (2) and is given by

qαβdxαdxβ

¼ e−2ky
�
−fðrÞdt2 þ dr2

fðrÞ þ r2dθ2 þ r2sin2θdϕ2

�
:

ð7Þ

Even though Eq. (1) opts for fðrÞ ¼ 1 − ð2=rÞ, in the rest
of the analysis, we will keep fðrÞ as general as possible.
Then to linear order in the perturbed metric hαβ, one can
expand the four-dimensional Einstein tensor as

ð4ÞGμν ≃
ð4ÞGðqÞ

μν þ ð4ÞRðhÞ
μν −

1

2
qμν

ð4ÞRðhÞ−
1

2
hμν

ð4ÞRðqÞ; ð8Þ

where terms with superscript (q) indicate that they have
to be evaluated for the brane background metric qαβ given
in Eq. (7) and superscript (h) implies that it has been
evaluated for the perturbed metric hμν. The index Eq. (4)
implies that these are all four-dimensional geometrical
quantities.
Another ingredient in the perturbation of an effective

brane-based approach is the perturbation of the bulk
Weyl tensor. For that, one has to write down the bulk
Weyl tensor in terms of the bulk Riemann, Ricci tensor, and
Ricci scalar and expand all of them to leading order in the
gravitational perturbation hαβ. The above procedure
leads to

CABCD ¼ RABCD −
1

3
RACgBD þ 1

3
RADgBC þ 1

3
RBCgAD −

1

3
RBDgAC þ 1

12
RðgACgBD − gADgBCÞ

≃ CðgÞ
ABCD þ

�
RðhÞ
ABCD −

1

3
RðgÞ
AChBD −

1

3
RðhÞ
ACgBD þ 1

3
RðhÞ
ADgBC þ 1

3
RðgÞ
ADhBC −

1

3
RðhÞ
BDgAC

−
1

3
RðgÞ
BDhAC þ 1

3
RðhÞ
BCgAD þ 1

3
RðgÞ
BChAD þ 1

12
RðhÞðgACgBD − gADgBCÞ

þ 1

12
RðgÞðgAChBD þ hACgBD − gADhBC − hADgBCÞ

�
: ð9Þ

Here, superscript (g) indicates that the respective quan-
tity is evaluated for the bulk background metric gAB. Note
that due to the dependence of qαβ on an extra-dimensional
coordinate y, quantities evaluated for the bulk metric will
inherit y derivatives of qαβ and hence will differ from their
four-dimensional counterparts. Given the perturbation of
the bulk Weyl tensor, the corresponding projection of the
perturbed bulk Weyl tensor onto the brane hypersurface
results in

Eμν ≃ EðgÞ
μν þ

�
RðhÞ
ABCDe

A
μnBeCν nD −

1

3
RðhÞ
ACe

A
μeCν

−
1

3
RðhÞ
BDn

BnDqμν −
1

3
RðgÞ
BDn

BnDhμν

þ 1

12
RðhÞqμν þ

1

12
RðgÞhμν

�
: ð10Þ

Note that, in the above perturbation equation for the
projected bulk Weyl tensor, the first-order corrections to the

bulk Riemann, Ricci tensor, and Ricci scalar appears. One
can decompose all these perturbed quantities evaluated
for the bulk metric in terms of the respective brane metric
and extra-dimensional contributions. This has been explic-
itly carried out in Appendix A and ultimately leads to the
following expression for the projected bulk Weyl tensor,

EðhÞ
μν ¼ 1

6
ð4Þ
□hμν −

1

3
∂2
yhμν − k∂yhμν þ

1

3
k2hμν

þ 1

3
hαβ

ð4ÞRðqÞβ
μαν −

1

6
hαμ

ð4ÞRðqÞ
αν

−
1

6
hαν

ð4ÞRðqÞ
αμ þ 1

12
ð4ÞRðqÞhμν: ð11Þ

At this stage, it is worth emphasizing that the gauge
conditions elaborated in Eq. (5) take a simpler form in
this context. In particular, the spatial part of the differential
condition ∇AhAμ ¼ 0, when expanded in terms of four-
dimensional quantities, immediately yields ∇νhνμ ¼ 0. Use
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of this relation and the commutator of a four-dimensional

covariant derivative results in ∇μEðhÞ
μν ¼ 0, as is evident

from Eq. (11) in the context of vacuum solutions.
One can also try to understand this result from a different

perspective. Because we are perturbing around vacuum

solutions, it follows from Eq. (2) that EðhÞ
μν ∝ ð4ÞGðhÞ

μν . Thus it
immediately implies that ∇μEðhÞμν ¼ 0, as it should be, by
virtue of Bianchi identity. Finally, collecting all of the
pieces from perturbation of the bulk Weyl tensor elaborated
in Eq. (11) as well as the perturbation of the original
Einstein tensor as in Eq. (8), we obtain

e2kyfð4Þ□hμν þ 2hαβð4ÞRβ
μ
α
νg

þ f−k2hμν þ 3k∂yhμν þ ∂2
yhμνg ¼ 0: ð12Þ

In order to arrive at the above relation, we have used the
fact that qαβ ¼ expð−2kyÞgαβ, where in this particular
situation gαβ is the Schwarzschild metric. Note that we
have not used this fact explicitly anywhere in this section,
except for assuming that gαβ must satisfy vacuum Einstein’s
equations on the brane. Further, all the geometrical quan-
tities present in the above equation are evaluated for the
brane metric gαβ.
At this stage, it is instructive to split the perturbation

equations into parts depending on four-dimensional space-
time and those depending on extra dimensions, such that
hαβðy; xμÞ ¼ hαβðxμÞχðyÞ. Following the separability of the
perturbed metric, the above equations can also be decom-
posed into two parts, which for vacuum brane solution
reduce to

e−2kyf−k2χ þ 3k∂yχ þ ∂2
yχg ¼ −M2χðyÞ; ð13Þ

ð4Þ
□hμν þ 2hαβð4ÞRα

μ
β
ν −M2hμν ¼ 0: ð14Þ

Remarkably, the effect of the whole analysis is just the
emergence of a massive gravitational perturbation mode.
With M ¼ 0, one immediately recovers the dynamical
equation governing gravitational perturbation in a non-
trivial background. As we will see later, Eq. (13) will lead
to a series of masses denoted by mn and is called the nth
Kaluza-Klein mode mass of gravitational perturbation.
For each Kaluza-Klein mode, say of order n, there will

be a solution hðnÞμν to Eq. (14). When all of these n values are
summed, one ends up with the full solution of the
gravitational perturbation.
To summarize, we have started from the effective

gravitational field equations on the 3-brane, which depends
on the bulk Weyl tensor and hence on the bulk geometry.
The main problem of this approach is that not all of the
components of the projected bulk Weyl tensor Eμν are
determined in terms of quantities defined on the brane. In
particular, the transverse-traceless part of the projected bulk

Weyl tensor, representing the graviton modes in the bulk
spacetime, cannot be determined. This is intimately
related to the fact that the effective field equations on
the brane are not closed [75]. In this work, we have
circumvented this problem by using the gauge freedom
for the gravitational perturbation. We have started with the
Schwarzschild anti-de Sitter spacetime [as in Eq. (1)],
which identically satisfies the effective gravitational field
equations on the brane. We then consider perturbation
around this background, which certainly involves graviton
modes propagating in the bulk spacetime. However, the
use of Randall-Sundrum gauge [presented in Eq. (5)]
enables one to reduce the number of propagating degrees
of freedom, and hence the effective field equations (at least
in the perturbative regime) become closed. Finally, the
method of separation of variables enables one to separate a
four-dimensional part from the extra-dimensional one and
arrives at Eqs. (13) and (14), respectively. The presence of
extra dimensions essentially translates into the infinite
tower of Kaluza-Klein modes as far as the propagation
of gravitational waves in four dimensions is considered.
Let us now emphasise the key differences between our

approach and the bulk-based one. Interestingly, Eq. (14)
governing the evolution of gravitational perturbation of the
four-dimensional brane is identical to that of the bulk-based
approach, whereas the eigenvalue equation, i.e., Eq. (13),
determining the mass of the graviton is different. Hence the
Kaluza-Klein mass modes of graviton in the brane-based
approach will be different from that in the bulk-based
approach and hence will have interesting observational
consequences in both high-energy collision experiments as
well as in propagation of gravitational waves. In this work,
we will mainly be interested in the effect of the mass term
originating from Eq. (14), in particular, how it modifies the
behavior of perturbations in contrast to general relativity
and also how the brane- and bulk-based approach differs.
This is what we will concentrate on in the next sections.

III. SPECIALIZING IN SPHERICALLY
SYMMETRIC VACUUM BRANE

We have described a general method for deriving the
dynamical equations pertaining to gravitational perturba-
tion, starting from the effective gravitational field
equations on the brane in the previous section. We would
now like to apply the above scenario in the context of black
holes on the brane. In particular, we are interested in
perturbations around the background given by Eq. (1).
Thus, in this section, with the above scenario in the
backdrop, we specialize in vacuum and spherically
symmetric solution on the brane, such that
gαβ ¼ diagð−fðrÞ; f−1ðrÞ; r2; r2 sin2 θÞ. For the moment,
we concentrate on situations with arbitrary choices for fðrÞ,
whereas later, we will choose a specific form for fðrÞ,
namely, fðrÞ ¼ 1 − ð2=rÞ. Further being a vacuum solu-
tion, the Ricci tensor and Ricci scalar identically vanish.
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The main focus now will be understanding the evolution
equation of the gravitational perturbation hμν before dis-
cussing the Kaluza-Klein modes. In general, the perturba-
tion hμν can depend on all the spacetime coordinates (t, r, θ,
ϕ). The spherical symmetry associated with this problem
demands a separation between (t, r) and (θ, ϕ) parts, which
results in decomposition of the angular part into spherical
harmonics. In particular, for the gravitational perturbation,
we obtain

hðnÞαβ ¼
X∞
l¼0

Xl

m¼−l

X10
i¼1

hðnlmÞ
i ðt; rÞfYðiÞ

lmgαβðθ;ϕÞ; ð15Þ

where the perturbation hαβ has been broken up into ten

independent parts, separated into hðnlmÞ
i depending on (t, r)

and the rest depending on the angular coordinates. Further,
n stands for the Kaluza-Klein mode index, and l is the
angular momentum with m being its z-component. The
quantities fYlmgαβ are the tensorial spherical harmonics in
four spacetime dimensions. In order to define these tensor
harmonics, one should introduce the following normalized
basis vectors:

tα ¼ 1ffiffiffiffiffiffiffiffiffi
fðrÞp ð∂tÞα; rα ¼

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
ð∂rÞα;

