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We consider an exact Einstein-Maxwell solution constructed by Alekseev and Garcia, which describes a
Schwarzschild black hole immersed in the magnetic universe of Levi-Civita, Bertotti, and Robinson
(LCBR). After reviewing the basic properties of this spacetime, we study the ultrarelativistic limit in which
the black hole is boosted to the speed of light, while sending its mass to 0. This results in a nonexpanding
impulsive wave traveling in the LCBR universe. The wave front is a 2-sphere carrying two null point
particles at its poles—a remnant of the structure of the original static spacetime. It is also shown that the
obtained line element belongs to the Kundt class of spacetimes, and the relation with the known family of
exact gravitational waves of finite duration propagating in the LCBR background is clarified. In the limit of
a vanishing electromagnetic field, one point particle is pushed away to infinity and the single-particle
Aichelburg-Sexl pp-wave propagating in Minkowski space is recovered.

DOI: 10.1103/PhysRevD.97.104052

I. INTRODUCTION

Gravitational fields generated by fast-moving sources
have been of interest for several years, especially in the
mathematical study of gravitational waves [1]. By boosting
the Schwarzschild line element to the speed of light,
Aichelburg and Sexl were able to construct an exact
solution describing the gravitational field of a massless
point particle [2]. In the limit, the spacetime curvature
concentrates on a null hyperplane, and the resulting metric
belongs to the class of impulsive pp-wave [3]. The special
properties of the Aichelburg-Sexl solution make it relevant
also to, e.g., the study of high-speed black hole encounters
[4] and Planckian scattering [5].
The method of [2] has been employed by a number of

authors to describe the field of various ultrarelativistic
objects in different backgrounds, mostly asymptotically
flat ones (cf., for example, [6] and references therein).
A particularly interesting extension consists in the inclusion
of a cosmological constant, as obtained in [7] by an
ultrarelativistic boost of the Schwarzschild-(A)dS space-
time. In this case, the curvature of the (A)dS background
also affects the geometry and global properties of the
resulting impulsive wave (cf., also [8]), which is still
nonexpanding but is not a pp-wave anymore. Similarly,

one could expect that, e.g., also the presence of external
fields might affect the ultrarelativistic limit of static
sources. In particular, the case of black holes under the
influence of an electromagnetic field, described by space-
times that are neither asymptotically flat nor (A)dS, is of
some interest.
An exact solution of the Einstein-Maxwell equations

representing a Schwarzschild black hole immersed in a
spatially homogeneous electromagnetic field was con-
structed by Alekseev and Garcia in [9]. An interesting
feature of this spacetime is that it asymptotes the Levi-
Civita–Bertotti–Robinson (LCBR) universe [10–12]. The
LCBR spacetime is the direct product AdS2 × S2 of a two-
dimensional anti–de Sitter space with a two-dimensional
sphere with the same radius. It admits a six-dimensional
group of continuous isometries SOð1; 2Þ × SOð3Þ (being,
in particular, static, spherically symmetric, and homog-
enous) and is conformally flat. Despite its simplicity, the
LCBR geometry has found various physical applications
since, for example, it describes the near-horizon geometry
of extremal Reissner-Nordström black holes [13] as well as
the interaction region in the collision of two shock
electromagnetic plane waves [14] (cf., [6,15] for further
comments and references).
The main purpose of the present paper is to derive the

gravitational field generated by the Schwarzschild-
LCBR black hole of [9] when it moves “with the speed
of light” (as defined in the following), and to describe the
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corresponding geometry. As we show, this consists of an
impulsive gravitational wave propagating in the LCBR
universe and possessing a spherical, nonexpanding wave
front. Another purpose of this work is thus to relate this
spacetime to a more general class of exact impulsive waves
that were constructed previously in [16,17] using a geo-
metric approach, and hence to provide a more physical
interpretation of those. The relation with the family of
Kundt spacetimes and with previously found solutions
describing gravitational waves of finite duration in the
LCBR universe [18] is also clarified.
We begin in Sec. II by presenting the solution of [9] and

reviewing its basic features. This section is largely a
summary of [9], but we also add a few new observations
(such as the asymptotic properties, the form of the line
element near the axis and near the curvature singularity, the
behavior of certain invariants near the latter, and a comment
on the Petrov type of the spacetime). In Sec. III we perform
the ultrarelativistic boost of the line element of [9], which
leads to an impulsive wave propagating in the Levi-Civita–
Bertotti–Robinson universe. The geometry of the latter and
its relation with previosuly investigated families of exact
gravitational waves is discussed in the final Sec. IV.

