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We study the static equilibrium configurations of uncharged and charged spheres composed by a
relativistic polytropic fluid, and we compare with those of spheres composed by a nonrelativistic polytropic
fluid, the later case being already studied in a previous work [J. D. Arbañil, P. S. Lemos, and V. T. Zanchin,
Phys. Rev. D 88, 084023 (2013)]. An equation of state connecting the pressure p and the energy density ρ is
assumed. In the nonrelativistic fluid case, the connection is through a nonrelativistic polytropic equation of
state, p ¼ ωργ , with ω and γ being respectively the polytropic constant and the polytropic exponent. In the
relativistic fluid case, the connection is through a relativistic polytropic equation of state, p ¼ ωδγ , with
δ ¼ ρ − p=ðγ − 1Þ, and δ being the rest-mass density of the fluid. For the electric charge distribution, we
assume that the charge density ρe is proportional to the energy density ρ, ρe ¼ αρ, with α being a constant
such that 0 ≤ jαj ≤ 1. The study is developed by integrating numerically the hydrostatic equilibrium
equation. Some properties of the charged spheres such as the gravitational mass, the total electric charge,
the radius, the surface redshift, and the speed of sound are analyzed by varying the central rest-mass
density, the charge fraction, and the polytropic exponent. In addition, some limits that arise in general
relativity, such as the Chandrasekhar limit, the Oppenheimer-Volkoff limit, the Buchdahl bound, and the
Buchdahl-Andréasson bound are studied. It is confirmed that charged relativistic polytropic spheres with
γ → ∞ and α → 1 saturate the Buchdahl-Andréasson bound, thus indicating that it reaches the quasiblack
hole configuration. We show by means of numerical analysis that, as expected, the major differences
between the two cases appear in the high energy density region.
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I. INTRODUCTION

A. Uncharged spheres: Equations of
state and mass bounds

In the study of stars, both in Newtonian gravitation and
in general relativity, it is usual to model the matter by a
perfect fluid. Such a fluid is fully characterized by its
energy density ρ and pressure p, besides the speed of sound
in it. In general, to close the system of equations, an
equation of state relating the pressure to the energy density
of the fluid is specified. Since Eddington [1], a polytropic
equation of state has been assumed to build analytically
simple star models. Such an equation relates the pressure
and energy density by a power law of the form

p ¼ ωργ; ð1Þ
where ω and γ are respectively the polytropic constant and
the polytropic exponent. Such a relation, which we call

EoS 1, is derived in Newtonian fluid mechanics, in which
case ρ is the mass density, but it is a good approximation for
relativistic fluids as long as the energy density is suffi-
ciently small (see, e.g., [2]).
The equation of state (1) has been employed in several

contexts. A fact of interest here is that the first bound for the
mass of a compact object was established, when studying
white dwarfs, by using such a polytropic equation of
state [3,4]. As a matter of fact, Chandrasekhar used EoS 1
(1) with γ ¼ 4=3. Applying the laws of Newtonian
gravitation, he found that the radius of the configuration
decreases with growing of the energy density, and it shrinks
to zero for a mass of approximately 1.44 M⊙. This is the
Chandrasekhar limit.
As in Newtonian gravitation, in the context of general

relativity there are also mass bounds for compact objects.
Studies in this direction were performed by Tolman [5] and
Oppenheimer and Volkoff [6]. In their works, they showed
that a mass limit can be also achieved in neutron stars. This
mass limit, known as Oppenheimer-Volkoff limit, appears
when the neutron star pressure is sufficiently large. In their
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works, Tolman [5] and Oppenheimer and Volkoff [6] wrote
the gradient pressure in a very convenient form. This
equation is known as the hydrostatic equilibrium equation
or Tolman-Oppenheimer-Volkoff (TOV) equation.
EoS 1 and the TOV equation were used together for the

first time by Tooper [7]. He discussed the structure of
polytropic stars (polytropes) through the numerical inte-
gration of the TOV equation. Although the equation of
state (1) describes spherical objects in a very simple
manner, its use has some drawbacks. At very high
pressures, it leads to obtaining values of the sound speed
higher than the speed of light, violating the principle of
causality. Thus, it is understood that a generalization of EoS
1 is required. The most reasonable generalization of the
polytropic equation of state was given by Tooper in [8]. He
showed that the pressure and the energy density of the
generalized polytropic equation of state obey the relations

p ¼ ωδγ;