θα ¼ 1

r
ð∂θÞα; ϕα ¼ 1

r sin θ
ð∂ϕÞα: ð16Þ

It is clear that they are orthogonal to each other, whereas the
factors in the front ensure that they are normalized, as well.
Given this structure, one can introduce an induced metric
on the (θ, ϕ) plane such that μαβ ¼ gαβ þ tαtβ − rαrβ,
leading to tαμαβ ¼ 0 ¼ rαμαβ. One can also define an
antisymmetric tensor ϵαβ ¼ θαϕβ − ϕαθβ. Given this, one
can construct ten such irreducible representations, which
include tαtβYlm, μαβYlm and so on involving no derivatives
of Ylm, as well as terms like rðαμβÞρ∇ρYlm, tðαμβÞρ∇ρYlm

etc. depending on derivatives of Ylm. Among all of these
choices, three terms among the ten will depend on the
antisymmetric combination ϵαβ and will pick up a term
ð−1Þlþ1 under parity. These we will refer to as axial
perturbations. On the other hand, the remaining seven
components will inherit an extra factor of ð−1Þl under
parity transformation and are referred to as polar pertur-

bations. Thus the spherical harmonic decomposition of hðnÞαβ

in Eq. (15) can be further subdivided into axial and
polar parts.
The above decomposition is useful in simplifying the

algebra further. It is evident that the operators acting on hαβ
in Eq. (14) are invariant under parity. Thus the solutions
to Eq. (14), which are eigenfunctions of parity with
different eigenvalues, decouple from each other. Hence,
in the present scenario, the polar and axial perturbations

differ from each other in parity eigenvalue and hence
evolve independently of one another. Further, two axial
(or, polar) modes having different l and m values also have
different eigenvalues under parity, and hence they also
decouple. Thus one can solve for the evolution of a given l
mode for axial (or polar) perturbation separately.
Due to the complicated nature of the polar perturbations,

we content ourselves with the axial perturbations only. The
angular part of the axial perturbations contains essentially
three terms: two depend on the single derivative of Ylm, and
the third one depends on double derivatives of Ylm. Thus
for l ¼ 0, all the axial modes identically vanish, and for
l ¼ 1, the term involving double derivatives of Ylm does not
contribute. Hence, in what follows, we will concentrate on
the l ≥ 2 scenario. In this case, there are two master
variables which we will denote by un;l and vn;l, and their
evolution equations read as follows:

Dun;l þ fðrÞ
�
m2

n þ
lðlþ 1Þ

r2
−

6

r3

�
un;l þ fðrÞm

2
n

r3
vn;l ¼ 0;

ð17Þ

Dvn;l þ fðrÞ
�
m2

n þ
lðlþ 1Þ

r2

�
vn;l þ 4fðrÞun;l ¼ 0: ð18Þ

Here,D is the differential operator ∂2
t − ∂2

r�, where r� is the
tortoise coordinate defined using fðrÞ as dr� ¼ dr=fðrÞ.
Note that these two differential equations are coupled
to each other and provide a complete set. The massless
limit also turns out to be interesting. As far as un;l is
concerned, Eq. (17) decouples, and the corresponding
potential reduces to the well-known Regge-Wheeler form.
The potential for vn;l resembles that of an electromagnetic
field. Note that an identical form for the equations was
derived in [68], however from a different perspective. This
is due to the fact explained in Sec. II; i.e., the evolution of
gravitational perturbation equation is identical to [68]
modulo of the Kaluza-Klein decomposition and hence
the mass term.
Having discussed the scenario for gravitational pertur-

bation, let us explore the higher-dimensional effects, i.e.,
determination of the mass term by solving Eq. (13). We
will be concerned with the even parity eigenfunctions of
Eq. (13), as the derivation of effective field equations
assumes the existence of Z2 symmetry. Further, Eq. (13)
being a second-order differential equation will require two
boundary conditions to uniquely arrive at the solution.
Rather than imposing boundary conditions on χðyÞ, we will
impose boundary conditions in ∂yχðyÞ. Before engaging
with the boundary conditions, let us solve Eq. (13), which
on introduction of the new variable, ζ ¼ eky, becomes

ζ−2
�
−k2χ þ k2ζ2

d2χ
dζ2

þ 4k2ζ
dχ
dζ

�
þm2χ ¼ 0; ð19Þ
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where the following results have been used,

dχ
dy

¼ kζ
dχ
dζ

;
d2χ
dy2

¼ k2ζ2
d2χ
dζ2

þ k2ζ
dχ
dζ

: ð20Þ

One can further transform the above equation to a more
manageable form by introducing yet another variable ξ,
replacing ζ, such that mζ ¼ ξ, and the transformed version
of Eq. (19) takes the following form,

k2ξ2
d2χ
dξ2

þ 4k2ξ
dχ
dξ

þ ðξ2 − k2Þχ ¼ 0: ð21Þ

The above equation is essentially Bessel’s differential
equation, and hence its two independent solutions in
terms of modified Bessel functions of the first and second
kinds are

χðyÞ ¼ e−
3
2
ky

�
C1Jν

�
meky

k

�
þ C2Yν

�
meky

k

��
; ð22Þ

with ν ¼ ffiffiffiffiffi
13

p
=2. The departure from a bulk-based

approach should now be evident from the above analysis.
The effect of higher dimensions is through the extra-
dimensional part of the gravitational perturbation, namely
χðyÞ. This is certainly a discriminating feature between
the bulk- and the brane-based approaches as the order of
the Bessel functions appearing in these two approaches to
determine the Kaluza-Klein mode masses is different [68].
Thus it is clear that the mass spectrum of our model will be
different than that of the bulk-based approach.
Let us briefly point out the reason behind the difference

between Kaluza-Klein mode masses when one follows the
brane-based approach, on the one hand, and the bulk-based
approach, on the other hand. This is basically due to the
difference in the gravitational field equations. For example,
when perturbing the bulk gravitational field equations, the
Weyl tensor plays no role. By contrast, the perturbation of
the Weyl tensor plays a central role in the brane-based
approach. Therefore, the basic field equations governing
dynamics of gravity in the two approaches differ, but the
Schwarzschild anti-de Sitter spacetime is still a solution of
both of the field equations. Hence, even though the back-
ground solution is the same in both cases, the perturbations
follow different dynamics pertaining to the fact that field
equations themselves are different. This is why the Kaluza-
Klein mode masses are also different. An analogy may be
helpful here. For instance, the Schwarzschild solution is a
solution of both Einstein gravity as well as fðRÞ gravity.
However, the field equations of both these theories are
widely different. Thus, the perturbations about the
Schwarzschild background will satisfy different evolution
equations in these theories (see, for example, [16,85,86]),
like the scenario we are considering in this work. The fact
that the field equations in the bulk- and brane-based

approaches are different is known and is manifested in
the fact that there exist solutions to the field equations in the
brane-based approach, with no bulk correspondence what-
soever [81,82,84,87,88]. This explains the difference in the
masses of the Kaluza-Klein modes associated with the
brane- and the bulk-based approaches.
To find the unknown coefficients C1 and C2, we need to

impose boundary conditions, and as emphasized earlier,
these conditions will be on derivatives of χðyÞ. To make the
analysis on par with possible resolutions of the hierarchy
problem, we assume the existence of another brane located
at y ¼ d. Incidentally, the distance d need not be constant
but varying, known as radion field, whose stabilization
would lead to a nonzero interbrane separation d [36]. We
have also neglected effects of brane bending, if any, by
assuming that d is a pure constant. Hence, the boundary
conditions imposed are given by ½∂y þ ðνþ ð3=2ÞÞk�χ ¼ 0

at y ¼ 0 and also on the other brane hypersurface at y ¼ d.
This leads to the following two algebraic equations
satisfied by the two unknown coefficients C1 and C2 as

C1Jν−1ðm=kÞ þ C2Yν−1ðm=kÞ ¼ 0; ð23Þ

C1Jν−1ðfm=kgekdÞ þ C2Yν−1ðfm=kgekdÞ ¼ 0: ð24Þ

Using the first relation, one can determine the ratio C1=C2,
and hence, the solution for χðyÞ is determined except for an
overall normalization. On the other hand, substitution of the
same in Eq. (24) results in the algebraic equation

Yν−1ðmn=kÞJν−1ðznÞ − Jν−1ðmn=kÞYν−1ðznÞ ¼ 0; ð25Þ

wheremn ¼ fznkge−kd yields an infinite series of solutions
for the mass, where n stands for a particular Kaluza-Klein
mode. The masses for the first ten Kaluza-Klein modes
have been presented in Table I for two different sets of
choices of interbrane separation d and bulk curvature scale
l ¼ 1=k. This has been achieved by first solving for zn
using Eq. (25) and then obtaining the Kaluza-Klein
mass mn.
To see clearly the difference between brane- and bulk-

based approaches, we have presented the masses of the
first ten lowest-lying Kaluza-Klein modes in the context of
the bulk-based approach, as well. This requires solving
Eq. (25) for zn with ν ¼ 2. It is evident from Table II that
the solutions for zn are completely different in the two
scenarios. In particular, the numerical values of zn in the
brane-based approach are lower than the corresponding
numerical values in the bulk-based approach. This results in
lowering of the masses of Kaluza-Klein modes in the brane-
based approach, as evident from Tables I and II for the
choices d=l ¼ 20 and l−1 ¼ 6 × 107 in geometrized units.
The numerical values are so chosen that they are in
agreement with other constraints already present in this
framework. For example, d=l ≥ 13 is necessary to arrive at
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the desired warping required to get around the gauge
hierarchy problem, whereas the table-top experiment of
Newton’s law would demand 1=l ≥ 107ðM=M⊙Þ (or
l ≤ 0.1 mm), where M⊙ is the solar mass [89–91]. This
explains the choices of d=l as well as that of 1=l.
Numerical estimates of the masses of the Kaluza-Klein

modes for two such choices of d=l and 1=l values have
been presented in Tables I and II, respectively. Masses of
these Kaluza-Klein modes will be used in the next section
for determination of the quasinormal modes for the brane
black hole.
At this stage, it is worth mentioning the Gregory-