II. THE ALEKSEEV-GARCIA SOLUTION

A. The line element

The Alekseev-Garcia spacetime was obtained using a
generating technique based on the monodromy data trans-
form [9]. The line element reads

ds2 ¼ −e2ψcosh2
z
b
dt2 þ e2γðdz2 þ dρ2Þ

þ e−2ψb2sin2
ρ

b
dϕ2; ð1Þ

with

e2ψ ¼ ðRþ þ R− − 2m cos ρ
bÞ2

ðRþ þ R−Þ2 − 4m2
;

e2γ ¼ ðRþ þ R− − 2m cos ρ
bÞ2

4RþR−

×

�
Rþ − b sinh z

b þ ðlþmÞ cos ρ
b

R− − b sinh z
b þ ðl −mÞ cos ρ

b

�
2

;

R2
� ¼

�
l�m − b sinh

z
b
cos

ρ

b

�
2

þ b2cosh2
z
b
sin2

ρ

b
; ð2Þ

where m, b, l are constant parameters. Together with the
electromagnetic field Fμν ¼ Aν;μ − Aμ;ν defined by the
potential Aμdxμ ¼ Aϕdϕ (up to an arbitrary constant duality
rotation), where

Aϕ ¼ −b
Rþ þ R− þ 2m

Rþ þ R− − 2m cos ρ
b

�
1 − cos

ρ

b

�
; ð3Þ

metric (1) is a solution of the Einstein-Maxwell equations.
It clearly admits the two commuting Killing vector fields ∂t
and ∂ϕ. Computing the curvature tensor leads to very
complicated expressions. Nevertheless, computer-aided
computation shows that the invariant condition I3 − 27J2 ≠
0 [15] is satisfied at generic points and for generic values of
the parameters, implying that the Petrov type of the
spacetime is generically I (it may be more special at special
points). The physical meaning of the three parameters can
be understood by considering various limiting cases or the
neighborhood of certain points, as we now discuss. Without
loss of generality, hereafter we assume b, m > 0.1

B. Asymptotics

In the limit z → −∞, one has Rþ ∼ R− ∼ b cosh z
b, so that

both e2ψ → 1 and e2γ → 1. Therefore, the line element (1)
tends asymptotically to the LCBR AdS2 × S2 metric

ds20 ¼ − cosh2
z
b
dt2 þ dz2 þ dρ2 þ b2 sin2

ρ

b
dϕ2; ð4Þ

while Aϕ → A0
ϕ ¼ −bð1 − cos ρ

bÞ. This means Fμνdxμdxν ¼
− sin ρ

b dρ ∧ dϕ, so that the constant 1=b2 parametrizes the
field strength FμνFμν ¼ 2=b2. In order to have a regular
asymptotic behavior, it is thus natural to define the range of
the angular coordinates (ρ, ϕ) as

ρ ∈ ½0; πb�; ϕ ∈ ½0; 2π�: ð5Þ

However, in the opposite spatial direction z → þ∞ one
obtains instead asymptotically

dŝ20 ¼ −cosh2
z
b
dt2 þ α2ðdz2 þ dρ2Þ þ b2sin2

ρ

b
dϕ2; ð6Þ

with

α ¼ ðlþmÞ2 þ b2

ðl −mÞ2 þ b2
: ð7Þ

With the choice (5), this asymptotic region thus describes
a LCBR spacetime with a conical singularity at the
poles ρ ¼ 0, πb; parametrized by α, the conical singularity
is absent if either l ¼ 0 orm ¼ 0. Locally, the geometry (6)
is equivalent to (4) up to rescaling b ↦ αb in the latter
[for this reason, FμνFμν ¼ 2=ðαbÞ2 in the asymptotic
region (6)].