ρ ¼ δþ p=ðγ − 1Þ; ð2Þ

respectively, where δ represents the rest-mass density. In
the preset work, Eq. (2) is referred to as EoS 2. Equations of
state of the form (2) have been used to study neutron stars,
in which the neutrons are nonrelativistic, and white dwarfs,
in which the electron gas is extremely relativistic (see,
e.g., [8]). For white dwarf models, where the fluid pressure
is small in comparison to the energy density, EoS 2 is
equivalent to EoS 1, because in that situation we may
neglect the pressure in the second term on the right-hand
side of Eq. (2) and take δ ≃ ρ. The equilibrium configu-
rations determined with EoS 2 are named after Thorne [2]
as the relativistic polytropic models or relativistic poly-
tropes (for short); henceforth, these names will be used
throughout this work. It is important to mention that a brief
comparison between nonrelativistic polytropes and relativ-
istic polytropes without and with cosmological constant
have been considered respectively in [9] (see also [10,11])
and [12], and for nonisotropic fluids in [13].

B. Charged spheres and the TOV method

The first analysis on charged objects by means of the
TOV method were developed by Bekenstein in [14]. From
then on, many different works addressing the influence of
electric charge and electric fields in the structure of compact
objects were reported. Among them, we find studies on the
equilibrium configurations of charged compact stars where
the fluid follows EoS 1, e.g., [15–18]. In Refs. [16,17] the
authors focused on studying the effects of the electric charge
on the structure of compact cold stars. In these works, the
modified TOVequation was solved considering EoS 1 with
γ ¼ 5=3 and a charge density proportional to the energy
density, ρe ¼ αρ (α being a constant that obeys the constraint
0 ≤ α ≤ 1). Arbañil, Lemos and Zanchin (ALZ) in [18] also

studied the structure of electrically charged objects consid-
ering EoS 1, varying the polytropic exponent γ, and with the
charge distribution given by ρe ¼ αρ. The mass bounds for
these charged compact objects were also investigated in the
same work. The authors found that extremely charged
polytropic stars with γ → ∞ are structures with the total
chargeQ close to the totalmassM,Q ≃M, andwith radiusR
close to the gravitational radius Rþ, R ≃ Rþ ≃M. This
indicates that the solutions are close to the quasiblack hole
configurations (see, e.g., [19]).

C. Compactness bounds and quasiblack hole
configurations

Uncharged compact objects in general relativity obey the
Buchdahl bound [20]. This bound states that the radius R
and the gravitational mass M of a sphere of perfect fluid in
hydrostatic equilibrium satisfying reasonable physical con-
ditions satisfies the inequalityR=M ≥ 9=4. If a star shrinks to
a size that violates this bound, it eventually turns into a black
hole. This bound is saturated by the interior Schwarzschild
solution in the limit of infinite central pressure [21] (see
also [22]). That is to say, the Buchdahl bound saturated by an
incompressible fluid with an infinite central pressure gives
the upper limit of the bound, R=M ¼ 9=4. The Buchdahl
bound is a general result in the sense that it is independent of
the equation of state used.
The charged compact objects in general relativity

coupled to Maxwell electromagnetism satisfy the
Buchdahl-Andréasson bound [23]. This bound states that
a hydrostatic equilibrium configuration of charged fluid
matter obeys the relation