Laflamme instability, which originates due to instability
of the bulk metric under perturbation pertaining to long
wavelength modes [20,92–95]. The fact that there exists
another brane at y ¼ d helps to evade the instability by
providing a cutoff on the long wavelength modes. The
separation d between the two branes as well as the bulk
curvature scale l ∼ 1=k [see Eq. (1)] is also bounded by the
fact that we have not seen any influence of the extra
dimension on the gravitational interaction in our observable
universe. The above instability essentially translates
through d and l into the mass of the Kaluza-Klein modes,
and for mn ≳ 0.43, the above instability can be avoided,
which is also reflected in both the tables depicting masses
of the Kaluza-Klein modes (see also [96]).
Finally, given a particular Kaluza-Klein mode n, one can

determine the extra-dimensional part of the gravitational
perturbation as

χnðyÞ ¼ Nn½Yν−1ðmn=kÞJνðfmn=kgekyÞ
− Jν−1ðmn=kÞYνðfmn=kgekyÞ�: ð26Þ

Here, Nn is the overall normalization factor, and ν ¼ffiffiffiffiffi
13

p
=2 is the order of the Bessel functions. Thus, the

complete solution to the gravitational perturbation can be
written in the following form,

hαβðt; r; θ;ϕ; yÞ ¼
X∞
n¼0

NnfYν−1ðmn=kÞJνðfmn=kgekyÞ

− Jν−1ðmn=kÞYνðfmn=kgekyÞg

×
X∞
l¼0

Xl

m¼−l

�X7
i¼1

PðnlmÞ
i ðt; rÞPðiÞlm

αβ ðθ;ϕÞ

þ
X3
i¼1

AðnlmÞ
i ðt; rÞAðiÞlm

αβ ðθ;ϕÞ
�
: ð27Þ

Here, the first part is the contribution from extra dimen-
sions, whereas the four-dimensional effects have been
divided into polar and axial perturbations. The first seven
are the polar perturbations, and the last three are the axial
ones. As already emphasized earlier, these two contribu-
tions do not mix, and hence, one can treat them separately.
We have already provided the evolution equations for the
master variables associated with the axial perturbation in
Eqs. (17) and (18), which we will solve next. The solution
(or evolution) can be obtained in two ways: by calculating
quasinormal modes or by performing a fully numerical
Cauchy evolution of the initial data. We have performed

TABLE II. Numerical estimates of the mass of first ten Kaluza-
Klein modes have been presented for the bulk-based approach, by
solving Eq. (25) for ν ¼ 2. It is clear from I that the solution zn of
Eq. (25) is different in the bulk-based approach in comparison to
the brane-based one. Among the two sets of choices for the
interbrane separation d and bulk curvature scale l, one is
identical to that of the brane-based approach, whereas the other
slightly differs. Both of these situations clearly depict the
differences of the Kaluza-Klein mass modes in the brane- and
the bulk-based approaches.

Kaluza-
Klein
modes zn

Associated mass
(d=l ¼ 20;

1=l ¼ 6 × 107)

Associated mass
(d=l ¼ 30;

1=l ¼ 1.2 × 1012)

n ¼ 1 3.83 0.47 0.43
n ¼ 2 7.01 0.87 0.79
n ¼ 3 10.18 1.26 1.14
n ¼ 4 13.33 1.65 1.50
n ¼ 5 16.46 2.03 1.85
n ¼ 6 19.61 2.42 2.20
n ¼ 7 22.76 2.81 2.56
n ¼ 8 25.91 3.20 2.91
n ¼ 9 29.05 3.59 3.26
n ¼ 10 32.19 3.98 3.61

TABLE I. Numerical estimates of the first ten Kaluza-Klein
mass modes correct to the second decimal place for two possible
choices of the interbrane separation d and bulk curvature scale l
have been presented for brane-based approach. First, Eq. (25) has
been solved for zn, and the result has been presented in the second
column. Incidentally, the solution for zn is insensitive to choices
of d=l as far as solutions accurate to second decimal places are
considered. To avoid any instability present in the problems, the
inverse of the bulk curvature scale has been chosen such that the
mass of the lowest-lying Kaluza-Klein mode is greater than or
equal to 0.43 in geometrized units.

Kaluza-
Klein
modes zn

Associated mass
(d=l ¼ 20;

1=l ¼ 6 × 107)

Associated mass
(d=l ¼ 30;

1=l ¼ 1.3 × 1012)

n ¼ 1 3.56 0.44 0.43
n ¼ 2 6.74 0.83 0.82
n ¼ 3 9.88 1.22 1.20
n ¼ 4 13.03 1.61 1.58
n ¼ 5 16.17 2.00 1.98
n ¼ 6 19.32 2.39 2.35
n ¼ 7 22.48 2.78 2.73
n ¼ 8 25.60 3.17 3.11
n ¼ 9 28.75 3.56 3.50
n ¼ 10 31.89 3.94 3.88
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both of these analysis in this work and shall present the
calculation of quasinormal modes in the next section before
taking up the Cauchy evolution of initial data.

IV. SPECTRUM OF ASSOCIATED
QUASINORMAL MODES

In this section, we will investigate the characteristic
frequencies, namely, the quasinormal modes associated
with the propagation of massive Kaluza-Klein modes in the
Schwarzschild geometry induced on the brane hypersur-
face. This is usually performed by going over to the
frequency space, such that

un;lðt; rÞ ¼
Z

dωe−iωtψn;lðω; rÞ; ð28Þ

vn;lðt; rÞ ¼
Z

dωe−iωtϕn;lðω; rÞ: ð29Þ

At this stage, all possible frequencies are allowed, but as we
will see later, this is not the case. Only some specific sets of
frequencies are allowed, known as the quasinormal mode
frequencies, and hence the above integral will be converted
to a sum over all the quasinormal mode frequencies. The
single most important fact about this expansion is that the
quasinormal mode frequencies can be imaginary. Because
we do not expect any runaway situations associated with
this problem, thus ImðωÞ < 0 are the allowed quasinormal
mode frequencies [64,97–105]. Before getting into the
details of obtaining the quasinormal mode frequencies in
this context, let us briefly discuss another prediction of
Eqs. (17) and (28), namely late time wave tails. Because
quasinormal mode frequencies have real as well as imagi-
nary parts, it is exponentially suppressed, and at late times
(t → ∞), it produces vanishing contribution. Therefore, the
wave tail, originating from the existence of a branch cut in
the frequency integral of Eq. (28), dominates the late time
behavior of the gravitational perturbation un;lðtÞ. It turns
out that the power law scaling of the perturbation modes
has a universal behavior. In particular, for massive gravi-
tational modes, which includes the scenario presented in
this work, the late time behavior essentially corresponds to
the following universal power law behavior, un;lðtÞ∼
t−5=6 sinðωtÞ. Here, the oscillation frequency ω depends
on the mass of the perturbation mode linearly. Thus, the late
time behavior is essentially governed by the t−5=6 universal
factor. We will need this fact in the later parts of this work.
For the moment, we will exclusively concentrate on the
quasinormal mode analysis.
In order to determine the quasinormal mode frequencies,

one also needs to impose suitable boundary conditions on
the solution space. These are as follows: (a) the quasinor-
mal mode must be ingoing at the black hole horizon, and
(b) these modes must be outgoing in the asymptotic
regions. These conditions are best suited in terms of the

tortoise coordinate r�, defined as the integral of fdr=fðrÞg,
in which the horizon corresponds to r� → −∞, and the
asymptotic region implies r� → ∞. Thus, the condition
where quasinormal modes are ingoing at the horizon
implies that un;lðω; r�Þ and vn;lðω; r�Þ behave as
expð−iωr�Þ in the near horizon regime. A similar situation
will exist for the asymptotic region, as well. These
boundary conditions will dictate the discrete values of
the frequencies associated with the quasinormal modes.
These values will have three indices: the Kaluza-Klein
mode index n, the angular momentum index l, and the
quasinormal mode index p. Having obtained the corre-
sponding quasinormal modes, one can substitute them back
to Eqs. (28) and (29) and thus obtain the time evolution of
both un;lðt; r�Þ and vn;lðt; r�Þ. These estimates can then be
compared with the Cauchy evolution problem, and a match
between the two will ensure correctness of our method
presented here. Thus, for completeness and consistency, we
will also present results for the Cauchy evolution in the next
section. We will mainly content ourselves with the con-
tinued fraction method but will briefly discuss the forward
integration scheme, as well.

A. Continued fraction method

The frequency spectrum associated with the quasinormal
modes can be obtained by starting with a suitable ansatz
for un;lðt; rÞ and vn;lðt; rÞ. Given this ansatz, one can try to
obtain a power series solution associated with the differ-
ential equations presented in Eqs. (17) and (18), resulting in
a recursion relation between the coefficients of various
terms in the power series. This recursion relation will be
satisfied provided the quasinormal mode frequencies are
discrete. For this purpose, we start with the following
general form of the coupled differential equations:

−
∂2un;l
∂t2 þ ∂2un;l

∂r2� − fðrÞ
�
m2

n þ
lðlþ 1Þr − 6

r3

�
un;l

− fðrÞm
2
n

r3
vn;l ¼ 0; ð30Þ

−
∂2vn;l
∂t2 þ ∂2vn;l

∂r2� − fðrÞ
�
m2

n þ
lðlþ 1Þ

r2

�
vn;l

− 4fðrÞun;l ¼ 0; ð31Þ

where fðrÞ ¼ 1 − ð2=rÞ. Subsequently eliminating deriv-
atives with respect to r� in favor of r and writing down the
two master variables un;lðt; rÞ and vn;lðt; rÞ as in Eqs. (28)
and (29), we obtain after simplifications

rðr − 2Þ d
2ψn;l

dr2
þ 2

dψn;l

dr
þ ω2r3

r − 2
ψn;l

−
�
m2

nr2 þ lðlþ 1Þ − 6

r

�
ψn;l −

m2
n

r
ϕn;l ¼ 0; ð32Þ
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rðr − 2Þ d
2ϕn;l

dr2
þ 2

dϕn;l

dr
þ ω2r3

r − 2
ϕn;l

− ½m2
nr2 þ lðlþ 1Þ�ϕn;l − 4r2ψn;l ¼ 0: ð33Þ

Having derived the basic equations governing ψn;l and ϕn;l,
one normally writes down both of these master variables in
terms of various powers of r and (r − 2), such that the
boundary conditions at the horizon and at asymptotic
regions can be satisfied. Subsequently, the remaining pieces
of ψn;l and ϕn;l are solved by using the power series
method. The resulting recursion relation between the
coefficients of these power series will also be coupled,
and it is only helpful to combine them into a single matrix
equation with off-diagonal entries illustrating the coupling
between the systems. Performing the same for the master
variables involved here, as well, one ends up with the
following matrix equation for j > 0, with integer j as

PjVjþ1 þQjVj þRjVj−1 ¼ 0: ð34Þ

Here, the coefficients Pj, Qj, and Rj depend on the details
of the system, i.e., on the parameters involved. The vector
Vj, on the other hand, corresponds to a column matrix
constructed out of the power series coefficients for ψn;l and
ϕn;l, such that one obtains

Pj ¼
�
αj 0

0 αj

�
; Qj ¼

�
βj þ 3 − m2

n
2

−4 βj

�
;

Rj ¼
�
γj − 3 m2

n
2

0 γj

�
; ð35Þ

where the unknown coefficients αj, βj, and γj can be
written in terms of the Kaluza-Klein mode mass and the
quasinormal mode frequency ω as

αj ¼ ðjþ 1Þðjþ 1 − 4iωÞ;

γj ¼
�
j − 1þ ðω − iλÞ2

λ

��
jþ 1þ ðω − iλÞ2

λ

�
;