1The metric is manifestly invariant under b ↦ −b, which only
changes the sign of Aϕ. A change in the sign of m can be
compensated by redefining l ↦ −l and ρ ↦ π − ρ, which again
leaves the metric invariant and changes the sign of the potential
(up to a gauge term).
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C. LCBR and Schwarzschild limits

For the special choice m ¼ 0, solution (1) reduces
everywhere to the LCBR universe (4). On the other hand,
in the limit of a vanishing Maxwell field (i.e., b → þ∞),
from (1) one obtains the (exterior) Schwarzschild line
element in Weyl’s coordinates [6,15] (after rescaling
z̃ ¼ z − l), for which m is the standard Schwarzschild
mass, cf., [9].

D. Horizon and singularities

Killing horizons are defined by possible points where
e2ψ ¼ 0 in (2). As it turns out [9], this occurs if, and only if,

ρ ¼ 0; l −m ≤ b sinh
z
b
≤ lþm: ð8Þ

In this range of z, for ρ ≈ 0, metric (1) at the leading order
takes the form2

ds2 ≈ Σ2

�
−

ρ2

4b2
dt2 þ 4b2m2

½b2 þ ðl −mÞ2�2 ðdz
2 þ dρ2Þ

�

þ 4b2Σ−2cosh2
z
b
dϕ2;

Σ2 ¼ 1

b2
ðb2 − l2 þm2 þ 2lb sinh z

bÞ2
m2 − ðl − b sinh z

bÞ2
: ð9Þ

It follows that spatial sections of the horizon do not have
constant Gaussian curvature. Nevertheless, the latter can
be straightforwardly integrated over the horizon, which for
l ¼ 0 gives 4π, and thus the Euler characteristic is 2, in
agreement with the spherical topology (via the Gauss-
Bonnet theorem; for l ≠ 0 the conical singularity at
b sinh z

b ¼ lþm should be taken into account—cf., foot-
note 2 and the following comments). The horizon area can
be computed easily and reads3

AH ¼ 16πm2
b2

b2 þ ðl −mÞ2 : ð10Þ

For values of z outside the interval (8), the condition
ρ ¼ 0 describes an axis. The local metric for ρ ≈ 0 reads

ds2 ≈ −Ψ−2cosh2
z
b
dt2 þΨ2½α̂2ðdz2 þ dρ2Þ þ ρ2dϕ2�;

Ψ2 ¼ b sinh z
b − l −m

b sinh z
b − lþm

; α̂ ¼ 1; for b sinh
z
b
< l −m;

Ψ2 ¼ b sinh z
b − lþm

b sinh z
b − l −m

; α̂ ¼ α; for b sinh
z
b
> lþm;

ð11Þ

with (7). In the range b sinh z
b > lþm, for l ≠ 0 there is

therefore a conical singularity (as noticed in [9]) that
extends all the way to z → þ∞, in agreement with the
comment following the asymptotic metric (6).
At first sight, it may seem surprising that there is not a

second horizon at the antipodal point ρ ¼ πb. However,
this can be understood in light of footnote 1—a positive
mass m at ρ ¼ 0 is mirrored by a negative mass −m at
ρ ¼ πb and one could thus expect a naked singularity there
(see also the comments in [9]). More precisely, one finds
that there is a timelike curvature singularity at4

ρ̃≡ ρ − πb ¼ 0; −l −m ≤ b sinh
z
b
≤ −lþm; ð12Þ

and the local metric for ρ̃ ≈ 0 takes the form

ds2 ≈ −
Π2

ρ̃2
dt2 þ 16m2½ðlþmÞ2 þ b2�2

b4Π6
ρ̃4ðdz2 þ dρ̃2Þ

þ Π−2cosh2
z
b
ρ̃4dϕ2;

Π2 ¼ 4

�
m2 −

�
lþ b sinh

z
b

�
2
�
: ð13Þ

One can verify that near the singularity (12), for instance,
the following invariant diverges:

FμνFμν¼8b2½m2−ðlþbsinh z
bÞ2�2

m2½ðlþmÞ2þb2�2
cosh2 zb
ρ̃2

þOðρ̃0Þ: ð14Þ

Computing curvature invariants is much more complicated
but one can show, for example, that also RμνRμν diverges
at (12).
However, for values of z outside the interval (12), ρ ¼