R
M

≥
9�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Q2=R2

p �
2
: ð3Þ

As shown in Ref. [24], the Buchdahl-Andréasson bound is
saturated by the Guilfoyle solutions [25] for charged spheres
in the limit where the central pressure attains arbitrarily large
values, in full analogy to the Schwarzschild interior limit.
As verified in Refs. [18,22], charged fluids satisfying the
nonrelativistic polytropic equation of state and a charged
incompressible fluid do not saturate the Buchdahl-
Andréasson bound. In the limit of extremely charged objects,
this bound corresponds to the quasiblack hole configuration.
It is important to stress that the quasiblack hole limit is

found using different equations of state and different
electric charge distributions. Such limiting solutions
have been found, e.g., for an incompressible fluid with a
distribution of electric charge which follows a particular
function of the radial coordinate [26–28], and when the
charge density is proportional to the energy density [18,22].
Quasiblack holes have also been obtained in works that use
an equation of state for electrically charged dust (p ¼ 0)
[29,30], and also in works that use the Cooperstock–
de la Cruz–Florides [25,31,32] equation of state, as in
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Refs. [24,33,34]. The general properties of quasiblack
holes were defined in [19,35].

D. This work

We are interested in analyzing the equilibrium configu-
rations of fluid spheres in the presence or absence of
electric charge, taking into account the relativistic poly-
tropic equation of state (2). The results found here are
compared with the ones found using the nonrelativistic
polytropic equation of state (1) [18]. For short, we refer to
the respective configurations as nonrelativistic polytropic
stars (or nonrelativistic polytropes) and relativistic poly-
tropic stars (or relativistic polytropes). Very compressed
objects, the compactness bounds and quasiblack hole limits
are the main objects of interest here.
The article is structured according as follows. In Sec. II

we write the TOVequation with the inclusion of the electric
charge. The equation of state, the charge density profile and
the boundary conditions are also considered in such a
section. Section III is dedicated to comparing the structure
of charged relativistic polytropes with the charged non-
relativistic polytropes for different values of polytropic
exponent γ. We analyze the Chandrasekhar limit, the
Oppenheimer-Volkoff limit, the Buchdahl bound and the
Buchdahl-Andréasson bound. Some physical properties of
the fluid for an arbitrarily large polytropic exponent γ are
given in Sec. IV. The dependence of the speed of sound as a
function of the polytropic exponent is accomplished in
Sec. V. In Sec. VI we study the quasiblack hole limit and
the redshift on the surface of a quasiblack hole. In Sec. VII
we conclude.

II. GENERAL RELATIVISTIC CHARGED
PERFECT FLUID

A. Equations of structure

The line element for a static spherically symmetric
spacetime, in Schwarzschild coordinates, is

ds2 ¼ −Bdt2 þ Adr2 þ r2dθ2 þ r2 sin2 θdϕ2; ð4Þ

with the metric potentials B ¼ BðrÞ and A ¼ AðrÞ depend-
ing on the radial coordinate r only. Considering a charged
isotropic fluid, the Maxwell-Einstein equations (in units
such that c ¼ 1 ¼ G) furnish the following set of inde-
pendent equations,

dq
dr

¼ 4πρer2
ffiffiffiffi
A

p
; ð5Þ

dm
dr

¼ 4πρr2 þ q
r
dq
dr

; ð6Þ

dp
dr

¼ −ðpþ ρÞA
�
4πprþ m

r2
−
q2

r3

�
þ ρe

ffiffiffiffi
A

p q
r2
; ð7Þ

dB
dr

¼ 2B
pþ ρ

�
q

4πr4
dq
dr

−
dp
dr

�
; ð8Þ

where the potential metric A−1 assumes the form

A−1 ¼ 1 −
2m
r

þ q2

r2
: ð9Þ

Functionsm ¼ mðrÞ andq ¼ qðrÞ represent respectively the
gravitational mass and the electric charge within a sphere of
radius r, while ρe ¼ ρeðrÞ is the electric charge density, and
ρ ¼ ρðrÞ and p ¼ pðrÞ stand respectively for the energy
density and the pressure of the fluid. Taking q ¼ 0 in Eq. (7),
the original TOV [5,6] equation is recovered.
To solve the set of equations (5)–(9), a set of boundary

conditions needs to be furnished. At the center of the spheres,
the chosen conditions are qðr ¼ 0Þ ¼ 0, mðr ¼ 0Þ ¼ 0,
pðr ¼ 0Þ ¼ pc, ρðr ¼ 0Þ ¼ ρc, δðr ¼ 0Þ ¼ δc, and
ρeðr ¼ 0Þ ¼ ρec. The surface of the object is found through
the condition pðr ¼ RÞ ¼ 0. At this point, r ¼ R, the
interior solution joins smoothly to the exterior vacuum
solution provided by the Reissner-Nordström metric,
where BðrÞ ¼ A−1ðrÞ ¼ 1–2M=rþQ2=r2, with M ¼
mðRÞ and Q ¼ qðRÞ.