βj ¼ −2j2 þ
�
−2þ 8iωλ − 2ω2 þ 6λ2

λ

�
j

− lðlþ 1Þ þ 1

λ
ð3λ2 − ω2 − 12iωλ2 − 4λ3

þ 4iωλþ 12λω2 þ 4iω3Þ: ð36Þ

where λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n − ω2
p

. The above recursion relation must
be supplemented with the zeroth-order recursion relation,
which simply reads P0V1 þQ0V0 ¼ 0. Given this, one can
use Eq. (34) to replace V1 in terms of V0 and V2.
Subsequently, one can again replace V2 by higher-order
terms using Eq. (34) repeatedly. This method of solving the
matrix valued recursion relation presented in Eq. (34) is

known as the method of continued fraction. In this method,
following the procedure outlined above, one ends up with
an equation of the form MV0 ¼ 0, where the matrix M
reads

M ¼ Q0 − P0½Q1 − P1fQ2 þ P2M2gR2�−1R1: ð37Þ

Here,Mj is a matrix which can be written in terms of Pjþ1,
Qjþ1, Rjþ1 and most importantly also depends on Mjþ1.
Moreover, the matrix Mj when acting on Vj yields Vjþ1.
Thus, in order for the matrix equation MV0 ¼ 0 to have
nontrivial solutions for V0, one must have

det M ¼ 0: ð38Þ

In principle, one needs to take into account an infinite
number of terms to solve the above equation. However, in
practice, one truncates Mj at some order J and, hence,
obtains all the lower-order matrices starting from MJ.
Of course, at a later stage, one needs to check the
independence of the solution of Eq. (38) explicitly on
the truncation order J. We have solved the above matrix
valued recursion relation using the continued fraction
method discussed earlier in the symbolic manipulation
package MATHEMATICA and have obtained the correspond-
ing lowest-lying quasinormal mode frequencies associated
with various Kaluza-Klein mode masses for different
values of angular momentum. These values are listed in
four tables. In Table III, we present both the real and
imaginary parts of the quasinormal mode frequencies for
the two lowest-lying Kaluza-Klein mass modes associated
with the following values: d=l ¼ 20; 1=l ¼ 6 × 107. It is
clear that as the mass increases the imaginary part of the
lowest quasinormal mode frequency decreases, whereas it
increases with angular momentum. For example, when
l ¼ 2, Imω ¼ −0.05 for m1 ¼ 0.44, and it becomes −0.04
as the mass increases to m2 ¼ 0.83. Hence, the more
massive the Kaluza-Klein modes are, the quasinormal
mode functions are less and less damped, a feature in
complete agreement with the result of [68]. Although for
m ¼ 0.44, the imaginary part of the lowest quasinormal
mode frequency will read Imω ¼ −0.051 for l ¼ 2, and it
becomes −0.078 as the angular momentum increases to
l ¼ 3. Thus, with an increase of angular momentum, the
imaginary part of the quasinormal mode frequency also
increases. Hence, among the modes with l ¼ 2 and l ¼ 3,
the time evolution of the l ¼ 3 mode will be more damped
in comparison to that of the l ¼ 2 one. This feature is also
present in Table IV, where the quasinormal mode frequen-
cies have been presented for a different choice of the ratio
between brane separation and bulk curvature scale, namely,
for d=l ¼ 30 and 1=l ¼ 1.3 × 1012.
These numerical values are again chosen to be consistent

with previous experimental bounds on d and l as explained
earlier. In this case also, as the mass of the Kaluza-Klein
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mode increases, the imaginary part of the quasinormal
mode frequency decreases, and the increase of angular
momentum has a reverse effect. For the same choices of
the bulk parameters, the Kaluza-Klein mode masses for the
brane-based and the bulk-based approaches differ, as
evident from Tables I and II. For example, in the situation
where d=l ¼ 20; 1=l ¼ 6 × 107, the lowest-lying Kaluza-
Klein mode mass in the brane-based approach is
m1 ¼ 0.44, whereas that in the bulk-based approach is
m1 ¼ 0.47. Hence, the imaginary part of the quasinormal
mode frequency will be lower for the bulk-based approach.
This has interesting implications: the axial perturbation
generated from bulk Einstein’s equations will decay at a
slower pace in time when compared to the corresponding
perturbation mode that originates from effective field
equations on the brane. This situation has been clearly
depicted in Tables V and VI, respectively (see also Fig. 1).
One can also check that the quasinormal mode frequencies
derived here indeed match those derived in the direct
integration scheme, which we will discuss next.

B. Direct integration method

In the previous section, we discussed one particular
method of determining the quasinormal mode frequencies
associated with the perturbation of brane world black
hole. However, for completeness, we present another

TABLE IV. Real and imaginary parts of the first few quasinormal
mode frequencies have been depicted. These values are obtained
starting from the brane-based approach, with the following choices
of the extra-dimensional parameters: d=l¼30; 1=l ¼ 1.3 × 1012.
Results have been presented for the two lowest-lying Kaluza-Klein
mass modes and for four choices of angular momentum associated
with each modes.

m ¼ 0.43, l ¼ 2 m ¼ 0.82, l ¼ 2

Mode Real Imaginary Real Imaginary

j ¼ 1 0.462 −0.053 0.702 −0.006
j ¼ 2 0.527 −0.072 0.385 −0.041
j ¼ 3 0.377 −0.201 0.541 −0.109
j ¼ 4 0.471 −0.241 0.253 −0.326

m ¼ 0.43, l ¼ 3 m ¼ 0.82, l ¼ 3
j ¼ 1 0.650 −0.079 0.796 −0.036
j ¼ 2 0.616 −0.246 0.705 −0.138
j ¼ 3 0.679 −0.261 0.770 −0.179
j ¼ 4 0.562 −0.439 0.576 −0.331

m ¼ 0.43, l ¼ 4 m ¼ 0.82, l ¼ 4
j ¼ 1 0.846 −0.086 0.948 −0.065
j ¼ 2 0.826 −0.264 0.906 −0.204
j ¼ 3 0.790 −0.452 0.833 −0.373

m ¼ 0.43, l ¼ 5 m ¼ 0.82, l ¼ 5
j ¼ 1 1.041 −0.090 1.120 −0.076
j ¼ 2 1.027 −0.272 1.095 −0.234
j ¼ 3 1.001 −0.461 1.050 −0.406

TABLE V. Numerical estimates for real and imaginary parts of
the quasinormal mode frequencies obtained from the bulk-based
approach. The parameters characterizing the bulk spacetime
corresponds to d=l ¼ 20; 1=l ¼ 6 × 107. In this situation, as
well we have presented the quasinormal mode frequencies for
four possible choices of angular momentum given the two
lowermost Kaluza-Klein mode masses.

m ¼ 0.47, l ¼ 2 m ¼ 0.87, l ¼ 2

Mode Real Imaginary Real Imaginary

j ¼ 1 0.480 −0.046 0.437 −0.015
j ¼ 2 0.540 −0.067 0.542 −0.087
j ¼ 3 0.381 −0.185 0.119 −0.128
j ¼ 4 0.477 −0.231 0.242 −0.318

m ¼ 0.47, l ¼ 3 m ¼ 0.87, l ¼ 3
j ¼ 1 0.660 −0.076 0.862 −0.045
j ¼ 2 0.716 −0.082 0.719 −0.117
j ¼ 3 0.623 −0.239 0.785 −0.163
j ¼ 4 0.564 −0.431 0.576 −0.313

m ¼ 0.47, l ¼ 4 m ¼ 0.87, l ¼ 4
j ¼ 1 0.853 −0.085 1.010 −0.067
j ¼ 2 0.831 −0.259 0.920 −0.193
j ¼ 3 0.793 −0.447 0.840 −0.359

m ¼ 0.47, l ¼ 5 m ¼ 0.87, l ¼ 5
j ¼ 1 1.047 −0.089 1.176 −0.077
j ¼ 2 1.032 −0.269 1.108 −0.227
j ¼ 3 1.004 −0.457 1.058 −0.396

TABLE III. Real and imaginary parts of the quasinormal mode
frequencies have been presented. These are obtained from the
brane-based approach with the following choice of parameters
associated with the extra dimensions: d=l ¼ 20; 1=l ¼ 6 × 107.
In particular, results for the first two Kaluza-Klein mass modes
have been presented for four different choices of the angular
momentum.

m ¼ 0.44, l ¼ 2 m ¼ 0.83, l ¼ 2

Mode Real Imaginary Real Imaginary

j ¼ 1 0.467 −0.051 0.396 −0.038
j ¼ 2 0.530 −0.071 0.543 −0.104
j ¼ 3 0.378 −0.197 0.183 −0.168
j ¼ 4 0.473 −0.239 0.243 −0.369

m ¼ 0.44, l ¼ 3 m ¼ 0.83, l ¼ 3
j ¼ 1 0.653 −0.078 0.843 −0.051
j ¼ 2 0.708 −0.084 0.708 −0.134
j ¼ 3 0.618 −0.244 0.773 −0.176
j ¼ 4 0.562 −0.437 0.576 −0.327

m ¼ 0.44, l ¼ 4 m ¼ 0.83, l ¼ 4
j ¼ 1 0.847 −0.086 0.951 −0.064
j ¼ 2 0.827 −0.263 0.960 −0.219
j ¼ 3 0.791 −0.451 0.896 −0.393

m ¼ 0.44, l ¼ 5 m ¼ 0.83, l ¼ 5
j ¼ 1 1.043 −0.090 1.123 −0.076
j ¼ 2 1.084 −0.272 −1.098 −0.233
j ¼ 3 1.002 −0.460 1.051 −0.404
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supplementary method of computing the quasinormal
mode frequencies, which can be used along with the
continued fraction method to correctly predict the quasi-
normal mode frequencies. In this method, as the name
suggests, one integrates directly from the horizon to the
asymptotic region given the boundary conditions men-
tioned earlier. In this problem, we have two master
variables characterizing the axial gravitational perturbation
and satisfying two second-order coupled ordinary differ-
ential equations [see Eqs. (B5) and (B6), respectively in
Appendix B]. The solution in the near horizon regime will
have e−iωr� times a power series around the horizon,
whereas at infinity, it will behave as e−k∞r� , where k∞ is
the wave number in the asymptotic region. The asymptotic
solution will be characterized by a two-dimensional col-

umn vector fbð1Þ∞ ; bð2Þ∞ g, for which one can choose a suitable
orthonormal system of basis vectors. Numerical integration
of these differential equations from the horizon out to
infinity will lead to a (2 × 2) matrix Sðmn;ωÞ, which can be
expanded in the basis introduced above. Finally, setting the
determinant of this matrix S to zero, one can solve for the
quasinormal mode frequencies [101,103].
Further note that this method is particularly suited for

determination of quasibound states, for which the leading
order behavior of the fields at infinity is well understood.
However, for the determination of quasinormal mode
frequencies, one needs to extract additional subdominant

behavior of the mode functions at infinity, which makes
this approach prone to numerical errors. However, if the
imaginary part is small compared to the real part, one can
determine the quasinormal mode frequencies to sufficient
accuracy. In practice, one integrates these differential
equations to some high value of radial distance, and the
result must be impermeable to any shift in this distance.
Also, one can supplement one of these methods by
checking whether, for a given Kaluza-Klein mode mass
and angular momentum, one obtains the same quasinormal
mode frequency from the other. We have explicitly checked
that this is indeed the case, and the values obtained from the
continued fraction method is in good agreement with those
obtained from the direct integration scheme, as well. This
depicts the internal consistency of our model in a straight-
forward manner.