πb is not a curvature singularity but an axis. The local
metric for ρ̃ ≈ 0 reads

2This approximate “near-horizon” metric was already given in
Sec. VII of [9], up to a typo (an extra factor ρ2) in the function f
used there. It should be emphasized that the line element at the
limiting values of the interval (8) must be computed separately
enforcing b sinh z

b ¼ l�m before taking ρ ≈ 0 [as (9) would
become singular]. This can be done straightforwardly and we
omit it for brevity, just noticing that a conical singularity appears
at b sinh z

b ¼ lþm (cf., related comments in the case b sinh z
b >

lþm discussed in the following). An analogous comment
applies to metric (13) and we do not repeat it there. Note that
similar care is also needed if one wants to study the Schwarzs-
child metric in Weyl’s coordinates at z̃ ¼ �m for ρ ≈ 0 (cf.,
Sec. II C).

3Beware that this expression differs from the corresponding
one obtained (for l ¼ 0) in Sec. VII of [9].

4This was found in Sec. VIII of [9], up to a typo (replace there
l ↦ −l).
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ds2 ≈ −Ξ−2cosh2
z
b
dt2 þ Ξ2½α̂2ðdz2 þ dρ̃2Þ þ ρ̃2dϕ2�;

Ξ2 ¼ b sinh z
b þ lþm

b sinh z
b þ l −m

; α̂ ¼ 1; for b sinh
z
b
< −l −m;

Ξ2 ¼ b sinh z
b þ l −m

b sinh z
b þ lþm

; α̂ ¼ α; for b sinh
z
b
> −lþm;

ð15Þ

with (7). Similarly as above, in the range b sinh z
b > −lþm

there is a conical singularity if l ≠ 0.

III. ULTRARELATIVISTIC BOOST

Before starting, let us observe that the isometries of the
asymptotic LCBR spacetime include a natural notion of
boost [defined by the AdS2 factor, cf., (26) below]. This
makes it plausible that the Aichelburg-Sexl method can be
adapted to the present context. We show that this is indeed
the case, also pointing out some technical differences.
First of all, it is useful to decompose the line element (1) as

ds2 ¼ ds20 þ Δ; ð16Þ

in which ds20 is the LCBR metric (4), and

Δ ¼ 4m½xðRþ þ R− −mxÞ −m�
� ð1þ η2Þ
ðRþ þ R−Þ2 − 4m2

dt2 þ b2ð1 − x2Þ
ðRþ þ R− − 2mxÞ2 dϕ

2

�

þ
��

Rþ − bηþ ðlþmÞx
R− − bηþ ðl −mÞx

�
2 ðRþ − R−Þ2 þ 4mxðmx − Rþ − R−Þ

4RþR−

þ ðRþ þ R− − 2bηþ 2lxÞðRþ − R− þ 2mxÞ
½R− − bηþ ðl −mÞx�2

�
ðdz2 þ dρ2Þ; ð17Þ

where we have introduced the compact notation

η ¼ sinh
z
b
; x ¼ cos

ρ

b
: ð18Þ

A notion of boost is defined with respect to the AdS2
factor of the LCBR “background” ds20, i.e.,

ds2AdS2 ¼ − cosh2
z
b
dt2 þ dz2; ð19Þ

and leaves ds20 invariant. Therefore, we need only study how
the termΔ in (16) transforms. To simplify later computations
it is also useful to employ (19) to write cosh2 z

b dt
2 ¼

−ds2AdS2 þ dz2, so that in (17) one can substitute

ð1þ η2Þdt2 ¼ −ds2AdS2 þ dz2: ð20Þ

(This has the advantage that no terms proportional to dt2 will
appear in Δ, except for the one contained in the boost-
invariant quantity ds2AdS2.) It is also convenient to embed
AdS2 in a flat three-dimensional space, so that (19) becomes

ds2AdS2 ¼ −dZ0
2 þ dZ1

2 − dZ2
2;