B. The equation of state and charge density profile

In the present case there are four equations [Eqs. (5), (6),
(7), and (9)] and six variables [qðrÞ, AðrÞ,mðrÞ, ρðrÞ, pðrÞ,
and ρeðrÞ], forming an incomplete set of equations. To
close the system, as usual, an equation of state and, for the
charged fluid, a relation defining the charge density profile
need to be supplemented.
As stated earlier, the equation of state employed here is

the relativistic polytropic equation (2). In the following, the
equation of state (2) (EoS 2) and its respective results are
called case 2, while (1) (EoS 1) and its respective results
(already reported in Ref. [18]) are called case 1.
We also need an additional input regarding the electric

charge distribution. For the sake of comparison with results
of previous works, e.g., [15–18,36,37], we assume that the
electric charge density is proportional to the energy density
of the fluid,

ρe ¼ αρ; ð10Þ

where α is a dimensionless constant that we call the charge
fraction, which is constrained to the interval α ∈ ½0; 1Þ. Let
us mention that other interesting choices could be made,
e.g., a relation of the form ρe ¼ αδ. Besides the strong
reason of being the same relation as in the previous work
[18], whose results we aim to compare with the present
analysis, another reason to choose the form of Eq. (10) is
that it has shown to produce more compact objects in
comparison with other charge density profiles.
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III. THE STRUCTURE OF RELATIVISTIC
CHARGED POLYTROPIC SPHERES

A. General remarks

Here the structure of charged spheres is analyzed for
different values of the exponent γ and for different values of
δc. The only free parameter left is then the polytropic
constant ω. Following Ref. [18], we take the polytropic
constant as

ω ¼ ω̄δ�0
1−γ; ð11Þ

where the dimensionless polytropic constant is ω̄ ¼
1.47518 × 10−3 and the normalization factor adopted
during the numerical integration of the TOV equation
is δ�0 ¼ 1.78266 × 1015 ½kg=m3�.
Once the values of α, γ, and δc have been fixed, the

system of equations are solved numerically by using the
fourth-order Runge-Kutta method.
For convenience of the numerical analysis we restore the

gravitational constant, G ¼ 7.42611 × 10−28 ½m=kg�, but
keep the speed of light c ¼ 1.
Along this section, we compare the equilibrium con-

figurations of charged relativistic polytropes to the charged
nonrelativistic polytropes studied in Ref. [18].

B. The radius against the mass for fixed polytropic
exponent: The Chandrasekhar and the

Oppenheimer-Volkoff limits

With the purpose of verifying the Chandrasekhar and the
Oppenheimer-Volkoff limits for the relativistic EoS 2,
Eq. (2), we check the behavior of the radii and the masses
of the charged fluid spheres for the central rest-mass
density in the interval 1013 ½kg=m3�≤δc ≤ 1020 ½kg=m3�
and γ ¼ 4=3 and γ ¼ 5=3, in a similar way as done
in [18]. We note that the curves built in case 2 are very
similar to those ones found in case 1; cf. Figs. 1 and 2 of
ALZ. Moreover, both the Chandrasekhar and the
Oppenheimer-Volkoff limits appear for γ ¼ 4=3 and only
the Oppenheimer-Volkoff limit appears when γ ¼ 5=3.
We find that, irrespective of the value of α used, when

γ ¼ 4=3 and γ ¼ 5=3 the masses of nonrelativistic poly-
tropes and relativistic polytropes are very close to each
other for low and equal values of central energy densities
(ρc) and central rest-mass densities (δc). The differences
become more apparent when the value of ρc ¼ δc is
incremented. For example, in the case of γ ¼ 4=3,
α ¼ 0.9, and ρc ¼ δc ¼ 1020 ½kg=m3�, the mass of the
sphere in case 1 is 0.578740 M⊙, and in case 2 it is
0.532140 M⊙, a difference of about 8.052%. This result
confirms that EoS 1 and EoS 2 are not equivalent for large
values of energy (rest-mass) density, as expected. In turn,
the charge to mass ratio Q=M does not vary by more than
2% being larger in EoS 1 case.