V. NUMERICAL ANALYSIS OF THE
QUASINORMAL MODES

The principal aim of this work was to determine the time
evolution of the perturbations obtained from the effective
gravitational field equations on the brane. Also, we contrast
the same with the time evolution of perturbation derived
from bulk Einstein’s equations. One can achieve this by
following two possible avenues: (a) obtaining the quasi-
normal mode frequencies and hence obtaining the time
evolution and (b) solving the Cauchy evolution problem
numerically and hence arriving at the evolution of the
gravitational perturbation.
In this section, we will follow the first method where the

time evolution of the mode function un;lðtÞ depicting axial
gravitational perturbation will be presented, using the
quasinormal mode analysis performed in Section IV. For
this purpose, we will use Eq. (28), where the integral over
all frequencies will now be replaced by summation over
all the quasinormal mode frequencies. Thus, our strategy
will be as follows: we will use the numerically computed
quasinormal mode frequencies and then sum them in order
arrive at the time evolution for the mode function un;lðtÞ.
Here, we would like to reiterate the fact that n stands for
the Kaluza-Klein modes, and l is the angular momentum
associated with the gravitational perturbation. For example,
u0;2 corresponds to the axial gravitational perturbation
associated with angular momentum l ¼ 2 around a general
relativity solution, whereas u1;3 is the axial gravitational
perturbation associated with the lowest-lying Kaluza-Klein
mode and with angular momentum l ¼ 3. In what follows
using the numerical values of quasinormal mode frequen-
cies, we will present the time evolution of un;lðtÞ for a few
low-lying Kaluza-Klein modes with different choices of
angular momentum l. These will be contrasted with the
mode functions u0;l associated with general relativity.
Note that this process is inherently approximate because,

in principle, one should add all of the quasinormal mode
frequencies in order to obtain the time evolution of the

TABLE VI. Real and imaginary parts of the quasinormal mode
frequencies have been depicted in a bulk spacetime with the
following set of parameters: d=l ¼ 30; 1=l ¼ 1.2 × 1012 in the
bulk-based approach. The values have been presented for four
choices of angular momentum, given the two lowest-lying
Kaluza-Klein modes.

m ¼ 0.43, l ¼ 2 m ¼ 0.79, l ¼ 2

Mode Real Imaginary Real Imaginary

j ¼ 1 0.462 −0.053 0.672 −0.006
j ¼ 2 0.527 −0.072 0.456 −0.014
j ¼ 3 0.377 −0.201 0.542 −0.087
j ¼ 4 0.471 −0.241 0.534 −0.123

m ¼ 0.43, l ¼ 3 m ¼ 0.79, l ¼ 3
j ¼ 1 0.650 −0.079 0.825 −0.055
j ¼ 2 0.616 −0.246 0.696 −0.149
j ¼ 3 0.678 −0.261 0.761 −0.187
j ¼ 4 0.562 −0.439 0.666 −0.377

m ¼ 0.43, l ¼ 4 m ¼ 0.79, l ¼ 4
j ¼ 1 0.846 −0.086 0.937 −0.067
j ¼ 2 0.826 −0.264 0.898 −0.210
j ¼ 3 0.790 −0.452 0.829 −0.382

m ¼ 0.43, l ¼ 5 m ¼ 0.79, l ¼ 5
j ¼ 1 1.041 −0.090 1.112 −0.078
j ¼ 2 1.027 −0.272 −1.089 −0.238
j ¼ 3 1.001 −0.461 1.045 −0.411
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perturbation, whereas here, we will consider a few lowest-
lying quasinormal modes to perform the same. Even though
this is certainly an approximate description, it will never-
theless provide the overall behavior of the gravitational
perturbation with time and the key features that will
distinguish the scenario presented here from that in general
relativity. More refined results can be obtained using the
Cauchy evolution, which we will present in the next

section. This will provide another self-consistency check
of our formalism and hence of the associated results.
As a first step towards the same, we will present the time

evolution of the axial perturbation in the context of general
relativity alone. This will set the stage for what is to come
next. This has been presented in Fig. 2, where we have
depicted how the mode functions evolve with time in the
actual scale as well as in the logarithmic scale. The

FIG. 1. Real and imaginary parts of the quasinormal mode frequencies have been plotted. The figure on the left corresponds to the
quasinormal mode frequencies associated with the lowest-lying Kaluza-Klein mass modes in both the brane- and bulk-based
approaches. The curves at the bottom show the l ¼ 2 case, and the curves at the top depict the situation when l ¼ 3. The figure to the
right illustrates an identical situation but for the next Kaluza-Klein mass modes. As evident from the curves, the imaginary part of
quasinormal mode frequencies is smaller in the case of the bulk-based approach, resulting in less damping. Wewill confirm this behavior
in the following sections.
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FIG. 2. Time evolution of the master mode function un;lðtÞ associated with axial gravitational perturbation for two different values of
angular momentum l in the context of general relativity is depicted. The time scale has been normalized to the mass of the central hole,
i.e., t → t=GM. Moreover, the figure on the left illustrates the actual evolution of the mode function with time, whereas the right one
presents the same but in a logarithmic scale. The amplitude of the mode function corresponding to l ¼ 3 is slightly smaller compared to
the mode function having l ¼ 2, as evident from the right figure. In both of them, the dotted one stands for mode function with l ¼ 2,
and the continuous one is the mode function with l ¼ 3. We will contrast this scenario with the respective ones in the presence of extra
dimensions.
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advantage of the logarithmic scale is that it can enhance
very tiny differences, with the disadvantage being it will
make large differences appear as a small one. The left figure
in Fig. 2 presents the actual time evolution of the l ¼ 2 and
l ¼ 3 mode functions in general relativity, i.e., u0;2ðtÞ and
u0;3, respectively, and the right one presents the same in
logarithmic scale. It is clear that there is an appreciable
difference between the two at earlier times, which gets
washed out as the modes gradually decay. On the other
hand, the logarithmic plot shows exactly the opposite
nature, as explained earlier.
Returning back to our main goal, we have illustrated time

variation of the perturbation associated with the lowest-
lying Kaluza-Klein mode having massm1 ¼ 0.44 and have
contrasted the same with general relativity in Fig. 3. The
figures on the left depict time variation of the perturbation
for l ¼ 2 in both actual and logarithmic scale, and those on
the right are for l ¼ 3. The main difference emerging from
Fig. 3 is that the damping time scale of the massive modes
is much greater compared to those in general relativity.
The same is true for the logarithmic plots, as well, where
the fact that modes in general relativity are heavily damped

in comparison to the massive modes is very pronounced.
The features of the massive modes remain identical to those
considered in the second lowest Kaluza-Klein mode having
mass m2 ¼ 0.83, as well. Here, the slower decay of the
massive modes with time is the key distinguishing feature
between general relativity and the higher-dimensional
model discussed here.
So far, we have been discussing the time evolution of the

gravitational perturbation starting from the effective gravi-
tational field equations on the brane. At this stage, let us try
to understand the corresponding situation when the gravi-
tational perturbation originating from the bulk Einstein’s
equations is being considered. As emphasized earlier, this
will be similar to the brane-based approach but will have
an associated Kaluza-Klein mass mode, which will be
different. For example, as evident from Tables I and II
for the same choice of bulk parameters, i.e., d=l ¼ 20;
1=l ¼ 6 × 107, the Kaluza-Klein mass spectrum will be
different in the two scenarios. Thus, in Fig. 4, we have
presented the time evolution of the gravitational perturba-
tion derived from the bulk-based approach. Here, we
observe the same key features, e.g., very slow decay of
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FIG. 3. Time evolution of the master mode function un;lðtÞ for two different values of angular momentum both in the context of
general relativity (n ¼ 0) as well as in the brane-based approach is presented. All of the figures are associated with the lowest-lying
Kaluza-Klein mode massm1 ¼ 0.44 (see Table I) but for two different choices of the angular momentum. For brevity, we have presented
both: (a) the figures have been drawn in a logarithmic scale (in the bottom panel) and (b) the figures in the actual scale (in the top panel).
All of these figures clearly bring out the key differences between these two scenarios. See text for more discussions.
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the perturbation in contrast to that in general relativity.
Thus, if the ringdown phase of any black hole merger is
being probed for intermediate times, where the evolution of
gravitational perturbation is still dominated by the quasi-
normal modes, any departure from the general relativity
prediction can possibly signal the existence of extra
spacetime dimensions. Following the general trend, in
Fig. 4 as well, we have presented the time evolution in
actual as well as in logarithmic scale for two possible
choices of angular momentum of l ¼ 2 and l ¼ 3,
respectively.
This enables one to compare the bulk- and the brane-

based approach given the same bulk parameters. The
resulting discord should be attributed to the difference
between the masses of the respective Kaluza-Klein modes.
As evident from Fig. 5, this difference is really very small,
unlike the situation with general relativity. Moreover, as the
masses of the Kaluza-Klein modes are higher in the bulk-
based approach, they would decay slower. This can be
clearly seen from both the logarithmic plots in Fig. 5, where
the perturbation in the bulk-based approach becomes larger
than that in the brane-based one at late times. The same
features appear for both the angular momentums, as well;

however, the difference is much smaller in higher angular
momentum compared to the lower one.
All of these features can also be seen for the second

lowest Kaluza-Klein mode mass, m2 ¼ 0.87, in the bulk-
based approach. The time evolution of the corresponding
gravitational perturbation in both actual and logarithmic
scale for two choices of the angular momentum shows very
similar features when compared with the lowest-lying
Kaluza-Klein mass mode. As expected, the massive modes
decay very slowly in comparison with general relativity.
Further, from the comparison of brane- and bulk-based
approaches for the second lowest-lying Kaluza-Klein
mode, one may infer that the difference only becomes
sensible after a long time has elapsed, and hence if the
ringdown phase can be probed minutely at very late times,
one may infer the preference of the bulk-based approach
over the brane-based one or vice versa. However, the
situation is not so simple, and another subtle effect comes
into play at late times, which corresponds to the wave tail.
All of the quasinormal modes are inherently exponentially
suppressed, and hence at very late times, their effects are
negligibly small. In this situation, the wave tails enter the
picture, and in most cases, the late time behavior is
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FIG. 4. Top figures depict the time evolution of the master mode function un;lðtÞ in the bulk-based approach and have been contrasted
with that in general relativity (n ¼ 0). In this case, behavior of the mode functions in a logarithmic scale and in the actual scale is
presented. The Kaluza-Klein mode mass associated with the master variable presented here corresponds to the lowest one with
m1 ¼ 0.47 with the following parameters: d=l ¼ 20; 1=l ¼ 6 × 107.
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essentially governed by the wave tail decaying only as a
power law (this is identical to the “bulk-based approach”,
as well; see [70]). Because the scaling of the power law is
mostly universal, independent of the nature of fields and
mass of the fields under consideration, both the bulk- and
brane-based approaches will decay by an identical power
law behavior. This will make the detection of these two
different approaches by late time measurements extremely
difficult.