− Z0
2 þ Z1

2 − Z2
2 ¼ −b2; ð21Þ

where

Z0 ¼ b cosh
z
b
cos

t
b
; Z1 ¼ b sinh

z
b
;

Z2 ¼ b cosh
z
b
sin

t
b
: ð22Þ

In double null coordinates

Z0 ¼
U − Vffiffiffi

2
p ; Z1 ¼

U þ Vffiffiffi
2

p ; ð23Þ

Eq. (21) becomes

ds2AdS2 ¼ 2dUdV − dZ2
2; −2UV þ Z2

2 ¼ b2: ð24Þ

Using (22) and (23), we can replace dz2 in (17) and
(20) by

dz2 ¼ b2

2

�
b2 þ ðU þ VÞ2

2

�−1
ðdU þ dVÞ2: ð25Þ

We are thus finally ready to perform the AdS2 boost
(i.e., a Lorentz boost in the direction Z1), which in the
coordinates (24) takes the simple form

U ↦ ϵ−1U; V ↦ ϵV; ð26Þ

where ϵ > 0 [the same boost in the coordinates (t, z) was
discussed in [19]]. An ultrarelativistic boost consists in
taking the limit to the speed of light ϵ → 0, while
simultaneously rescaling the mass as

m ↦ ϵp; ð27Þ

such that the total energy remains finite [2].
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The term (17), now parametrized by ϵ, thus becomes

Δϵ ¼ 4ϵp½xðRϵþ þ Rϵ
− − ϵpxÞ − ϵp�

�−ds2AdS2 þ b2
2
ðϵ−1dU þ ϵdVÞ2ðb2 þ y2ϵÞ−1

ðRϵþ þ Rϵ
−Þ2 − 4ϵ2p2

þ b2ð1 − x2Þ
ðRϵþ þ Rϵ

− − 2ϵpxÞ2 dϕ
2

�

þ
��

Rϵþ − yϵ þ ðlþ ϵpÞx
Rϵ
− − yϵ þ ðl − ϵpÞx

�
2 ðRϵþ − Rϵ

−Þ2 þ 4ϵpxðϵpx − Rϵþ − Rϵ
−Þ

4RϵþRϵ
−

þ ðRϵþ þ Rϵ
− − 2yϵ þ 2lxÞðRϵþ − Rϵ

− þ 2ϵpxÞ
½Rϵ

− − yϵ þ ðl − ϵpÞx�2
��

b2

2
ðϵ−1dU þ ϵdVÞ2ðb2 þ y2ϵÞ−1 þ dρ2

�
; ð28Þ

where

yϵ ¼
ϵ−1U þ ϵVffiffiffi

2
p ;

ðRϵ
�Þ2 ¼ ðl� ϵp − yϵxÞ2 þ ðb2 þ y2ϵÞð1 − x2Þ: ð29Þ

(Note that the shortcut yϵ fully determines how Δϵ depends
on U. This is important in subsequent calculations.)
We are now ready to compute the limiting metric

ds2 ¼ ds20 þ limϵ→0Δϵ. By inspection, one can see that
in the limit ϵ → 0 only (some of) the terms proportional to
dU2 survive. It is also useful to note that

Rϵ
� ¼ Rϵ � ϵp

l − yϵx
Rϵ

þ � � � ;

Rϵ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − yϵxÞ2 þ ðb2 þ y2ϵÞð1 − x2Þ

q
; ð30Þ

where the dots denote terms that become negligible in the
limit. For a small ϵ one thus has

Δϵ ¼ 2pb2dU2ϵ−1
1

ðb2 þ y2ϵÞðRϵ − yϵ þ lxÞ
�
l − yϵx
Rϵ

þ x

�

þ � � � : ð31Þ

Applying the distributional identity

lim
ϵ→0

1

ϵ
fðyϵÞ ¼

ffiffiffi
2

p
δðUÞ

Z þ∞

−∞
fðyÞdy; ð32Þ

one arrives at the final metric

ds2 ¼ ds20 þ 2HδðUÞdU2; H ¼
ffiffiffi
2

p
pb2

Z þ∞

−∞
fðyÞdy;

ð33Þ

where [recall (24)]

ds20 ¼ 2dUdV − dZ2
2 þ dρ2 þ b2sin2

ρ

b
dϕ2;