C. The structure of relativistic charged spheres
with varying polytropic exponent

1. General remarks

The dependence of the main physical properties of the
charged fluid spheres as a functionof thepolytropic exponent
γ is analyzed for a few values of α and for the fixed
central rest-mass density δc ¼ 1.78266 × 1016 ½kg=m3�,
considering the relativistic polytropic equation of state (2).
The polytropic exponent is taken in the interval
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FIG. 1. The radial dependency of the normalized functions
pðrÞ=p0 and ρðrÞ=ρ0 with ρc ¼ 1.78266 × 1016 ½kg=m3� for case
1, and pðrÞ=p�

0, ρðrÞ=ρ�0, and δðrÞ=δ�0 with δc ¼ 1.78266 ×
1016 ½kg=m3� for case 2. In both cases we have chosen α ¼
0.99 and γ ¼ 17.0667.
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FIG. 2. The most compressed objects found numerically for
EoS 1 with ρc ¼ 1.78266 × 1016 ½kg=m3� and for EoS 2 with
δc ¼ 1.78266 × 1016 ½kg=m3�, as indicated. The Buchdahl-
Andréasson bound is also shown for comparison (dashed line).
This bound is saturated only in the limit of large charge fraction,
α → 1, for which the quasiblack hole limit is reached.
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4=3 ≤ γ ≤ 17.0667. It is worth mentioning that the curves
obtained in case 2 are similar to those derived in case 1
(cf. Sec. D of Ref. [18]); thereby, in the course of this
subsection, we only mention the main differences between
the two cases.

2. Radius of the relativistic spheres against
the polytropic exponent

In the uncharged case, α ¼ 0.0, we find that the mini-
mum value of the radius to mass ratio is approximately
R=M ¼ 2.35182. This value is found for large γ and it is
just 3.2% larger than the one derived in case 1 (cf. Fig. 4 of
ALZ). From this result we understand that by extrapolating
the polytropic exponent γ to infinity, the upper limit of the
Buchdahl bound is not attained, differently from case 1
where this limit is reached. The main point that may explain
this different degree of compactness is that the central
energy density is finite in case 1, while it diverges in case 2.
Notwithstanding, in the extremely charged case, α ¼ 0.99,
we have R=M ≃ 1.02514 for EoS 2, being only 0.16%
lower than the ratio determined in case 1. This value of
R=M is close to the maximum compactness of a charged
object, R=M ¼ 1.0. From this we understand that for large
(infinite) values of γ the Buchdahl-Andréasson bound [23]
is saturated in the limit α → 1.

3. Mass of the spheres against the polytropic exponent

For low values of γ, the masses found in case 2 are very
close to the ones found in case 1. As found in [18], we note
that the mass increases very fast with the polytropic
exponent. The growth of the mass with the polytropic
exponent γ is explained in the same way for both equations
of state, since a larger central pressure pc is obtained with a
higher γ. For the fixed value of δc considered here, the
masses of the relativistic polytropes (case 2) are of the order

of 10% lower than the masses of the nonrelativistic stars
(case 1, cf. Fig. 5 of ALZ).

4. Charge of the spheres against the polytropic exponent

The behavior of the charge to mass ratio (Q=M) as a
function of the polytropic is also investigated. The results
are very similar to EoS 1 case. In fact, for the typical central
rest-mass density δc ¼ 1.78266 × 1016 ½kg=m3�, the maxi-
mum difference inQ=M is of about 2.1 × 10−3% higher for
the relativistic polytropes (case 2) than the corresponding
ratio for the nonrelativistic polytropes (case 1, cf. Fig. 6 of
ALZ). Larger differences happen for larger values of δc. We
note also that in the extreme case, with α ¼ 0.99 and
γ ¼ 17.0667, the values of the ratio Q=M are very close to
unity indicating that the quasiblack hole regime is about to
be reached. This point is investigated in detail in the next
section.
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FIG. 3. The central speed of sound versus the polytropic
exponent for EoS 1 and EoS 2.
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FIG. 4. The metric function A−1ðrÞ against the radial coordinate
for EoS 1 and EoS 2. The dotted vertical lines indicate the surface
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FIG. 5. The metric function BðrÞ against the radial coordinate
considering EoS 1 and EoS 2. The dotted vertical lines indicate
the surface of the spheres.
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D. The structure of relativistic charged spheres
with varying charge fraction