VI. CONSISTENCY OF THE APPROACH:
COMPARISON WITH CAUCHY EVOLUTION

The previous section illustrates the methods to determine
the quasinormal mode frequencies, using the obtained time
evolution of the perturbation mode un;l. This is so because,
in the limit of mn → 0 (i.e., general relativity limit), this
mode represents the axial gravitational perturbation,
whereas the other essentially becomes a gauge degree of
freedom. Hence, we can compare the time evolution of un;l
with the respective one in general relativity and see the

harmony as well as possible discord among the two. We
have already performed the same in the previous section.
However, in principle, one expects the above approach to
match with the Cauchy evolution of the perturbation
equations presented in Eqs. (B5) and (B6), respectively,
in Appendix B. This is what we will explore in this section.
For this purpose, we closely follow the analysis put

forward in [65] but modifying it wherever necessary.
Referring back to Eqs. (17) and (18) as the key differential
equations for the master variables, one can write them in a
compact manner as

DΨþ VðrÞΨ ¼ 0: ð39Þ

Here, Ψ is a two-dimensional column matrix constructed
from un;l and vn;l. Rather than working with the normal
(t, r) coordinates, it is instructive to transform to the light-
cone coordinates. The transformation into the light-cone
coordinates can be achieved by introduction of the null
coordinates as u ¼ t − r�, v ¼ tþ r�. Use of these null
coordinates modifies Eq. (39) to
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FIG. 5. Two scenarios presented in this work, namely, the perturbation of effective four-dimensional Einstein’s equations or the
perturbation of bulk Einstein’s equations, have been illustrated in this figure, both for the identical choice of the extra-dimensional
parameters, i.e., d=l ¼ 20; 1=l ¼ 6 × 107. It is clear that the time evolution of the mode function un;lðtÞ differs from each other in these
two distinct approaches. This is primarily due to the difference between the Kaluza-Klein mode masses in these two approaches. See text
for more discussions.
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4∂u∂vΨþ Vðu; vÞΨ ¼ 0; ð40Þ

where

Ψ ¼
�
un;l
vn;l

�
; V ¼

�
V11 V12

V21 V22

�
: ð41Þ

Here, all the matrix coefficients of V are dependent on the
black hole solution on the brane and the Kaluza-Klein
mode mass mn.
For clarity, we have suppressed the functional depend-

ence of the potential matrix V for the time being. To

proceed further, we need to introduce a notion of a time
evolution operator. For this purpose, we note that for an
arbitrary function of time fðtÞ, the function given by eh∂t is
the time evolution operator, in the sense that eh∂tfðtÞ ¼
fðtþ hÞ. Thus, in order to obtain the time evolution of the
mode functionsΨ, we apply the time evolution operator on
Ψ. This yields

Ψðtþ hÞ ¼ eh∂tΨ ¼ eh∂uþh∂vΨ: ð42Þ

Equation (42) can be written in a nice manner by expanding
the right hand side, resulting in

Ψðuþ h; vþ hÞ ¼
X
j¼0

1

j!
ðh∂uÞj

X
k¼0

1

k!
ðh∂vÞkΨðu; vÞ

¼
�
eh∂u þ eh∂v − 1þ 1

2
h2∂u∂v

�
1þ h∂u

2!
þ h∂u

2

3!
þ � � �

��
1þ h∂v

2!
þ h∂v

2

3!
þ � � �

��
Ψðu; vÞ

¼
�
eh∂u þ eh∂v − 1þ 1

2
h2∂u∂v

��
eh∂u − ðh∂uÞ2

�
1

2!
−

2

3!

�
− � � �

�
þ ∂u → ∂v

��
Ψðu; vÞ

¼
�
eh∂u þ eh∂v − 1þ 1

2
h2∂u∂vfðeh∂u þOðh2ÞÞ þ ðeh∂v þOðh2ÞÞg

�
Ψðu; vÞ: ð43Þ

The last expression of Eq. (43) can be expanded
immediately, and hence, finally we have

Ψðuþ h; vþ hÞ ¼ Ψðuþ h; vÞ þΨðu; vþ hÞ −Ψðu; vÞ

−
h2

8
fVðuþ h; vÞΨðuþ h; vÞ

þ Vðu; vþ hÞΨðu; vþ hÞg: ð44Þ

This can be thought of as an evolution equation in the
light-cone coordinates u and v. The interesting aspect of
this formalism is that once initial data are specified in the u,
v coordinates, we need no additional boundary conditions,
which is unlike the physical coordinates t, r (or, for
that matter, t, r�). We evolve the system with Gaussian
initial data in u and constant data in v. Figure 6 illustrates
the numerical evolution of Ψ as a function of time for
different choices of the angular momenta and Kaluza-Klein
mode masses obtained by numerically integrating the above
evolution equation in light-cone coordinates. Interestingly
and as expected, it illustrates all the basic properties that we
have already observed from a quasinormal mode analysis.
For example, in all of the cases illustrated in Fig. 6, it is
clear that at intermediate times (i.e., when the spectrum of
quasinormal modes dominate the evolution of gravitational
perturbation) the mode functions due to massive Kaluza-
Klein modes will dominate over those in general relativity.
This is again due to the fact that the massive modes suffer
much less damping compared to the respective ones in

general relativity. The translation of the same in the
quasinormal mode language corresponds to the imaginary
part of the quasinormal mode frequency being smaller for
massive Kaluza-Klein modes compared to the modes in
general relativity. Further, the fact that as the mass of the
Kaluza-Klein mode increases it experiences less and less
damping is also borne out by both Cauchy evolution (see
Fig. 6) and the quasinormal mode analysis. Of course, there
are minute differences present between both of these
methods, which have their origin in the initial conditions
and the fact that the Cauchy evolution is more accurate
compared to the quasinormal mode analysis. All in all, the
quasinormal mode analysis and the Cauchy evolution of
initial data provide a complete and consistent description
of the time evolution of gravitational perturbation in the
presence of extra spatial dimensions.
Besides being consistent with the quasinormal mode

analysis, Cauchy evolution has more additional features to
offer. The most important feature is the presence of the
late time power law tail. Since at the intermediate stages,
the contributions from the quasinormal mode dominates,
the behavior of the mode function un;lðtÞ as presented in
Fig. 6 resembles those in Section V. However, if one can
perform the Cauchy analysis for a sufficiently long time,
gradually the contributions from quasinormal modes
become smaller compared to that with the late time tail.
Thus, the Cauchy evolution of the initial data for a longer
time must result in the desired power law tail and will
serve as another consistency check of our approach.
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Following this, we have presented a long time Cauchy
evolution of the perturbation equation in Fig. 7, which
distinctly depicts the late time wave tail. As evident from
Fig. 7, the mode function is initially dominated by the
quasinormal modes and hence decays linearly in the
logarithmic scale. However, in the late stages of
Cauchy evolution, the power law takes over and domi-
nates the quasinormal modes, thus presenting an almost
constant-in-time behavior of the same. Hence, the numeri-
cal analysis of the Cauchy evolution of the perturbation
equation is completely consistent with theoretical expect-
ation, providing one more consistency check of our
formalism.

VII. DISCUSSION AND CONCLUDING REMARKS

In this work, we set out to achieve three goals in a single
framework: (a) effect of extra spatial dimensions on the
gravitational perturbation and whether one can provide
some possible observational signatures of the same in the
ringdown phase of black hole merger; (b) how the two
possible methods to determine the gravitational perturba-
tion on the brane, namely, by either perturbing the bulk
gravitational field equations or perturbing the effective
gravitational field equations on the brane differ, as far as
behavior of the gravitational wave solution is concerned;
(c) whether the analysis using quasinormal modes is
consistent with the fully numerical Cauchy evolution of

FIG. 6. Cauchy evolution of the master variable un;lðtÞ has been plotted for two different choices of the Kaluza-Klein mode masses for
a given angular momentum. The figures in the top panel depict the evolution of the master variable for l ¼ 2 and m1 ¼ 0.44 and the
lowest-lying Kaluza-Klein mode with d=l ¼ 20 and 1=l ¼ 6 × 107. The figure on the left is the actual variation of the master variable
with time, whereas that on the right presents the same variation but in a logarithmic scale. The figures in the bottom panel illustrate the
same, however, for l ¼ 2 and Kaluza-Klein mode massm2 ¼ 0.83. It is clear that as the mass increases, the master variable becomes less
and less damped in comparison to that with general relativity. Further, we clearly observe that the overall features present in the Cauchy
evolution of the master variable are identical to those obtained by the quasinormal mode analysis, illustrating the internal consistency of
both the methods adapted here.
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the initial data. We believe to have addressed all of them in
a satisfactory manner in this work, which we summa-
rize below.
We have explicitly demonstrated that the existence of

extra spatial dimensions indeed modifies the gravitational
perturbation equation by essentially introducing a tower of
massive perturbation modes in addition to the standard
massless one. Thus, the presence of massive gravitational
perturbation modes is a definitive signature of the existence
of higher dimensions. To see the consequences of the
above, we have discussed the behavior of quasinormal
modes in this context. In particular, we have shown that for
the massive modes, the imaginary parts of the quasinormal
mode frequencies are much smaller compared to those in
general relativity. This has resulted in the time evolution of
the massive gravitational perturbations exhibiting a weak
decay rate in comparison to the massless modes as in
general relativity. The above phenomenon opens up the
observational window to probe the possible existence of
higher dimensions using gravitational wave observation. If
the ringdown phase during the merger of two black holes is
loud enough to be accurately measured for a sufficient
amount of time (unlike the aLIGO-VIRGO observations to-
date) it may be possible to detect any departure from the
general relativity prediction, and thus may lead to a
concrete observational signature for the existence of higher
dimensions, or may provide stringent constraints on the
associated parameters. This will become feasible as the
sensitivity of the aLIGO detectors is further improved or
the space-based gravitational wave detector LISA becomes
operational. We will address the detailed observational
aspects of this particular signature of extra dimensions in

light of the recent detection of gravitational waves at
aLIGO in a future work.
The evolution equation for the gravitational perturbation

obtained by perturbing the bulk field equations has already
been derived in [68], whereas in this work, we have derived
the evolution equation by perturbing the effective gravita-
tional field equations on the brane hypersurface. From the
structure of the equation itself, the difference between these
two approaches should be evident. In both the bulk-based
and the brane-based approaches, the four-dimensional
perturbation equation looks identical with one crucial
difference, namely, the masses associated with both
approaches are different. This is because the differential
equation satisfied by the extra-dimensional part is different
in these two scenarios. This, in turn, leads to the difference
in the quasinormal mode frequencies as evident from
Fig. 1, and the imaginary parts of the quasinormal mode
frequencies for the bulk-based approach are smaller than
those for the brane-based one. Because the difference is
small, there is possibly no way in the foreseeable future
to observationally distinguish these two effects (see, e.g.,
Fig. 5); however, theoretically, there does exist a difference
between these approaches. Naively speaking, this is due to
the fact that a solution of the effective gravitational field
equation on the brane may not have any higher-dimensional
embedding.
Finally, the time evolution of the gravitational perturba-

tion can be obtained by either performing a quasinormal
mode analysis or by performing a fully numerical Cauchy
evolution. We have performed both in this work, and they
are found to match very well with each other. This is
expected as well as necessary for internal consistency of