− 2UV þ Z2
2 ¼ b2; ð34Þ

and

fðyÞ ¼ 1

b2 þ l2
1

b2 þ y2

×
�
lþ ylþ b2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 2lxyþ l2 þ b2ð1 − x2Þ
p

�
: ð35Þ

with x ¼ cos ρ
b. The limit of the potential (3) simply gives

the potential of the LCBR solution (cf., Sec. II B), i.e.,

Aϕ ¼ −b
�
1 − cos

ρ

b

�
: ð36Þ

It only remains to compute the integral in (33). The first
term in (35) can be integrated elementarily. Using Euler’s
substitution

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 2lxyþ l2 þ b2ð1 − x2Þ

p
¼ τ þ y [20]

for the second term, one arrives at

Z
fðyÞdy ¼ 1

b2 þ l2

�
l
b
arctan

y
b
þ 1

2
ln
b2ð1þ xÞ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 2lxyþ l2 þ b2ð1 − x2Þ

p
− y − lÞ2

b2ð1 − xÞ2 þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 2lxyþ l2 þ b2ð1 − x2Þ

p
− yþ lÞ2

�
; ð37Þ

so that, finally,

ds2 ¼ ds20 þ 2HδðUÞdU2; H ¼
ffiffiffi
2

p
p

b2

b2 þ l2

�
πl
b
þ ln

1þ cos ρ
b

1 − cos ρ
b

�
; ð38Þ

with (34).
It is worth observing that, in the above calculation, the infinite gauge subtraction used in [2] was not necessary. This is

due to the contribution of the electromagnetic field, which makes the integral of (35) finite.
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IV. DISCUSSION

The above spacetime (38) with the magnetic potential
(36) is an exact solution of the Einstein-Maxwell field
equations. For U ≠ 0, it coincides with the LCBR solution
(4) [in the embedding coordinates (34)]. In addition, it
contains an impulsive gravitational wave localized on the
null 3-submanifold U ¼ 0, and thus propagating in the
LCBR universe at the speed of light [in the z-direction,
recall (22) and (23)]. The spatial section of the wave front
consists of two nonexpanding 2-spheres of radius b
(given by Z2 ¼ �b) spanned by the coordinates (ρ, ϕ).
Their histories are depicted as two null lines in Fig. 1,
where the hyperboloid represents the AdS2 factor of the
LCBR background. Similarly, the trajectories U ¼ 0, Z2 ¼
�b are described by the solid lines in the conformal
diagram of AdS2 in Fig. 2. The function H is singular at
the poles ρ ¼ 0, πb, which are a remnant of the black hole
and naked singularity of the original static spacetime.
These describe null point particles sitting on the wave
front (more comments below).
Metric (38) can also be rewritten in terms of intrinsically

four-dimensional null coordinates ðu; vÞ defined by (cf., for
example, [16])

U ¼ u
Ω
; V ¼ v

Ω
; Z2 ¼ ð�Þb

�
2

Ω
− 1

�
;

Ω ¼ 1 −
1

2
b−2uv; ð39Þ

leading to the line element

ds2 ¼ 2dudvþ 2HδðuÞdu2
Ω2

þ dρ2 þ b2sin2
ρ

b
dϕ2: ð40Þ

The function H is still given by (38), where the first
additive term, being a constant, can be removed by a
discontinuous coordinate transformation [cf., Eq. (20) of

[16]]. In these coordinates, the wave front sits at u ¼ 0 and
(timelike) infinity corresponds to uv ¼ 2b2. The metric
clearly admits the Killing vectors ∂v and ∂ϕ, and an
additional smooth isometry is generated by ∂v − 1