We have also studied the dependence of the physical
quantities of the relativistic charged polytropes with the
charge fraction α. We analyzed the total mass, the radius,
and charge as a function of α, and we found that the results
are very similar to those built in EoS 1 case (cf. Sec. D of
ALZ), with the main differences occurring for high energy
densities. Due to this similarity, we do not show the
respective graphics here.

IV. PROPERTIES OF RELATIVISTIC
POLYTROPIC FLUID SPHERES WITH

INFINITELY LARGE POLYTROPIC EXPONENT

A. Large polytropic exponent and incompressible fluids

In order to highlight the differences between the two
equations of state, EoS 1 (1) and EoS 2 (2) for large values
of γ, a comparison between them in the region of large fluid
pressures must be performed.
The fluid quantities in the case of EoS 2 are normalized

as p=p�
0, ρ=ρ�0 and δ=δ�0, where δ�0, ρ�0 and p�

0 are
normalization factors. These factors are related by p�

0 ¼
ωδ�0

γ and ρ�0 ¼ δ�0 þ p�
0=ðγ − 1Þ. Hence, we get

lim
γ→∞

p
p�
0

¼ lim
γ→∞

�
δ

δ�0

�
γ

¼
�
0; if δ < δ�0;

∞; if δ > δ�0;
ð12Þ

and we have

lim
γ→∞

ρ

ρ�0
¼ lim

γ→∞

ρe
ρ�e0

¼
� δ

δ�
0

; if δ < δ�0;

∞; if δ > δ�0;
ð13Þ

where we used Eq. (11) with fixed ω̄ ¼ 1.47518 × 10−3.

For the normalized rest-mass density we get

lim
γ→∞

δ

δ�0
¼ lim

γ→∞

�
p
p�
0

�
1=γ

¼ 1: ð14Þ

Therefore, differently from what happens in the case of
EoS 1 [cf. Eqs. (18)–(20) of ALZ], the limit of high
polytropic exponents of the relativistic equation of state (2)
does not yield an incompressible fluid. It gives a constant
rest-mass density, and in the instance when the pressure
may assume arbitrarily large values, it gives an infinitely
large energy density too, and in a second instance when the
pressure vanishes it gives a constant energy density. This
second situation results in charged dust matter, but it is not
interesting for the present analysis.
Figure 1 shows the behavior of the normalized fluid

quantities, the energy density ρðrÞ=ρ�0, the pressure
pðrÞ=p�

0, and the rest-mass density δðrÞ=δ�0 of the relativ-
istic polytropic fluid (case 2) against the radial coordinate,
with the central rest-mass density given by δc ¼ 10δ�0 ¼
1.78266×1016 ½kg=m3�. The normalization factors are
δ�0 ¼ 1.78266×1015 ½kg=m3�, p�

0¼2.62974×1012 ½kg=m3�,
and ρ�0 ¼ 1.78282 × 1015 ½kg=m3�. For a clear comparison,
we draw also the corresponding curves for case 1.
As seen from Fig. 1, the pressure presents the same

behavior in both cases. On the other hand, the energy
density for case 2 has a completely different behavior when
compared to case 1. In case 1, the energy density is nearly
constant, starting with ρðrÞ=ρ0 ¼ 10 at r ¼ 0 and decreas-
ing very slowly with r until the surface of the sphere at
r ¼ R, where it reaches its minimum value. For case 2, the
energy density behaves like the pressure. It starts with the
high value ρðrÞ=ρ�0 ¼ 1013.0 at the center of the object and
varies rapidlywith the radial coordinate to reach a value close
to zero at the surface of the object r ¼ R. Finally, we see that
the rest-mass density function is approximately a constant,
starting with the value δðrÞ=δ�0 ¼ 10 at r ¼ 0 and decaying
very slowly toward the surface of the sphere r ¼ R.