FIG. 7. Cauchy evolution of the master variable un;lðtÞ associated with the brane-based approach has been plotted for two different
choices of the angular momentum given a Kaluza-Klein mode mass to illustrate the late time behavior. The figure on the left depicts the
evolution of the master variable for l ¼ 3 and m1 ¼ 0.44 and the lowest-lying Kaluza-Klein mode with d=l ¼ 20 and 1=l ¼ 6 × 107.
The figure on the right is for l ¼ 4 and identical Kaluza-Klein mode mass. It is clear that as time progresses, the power law tail dominates
over the exponential damping due to quasinormal modes. This once again illustrates the consistency of Cauchy evolution with the
theoretical methods adapted here.
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any gravitational perturbation computation. In particular,
from the quasinormal mode analysis, we have learned that
the massive modes decay very slowly, in contrast with the
massless general relativity modes (see, e.g., Fig. 3), which
is also confirmed by the Cauchy evolution (see, e.g.,
Fig. 6). Thus keeping aside minute details, overall behavior
of the time evolution of gravitational perturbation is
identical whether one performs a quasinormal mode analy-
sis or complete Cauchy evolution.
Having described the consistency of the time evolution

obtained by using quasinormal modes as well as a fully
numerical Cauchy evolution of the perturbation equations,
let us comment on possible detectability of the scenario
presented above. For that purpose, it is important to know
the frequencies associated with the gravitational perturba-
tion modes. The corresponding frequencies can broadly be
divided into two classes, those originating from the real part
of the quasinormal modes of the gravitational perturbation
and the universal one present in the very late time region
[68,103] originating from the power law tail. As far as the
possible detectability of the scenario presented here in
aLIGO-like detectors using the real parts of the quasinor-
mal modes is concerned, one can safely say that most likely
it is not a feasible option. This is mainly due to two reasons.
First, the frequencies associated with these Kaluza-Klein

modes are smaller compared to those with general relativity
(see Table VII as well as Fig. 8). Furthermore, these
Kaluza-Klein modes are supposed to be excited in the
strong gravity regime, i.e., when mass of the black hole is
large. On the other hand, as the mass of the black hole
increases, the frequency also decreases. This adds to the
issue of detectability of these Kaluza-Klein modes. As
evident from Table VII, for black hole mass ∼103 M⊙, the
frequency of a mode in general relativity is within the
frequency band of aLIGO detectors. However, the same is
not true for the Kaluza-Klein modes where the frequencies
are smaller and hence possibly outside the operational band
of the aLIGO detectors. Nonetheless, all of these frequen-
cies pertaining to higher mass black holes are very well
within the projected frequency band of LISA and hence
possibly detectable in the near future (see Fig. 8). The
second point corresponds to the signal-to-noise ratio
because, in order to detect the signal, it is necessary to
generate oscillations with a high signal-to-noise ratio. For
this purpose, as well, we need collisions among heavier
black holes (i.e., stronger gravity regime), so that higher-
order massive KK modes are excited. The frequency of
these modes would correspondingly be lower and might get

TABLE VII. Frequencies (in Hz) of oscillation for the quasi-
normal modes emanating from black holes having different
masses have been depicted. Numerical estimates for the frequen-
cies have been presented for general relativity as well as for the
two lowest lying Kaluza-Klein modes with masses m1 ¼ 0.43
and m2 ¼ 0.83 respectively. It is also clear that the frequency of
the modes increases with an increase in the l value. It is clear that
as the mass of the black hole increases the frequency decreases.
Thus more massive the black hole is it is more problematic to
detect in aLIGO. While the Kaluza-Klein modes have better
chance of originating if the mass of the black hole increases, this
leads to lowering of the frequency and hence have less chance of
getting detected in aLIGO.

Frequencies for l ¼ 2

ðM=M⊙Þ
General
Relativity

KK Mode
(m1 ¼ 0.43)

KK Mode
(m2 ¼ 0.82)

1 24140 14930 12441
10 2414 1493 1244.1
102 241.4 149.3 124.4
103 24.1 14.9 12.4
104 2.4 1.5 1.2
105 0.2 0.1 0.1

Frequencies for l ¼ 3
1 38779 21328 27856
10 3877.9 2132.8 2785.6
102 387.7 213.3 278.6
103 38.7 21.3 27.8
104 3.9 2.1 2.8
105 0.3 0.2 0.3

FIG. 8. This figure depicts how the oscillation frequency of the
gravitational wave in the ringdown phase changes as the mass of
the black hole increases. For convenience, frequencies are plotted
in Hz, and black hole mass is presented in solar units, but both on
a logarithmic scale. The oscillation frequencies have been plotted
in the brane-based scenarios for two lowest-lying Kaluza-Klein
mode masses with l ¼ 2. The same has been contrasted with the
corresponding curve in general relativity. It is clear that for
M ∼ 103 M⊙, the frequencies associated with general relativity
are well within the aLIGO frequency band; however,
for the massive Kaluza-Klein modes they are outside. Because
these massive modes have a better chance of getting detected
in the high mass regime, it is most likely that they may
become observable once LISA is operational. See text for more
discussions.
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pushed out of the aLIGO frequency band but possibly be
well within the LISA band.
The late time behavior of these massive gravitational

perturbation modes corresponds to a universal frequency,
associated with the power law tail of the wave mode and
proportional to the Kaluza-Klein mode mass [68,103].
Thus, the frequency is determined in terms of the d=l
ratio and the curvature length scale l. Using the expression
for nth Kaluza-Klein mode mass, mn ¼ znð1=lÞ expðd=lÞ,
where zn are the zeros of the Bessel function J ffiffiffiffi

13
p

=2ðxÞ, one
immediately arrives at the desired expression for the late
time frequency as a function of d=l and 1=l. Given this
universal late time frequency, one immediately observes
that as d=l and 1=l increase, the frequency also increases,
and hence for a given d=l ratio, the frequency will be in the
aLIGO band for a larger value of 1=l but will fall within the
LISA band for smaller values of 1=l (as evident from
Fig. 9). This introduces additional complications in the
detectability of these late time mode modulo of the
Gregory-Laflamme instability, which sets in for small
1=l values given a d=l (see Fig. 9). At this point, it is
interesting to note that, given a black hole mass and a
particular value of l, the frequency bands of aLIGO and
LISA set natural observational bounds on d=l. In Fig. 9,
we have considered two such scenarios, where the black
hole masses are 50 M⊙ and 105 M⊙, with l ¼ 1 μm. The
scenarios are depicted by the thick green and blue lines,
respectively. As is clearly evident from the plot, the modes
from the 50 M⊙ black hole can probe the range
17.0 < d=l < 23.9. The 105 M⊙ black hole has only a
limited probe for d=l because of the unstable configura-
tions. The upper limit on d=l in this case is therefore set by
the boundary of the unstable region, so that 33.8 < d=l <
34.8. Thus, as long as the universal frequency spectrum is
concerned, the late time behavior of the Kaluza-Klein
modes has a better chance of detection in aLIGO rather
than in LISA, as clearly depicted in Fig. 9. The feasibility of
the above detection, however, is being determined by the
signal-to-noise ratio, which will be much less for aLIGO
but will be favorable for LISA. Hence, even in this case,
there will be a tussle between the accessible regions in the
(d=l, 1=l) space and the signal-to-noise ratio, making the
detectability difficult for aLIGO detectors for the late time
behavior of the massive quasinormal modes, as well.
The above exercise also opens up a few future avenues to

explore. We have discussed the effect of higher dimensions
on the quasinormal modes in this work; however, it is
possible to address the nature of quasibound states and, in
particular, how the presence of extra dimensions affect
them. This may provide another observational test bed for
detection of higher spatial dimensions. Whether one can
obtain similar results for the quasibound states from
Cauchy evolution, as well, remains to be verified. Also,
a thorough analysis of this allowed region in light of the
recent detection of gravitational waves in aLIGO can lead

to possible constraints on the extra-dimensional parameter
space. Moreover, the effect of higher dimensions on the
neutron star equation of state parameter, tidal love numbers
associated with a brane black hole can lead to exciting
results, which we are currently pursuing and will report
elsewhere.
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APPENDIX A: DERIVING THE PERTURBED
GRAVITATIONAL FIELD EQUATIONS

ON THE BRANE

In this appendix, we present the detailed derivation of the
perturbed gravitational field equations on the brane for
completeness. We start with various geometrical quantities
associated with spacetime curvature and express their
perturbative expansion to leading order in hAB. These
correspond to

RðhÞ
ABCD ¼ 1

2
f∇C∇DhAB þ∇C∇BhAD −∇C∇AhBD

−∇D∇ChAB −∇D∇BhAC þ∇D∇AhBCg; ðA1Þ

RðhÞ
AB ¼ 1

2
f−∇C∇ChAB − 2hCDR

ðgÞD
ACB þ hDAR

ðgÞ
DB þ hDBR

ðgÞ
DAg;
ðA2Þ

RðhÞ ¼ ∇C∇BhCB −∇C∇Ch ¼ 0: ðA3Þ

In order to arrive at the last line, the gauge conditions
introduced in Eq. (5) have been used. These gauge
conditions further enable one to arrive at the following
result:

∇C∇BhCA −∇B∇ChCA ¼ hDAR
ðgÞ
DB − hCDR

ðgÞD
ACB; ðA4Þ

which has also been used in deriving Eq. (A2). As we are
ultimately interested in perturbation equations on the brane,
it is instructive to rewrite all the bulk quantities in terms
of brane variables. In particular, conversion of the bulk
covariant derivatives to the brane covariant derivative is a
necessary and important step in that direction because these
are the terms appearing in Eqs. (A1), (A2), and (A3). This
can be done by elaborating all of the bulk covariant
derivatives into ordinary derivatives and Christoffel con-
nections and then picking up all the terms involving brane
covariant derivatives as well as terms depending on the bulk
curvature and derivative with respect to y. Further, as
xA ¼ ðy; xμÞ, it is clear that eAμ ¼ δAμ . Thus, we obtain from
Eq. (A1)

2RðhÞ
ABCDe

A
μnBeCν nD ¼ 2∇ν∇yhμy −∇ν∇μhyy

−∇y∇νhμy −∇y∇yhμν þ∇y∇μhyν

¼ −∂2
yhμν − 2k∂yhμν: ðA5Þ

Two other contractions in Eq. (10) involving the perturbed

Ricci tensor RðhÞ
AB result in

RðhÞ
ACe

A
μeCν ¼ −

1

2
∇C∇Chμν − hαβR

ðgÞβ
μαν þ 1

2
hαμR

ðgÞ
αν þ 1

2
hανR

ðgÞ
αμ

¼ −
1

2
ð4Þ
□hμν −

1

2
∂2
yhμν þ 3k2hμν

− hαβR
ðgÞβ

μαν þ 1

2
hαμR

ðgÞ
αν þ 1

2
hανR

ðgÞ
αμ ; ðA6Þ

and

RðhÞ
ACn

AnC¼−
1

2
∇C∇Chyy−hαβR

ðgÞβ
yαy¼−hαβRðgÞβ

yαy; ðA7Þ

where Eq. (A2) has been used. In order to arrive at the
previous expressions, the gauge conditions presented in
Eq. (5) have been used along with the following set of
results:

gCD∇C∇Dhαβ ¼ ð4Þ
□hαβ þ ∂2

yhαβ − 6k2hαβ

∇ν∇yhμy ¼ k∂yhμν þ 3k2hμν

−∇ν∇μhyy ¼ −2k2hμν
−∇y∇νhyμ ¼ −k∂yhμν − 2k2hμν

−∇y∇yhμν ¼ −∂2
yhμν − 4k∂yhμν − 4k2hμν

∇y∇μhyν ¼ k∂yhμν þ 2k2hμν: ðA8Þ

In arriving at the above relation, we have also used the
conditions that there exist only two nonvanishing connec-
tion components having the following forms: Γy

μν ¼ kqμν
and Γμ

yν ¼ −kδμν . Use of these expressions for various
projections of Riemann and Ricci tensor from Eqs. (A5),
(A6), and (A7) in the perturbation equation for the bulk
Weyl tensor as in Eq. (10) leads to

EðhÞ
μν ¼ 1

2
ð−∂2

yhμν − 2k∂yhμνÞ −
1

3
qμνð−hαβRðgÞβ

yαyÞ

−
1

3
hμνR

ðgÞ
yy þ 1

12
RðgÞhμν

−
1

3

�
−
1

2
ð4Þ
□hμν −

1

2
∂2
yhμν þ 3k2hμν

− hαβRðgÞβ
μαν þ 1

2
hαμR

ðgÞ
αν þ 1

2
hανR

ðgÞ
αμ

�
: ðA9Þ

It is obvious that, in order to separate out the perturbation
of the bulk Weyl tensor into a four-dimensional part and
an additional part originating from extra dimensions,
one needs to decompose all the quantities depending
on the bulk metric gAB in terms of the four-dimensional
metric qαβ. For that purpose, we consider the following
decompositions:
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RðgÞβ
μαν ¼ ð4ÞRðqÞβ

μαν − k2ðqμνδβα − qμαδ
β
νÞ

RðgÞβ
yαy ¼ −k2δβα; ðA10Þ

RðgÞ
αμ ¼ ð4ÞRðqÞ

αμ − 4k2qαμ

RðgÞ
yy ¼ −4k2; RðgÞ ¼ ð4ÞRðqÞ− 20k2: ðA11Þ

This eventually results in (11).

APPENDIX B: CONTINUED FRACTION
METHOD: DETAILED ANALYSIS

In this appendix, we provide a detailed and general
derivation of the three-term recursion relation pertaining to
the continued fraction method, which we hope will be
useful for the reader. Having derived Eqs. (32) and (33),
one normally makes an educated guess for ψn;l and ϕn;l,

respectively. However, as we will explicitly demonstrate,
this is not necessary. One can start with an arbitrary choice
for ψn;l and ϕn;l, but the structure of the differential
equation itself will lead to the correct expressions for
the master variables. Following this philosophy, we decom-
pose ψn;l and ϕn;l as follows:

ψn;l ¼ ðr − 2Þαrβ expðλrÞfn;lðrÞ; ðB1Þ

ϕn;l ¼ ðr − 2Þαrβ expðλrÞgn;lðrÞ; ðB2Þ

where α, β, and λ are arbitrary constants appearing in the
master variables which we would like to uniquely deter-
mine using the structure of the differential equation.
Substitution of these forms in Eqs. (32) and (33) yields
the following differential equations for fn;l and gn;l
respectively:

rðr − 2Þ d
2fn;lðrÞ
dr2

þ f2λr2 þ ð2αþ 2β − 4λÞrþ ð2 − 4βÞg dfn;lðrÞ
dr

þ fðλ2 −m2
nÞr2 þ ð−2λ2 þ 2αλþ 2βλÞrþ ω2r3 þ 2α2

r − 2
−
2β2 − 4β − 6

r

þ ð2λ − 4βλþ βðβ − 1Þ þ αðα − 1Þ − lðlþ 1Þ þ 2αβÞgfn;lðrÞ −
m2

n

r
gn;l ¼ 0; ðB3Þ

rðr − 2Þ d
2gn;lðrÞ
dr2

þ f2λr2 þ ð2αþ 2β − 4λÞrþ ð2 − 4βÞg dgn;lðrÞ
dr

þ fðλ2 −m2
nÞr2 þ ð−2λ2 þ 2αλþ 2βλÞrþ ω2r3 þ 2α2

r − 2
−
2β2 − 4β

r
þ ð2λ − 4βλþ βðβ − 1Þ þ αðα − 1Þ − lðlþ 1Þ þ 2αβÞgfn;lðrÞ − 4fn;l ¼ 0: ðB4Þ

Given these differential equations, one changes the
variable from r to ξ, such that r ¼ 2=ð1 − ξÞ. In order
for these differential equations to have regular singular
points after the variable change, it is necessary that the
terms behaving as r2, r, and 1=ðr − 2Þ in the above should
vanish, which would require, at the first level, α ¼ −2iω,
in which case one can use the following relation,
r3 − 8 ¼ ðr − 2Þðr2 þ 2rþ 4Þ, such that the other two
parameters λ and β are determined as λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n − ω2
p

and β¼2iωþð1=λÞð−ω2þλ2Þ¼−ð1=λÞðω− iλÞ2. Hence,
the substitutions of these three constants leads to the
following ansatz for the master variable suited with the
above problem,

ψn;l ¼
�
r − 2

r

�
−2iω

r−beλrfn;l;

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n − ω2

q
; b ¼ ω2 − λ2

λ
; ðB5Þ

ϕn;l ¼
�
r − 2

r

�
−2iω

r−beλrgn;l: ðB6Þ

Using Eqs. (B5) and (B6), both the differential equations
can be casted in the following form:

rðr − 2Þ d
2y

dr2
þ fAr2 þ Brþ Cg dy

dr

þ
�
Dþ E

r

�
yþ

�
F þG

r

�
z ¼ 0; ðB7Þ

where y stands for fn;l and z stands for gn;l or vice versa,
and the constants appearing in the above differential
equation will depend on the parameters introduced above
in Eqs. (B5) and (B6). As mentioned earlier, it is advanta-
geous to introduce a new variable, ξ ¼ ðr − 2Þ=r, in lieu
of r, such that r ¼ 2=ð1 − ξÞ. Eliminating the variable r
appearing in Eq. (B7), one can rewrite the differential
equation in terms of the new variable ξ. Simplifying the
resulting differential equation further, we obtain
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ξð1 − ξÞ2 d
2y

dξ2
þ
��

2Aþ Bþ C
2

�
− ð2þ Bþ CÞξ

þ
�
2þ C

2

�
ξ2
�
dy
dξ

þ
��

Dþ E
2

�
−
E
2
ξ

�
y

þ
��

F þ G
2

�
−
G
2
ξ

�
z ¼ 0: ðB8Þ

The above differential equation can be solved using the
power series technique. Keeping this in mind, let us assume
the following series expansion for y in powers of ðr − 2Þ=r
or in terms of ξ as

y≡X
j¼0

cj

�
r − 2

r

�
j
¼

X
j¼0

cjξj; z ¼
X
j¼0

djξj; ðB9Þ

where cj and dj are arbitrary coefficients that need to be
determined. Substitution of the above power series in the
differential equation given by Eq. (B8) results in an
equation involving various powers of ξ. Simplifying the
above algebraic equation further and writing it in such a
manner that all the powers of ξ coincide, we finally obtain
the following three-term recursion relation between three
coefficients cj−1, cj, and cjþ1 as well as dj and dj−1
appearing in the series expansion in Eq. (B9) as

ðjþ 1Þ
�
jþ 2Aþ Bþ C

2

�
cjþ1

−
�
2jðj − 1Þ þ nð2þ Bþ CÞ −

�
Dþ E

2

��
cj

þ
�
ðj − 1Þðj − 2Þ þ

�
2þ C

2

�
ðj − 1Þ − E

2

�
cj−1

þ dj

�
F þG

2

�
−
G
2
dj−1 ¼ 0: ðB10Þ

As we have mentioned earlier, the same recursion relation
holds for expansion coefficients of fn;l and gn;l, but the
constants appearing in the recursion relation will have
distinct values for the two situations. In the case of fn;l, we
have the following expressions for the constants:

A ¼ 2λ; B ¼ 2αþ 2β − 4λ;

C ¼ 2 − 4β; E ¼ −2β2 þ 4β þ 6;

D ¼ 2λ − 4βλþ βðβ − 1Þ þ αðα − 1Þ
− lðlþ 1Þ þ 2αβ þ 4ω2;

F ¼ 0; G ¼ −m2
n; ðB11Þ

where the corresponding values associated with the differ-
ential equation for gn;l become

A ¼ 2λ; B ¼ 2αþ 2β − 4λ;

C ¼ 2 − 4β; E ¼ −2β2 þ 4β;

D ¼ 2λ − 4βλþ βðβ − 1Þ þ αðα − 1Þ
− lðlþ 1Þ þ 2αβ þ 4ω2;

F ¼ −4; G ¼ 0: ðB12Þ

Using these constants, one can write down the three-term
recursion relation for both the master variables, which we
have used to arrive at Eq. (34).
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