2
a−2u2∂u

(the latter exits thanks to the impulsive character of the
metric [16]). In the limit b → þ∞, it reduces to the
well-known Aichelburg-Sexl pp-wave propagating in
Minkowski spacetime [2] [upon noticing that the apparently

diverging term −2
ffiffiffi
2

p
p ln ρ2

4b2 δðuÞdu2, which appears in the
limit, can be regularized with a coordinate transformation of
the form v ↦ vþ kθðuÞ, where k is a constant].
Solution (40) turns out to belong to a more general

family of impulsive waves in the LCBR universe studied
from a different viewpoint in [16,17]. It follows from
[16,17] that the spacetime is of Petrov type N at u ¼ 0
(where the Weyl tensor is concentrated) and O elsewhere.
The Ricci tensor is the same as in the LCBR background
(a Φ11 component in Newman-Penrose notation), plus an
additional distributional component due to the null point
particles localized at the poles of the spherical wave front.
The latter is of the form [16,17] Φ22 ∝ pδðuÞ½δð1 − xÞ−
δð1þ xÞ�, describing a pair of point particles with energy
densities of opposite sign—this reflects a similar situation
with the two original static sources (cf., Sec. II D and [9]).
The fact that conical singularities disappear in the ultra-
relativistic boost is related to the mass being rescaled to 0 in
the limit, so that α → 1 in (7) (cf., [22] for the boost of
conical singularities in a different context).

FIG. 1. The 2-hyperboloid visualizes the dS2 factor AdS2 factor
of the LCBR universe (4) in the embedding coordinates (21).
Each point corresponds to a 2-sphere of a constant radius b in the
four-dimensional spacetime. The parallel solid lines Z0 þ Z1 ¼ 0
(⇔ Z2 ¼ �b) are the histories of two of these spheres, propa-
gating at the speed of light from one side of the universe to the
other; cf., [8] for a similar discussion in the case of the solutions
of [7].

FIG. 2. The conformal diagram of the LCBR universe (4) is that
of its AdS2 factor (cf., [13]), with each point representing a two-
dimensional sphere. The conformal spatial coordinate R ∈ ð0; πÞ
is defined by R ¼ 2 arctanðez=bÞ, and the timelike boundaries
R ¼ 0 (z ¼ −∞) and R ¼ π (z ¼ þ∞) correspond to null and
spacelike infinity on opposite sides of the universe. The two solid
lines represent the components Z2 ¼ �b of the null hypersurface
U ¼ 0. Timelike geodesics emanating from p reconverge at the
image point q (cf., [21]).
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It is also worth observing that spacetime (40) belongs to
the Kundt class [6,15], as can be seen by defining standard
Kundt coordinates

ṽ ¼ v
Ω
; ζ ¼

ffiffiffi
2

p
beiϕ tan

ρ

2b
; ð41Þ

giving

ds2 ¼ 2dudṽþ ½−b−2ṽ2 þ 2HδðuÞ�du2 þ 2dζdζ̄

ð1þ 1
2
b−2ζζ̄Þ2 ;

H ¼ −
ffiffiffi
2

p
p

b2

b2 þ l2
ln

ζζ̄

2b2
: ð42Þ

[Here we have removed the constant term originally
appearing in H, as mentioned after Eq. (40).] The Kundt
vector field is defined by ∂ ṽ and is recurrent. Metric (42)
can thus be interpreted as the impulsive limit of exact
nonexpanding sandwich waves of finite duration, for which
the component 2HδðuÞdu2 can be replaced by an arbitrarily
profiled term 2Hðu; ζ; ζ̄Þdu2. A general family of purely
gravitational waves [i.e., with H of the form H ¼
fðu; ζÞ þ f̄ðu; ζ̄Þ in (42), and fðu; ζÞ arbitrary] was first
obtained in [18] (see also [23] for further comments and
some extensions). For any choice of Hðu; ζ; ζ̄Þ, these
spacetimes are in fact a subset of the “degenerate”
Kundt spacetimes [24] and all their scalar curvature

invariants are constant (and coincide with those of the
LCBR background) [25].
To conclude, it should be remarked that, prior to [9], a

different solution describing the Schwarzschild black hole
immersed in an external magnetic field was obtained in
[26]. In that case, the background spacetime is given by the
Bonnor-Melvin universe [27,28]. The ultrarelativistic
boost of the Schwarzschild-Bonnor-Melvin black hole
was studied in [29]. More general gravitational waves in
the Bonnor-Melvin spacetime were constructed earlier in
[30] and were also shown [29] to belong to the Kundt class
(but not to the subclass with constant curvature invariants).
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