B. Large polytropic exponents: The Buchdahl bound,
the Buchdahl-Andréasson bound,
and the quasiblack hole limit

The existence of upper bounds for compact objects is one
of the remarkable predictions of general relativity. The
upper limit established by Buchdahl [20] in the case of
uncharged fluid spheres was extended to include electric
charged fluid spheres by Andréasson [23]. Our main
concern here is testing these bounds for the relativistic
polytropic spheres. So, we search in the parameter space for
the most compressed objects.
Figure 2 shows the behavior of the ratio R=M as a

function of Q=M for the most compressed stellar static
objects that follow from EoS 1 (solid line) with
ρc ¼ 1.78266 × 1016 ½kg=m3�, and from EoS 2 (dotted
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FIG. 6. The redshift function BðRÞ−1=2 − 1 at the surface of the
sphere as a function of the charge fraction for the nonrelativistic
and relativistic polytropes.
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line) with δc ¼ 1.78266 × 1016 ½kg=m3�. The same central
pressure pc ¼ 2.62974 × 1012 ½kg=m3� was used for both
equations of state. The two curves are drawn for the highest
value of the polytropic exponent that yielded trusted
numerical results, γ ¼ 17.0667. For the sake of compari-
son, the upper limit of the theoretical prediction by
Andréasson (dashed line), which is given by relation (3),
is also depicted in Fig. 2. Notice that the two curves for the
polytropic spheres (the solid and the dotted curves) appear
above the Buchdahl-Andréasson bound for all Q=R.
As seen from Fig. 2, in the limit of zero charge,

Q=R → 0, the ratio R=M approaches the upper limit of
the Buchdahl bound R=M → 9=4 ¼ 2.25 better for the
nonrelativistic polytropes (EoS 1) than for the relativistic
polytropes (EoS 2). Noticing that the limit of infinitely high
polytropic exponents yields an incompressible fluid in case
1, the previous results of Ref. [22] (see also [18]) assure us
that the Buchdahl bound is saturated by the uncharged fluid
spheres in such case, but not in the present case (case 2).
The numerical calculation does not reach the ceiling value
R=M ¼ 9=4 since the method employed here does not
allow us to go beyond γ ¼ 17.0667. In fact, the values
shown in Fig. 2 at Q ¼ 0 are R=M ≃ 2.35 for EoS 2, and
R=M ≃ 2.28 for EoS 1. Thus, the Buchdahl bound is not
saturated by the uncharged fluid spheres with the relativ-
istic polytropic equation of state (case 2).
On the other side of the parameter space, for large charge

fractions, α → 1, the two curves for charged spheres
converge to the Buchdahl-Andréasson line. This means
that the two equations of state model very compressed
objects that saturate the Buchdahl-Andréasson bound in
such a limit. The three lines converge to the quasiblack hole
limit R ¼ M ¼ Q. As a matter of fact, in the case analyzed
here, the maximum value of the charge fraction is α ¼ 0.99
rather than α ¼ 1.0, since we have not found static
equilibrium solutions (the numerical method does not
converge) for α larger than 0.99. For this value of α we
have found R=M ≃ 1.02514 in case 2 and R=M ≃ 1.02676
in case 1 (see Ref. [18]). Let us stress that in Fig. 2 the three
lines showed are very close to each other in the region
Q=R ≃ 1.0 but they do not coincide. The numerical results
indicate that the three lines shall coincide just in the limit
α → 1 with γ → ∞.

V. THE SPEED OF SOUND IN RELATIVISTIC
POLYTROPIC CHARGED SPHERES

The speed of sound in a compressible fluid is determined
through the relation c2s ¼ dp=dρ. For the relativistic poly-
tropic equation of state (EoS 2), we get

c2s ¼
dp
dρ

¼ γp
ρþ p

: ð15Þ

Since the speed of sound decreases toward the surface of
the sphere, as happens to the pressure, to see if the velocity

of sound exceeds the speed of light it is only necessary to
analyze the speed of sound in the center of the objects.
It is known that EoS 2 does not violate the constraint

c2s ≤ 1 for large ρ. In fact, the limit of large energy densities
yields c2s → γðγ − 1Þ=2. One then sees that c2s equals
unity for γ ¼ 2. Therefore, as also known, the relativistic
equation of state does not violate causality for γ in the
interval 1 ≤ γ ≤ 2.
The dependence of the central (at r → 0) speed of sound

upon the polytropic exponent is shown in Fig. 3, where we
plot the function (15) for the relativistic polytropic equation
of state with δc ¼ 1.78266 × 1016½kg=m3�. We deter-
mine that the speed of sound cs in the center of the spheres
reaches the speed of light at γ ≃ 3.52364 for EoS 2. It is
6.4% larger than the value found in case 1 (cf. Fig. 14
of ALZ).
Despite the fact that the sound speed surpasses the speed

of light for sufficiently high values of the polytropic
exponent γ, these solutions are interesting because, in such
a limit, the fluids become incompressible and the quasi-
black hole limit is reached.

VI. THE QUASIBLACK HOLE LIMIT OF
A RELATIVISTIC POLYTROPIC

CHARGED SPHERE

A. Basic properties and the quasiblack hole limit

It is verified that the relativistic polytropes
(EoS 2) with central rest-mass density δc ¼ 10δ�0 ¼
1.78266 × 1016 ½kg=m3�, charge fraction α ¼ 0.99, and
polytropic exponent γ ¼ 17.0667 are very close to the
quasiblack hole configuration. Now we check if the limits
α → 1 and γ → ∞ really yield quasiblack holes. For this
purpose, following the defining properties of a static quasi-
black hole of Ref. [19], the potential metrics AðrÞ and BðrÞ
are then analyzed.
The inverse of the metric function AðrÞ versus the radial

coordinate r is plotted in Fig. 4 for EoS 2, and, for
comparison, the corresponding graph for EoS 1 is also
drawn. It is seen that function A−1ðrÞ decreases with the
increasing of the radial coordinate, reaching its minimum
value, namely, A−1ðRÞ ∼ 0, at the surface of the object.
Such a vanishing value signals that the object is close to a
quasiblack hole configuration. The interior metric is
matched to the exterior Reissner-Nordström metric, i.e.,
A−1ðRÞ ¼ 1–2M=RþQ2=R2, from which it follows that
the quasihorizon is present.
Themetric functionBðrÞversus radial coordinate is shown

in Fig. 5 for EoS 2 and, for comparison, also for EoS 1.
Function BðrÞ assumes values close to zero in the interior of
the sphere, i.e., BðrÞ → 0 in the whole interval 0 ≤ r ≤ R.
This feature also reveals that we are close to the quasiblack
hole configuration. Since the interior solution is matched to
the exterior vacuum Reissner-Nordström solution, it follows
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that we have BðRÞ ¼ A−1ðRÞ ¼ 1–2M=RþQ2=R2 ∼ 0,
confirming once again the presence of a quasihorizon.
Besides the defining properties of the metric potentials, as

just checked, another important property of charged static
quasiblack holes is the existence of extremal limits for the
ratios Q=M and R=M. In the present case the numerical
analysis shows that the extremal boundQ=M ¼ R=M ¼ 1 is
continuously approached with the increasing of the poly-
tropic exponent and, in particular, of the charge fraction α.
Then, considering the two solutions of equation FðrÞ ¼
1–2M=rþQ2=r2 ¼ 0, which are r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
,

we get rþ ≃ r− ≃M ≃Q ≃ R (see Table I), confirming the
presence of an extremal quasihorizon.
Lines B and C of Table I present the mass M, the charge

Q, the radius R, and their relations for the relativistic
polytropes (EoS 2) with α ¼ 0.99, and for two values of the
polytropic exponent, γ ¼ 17.0667 and γ ¼ 17.1109,
respectively. For values of γ higher than these, the numeri-
cal procedure presents convergence problems. For com-
parison, the same quantities for EoS 1 case are also listed in
the table (row A). It is seen that R=M andQ=M are closer to
unity in EoS 2 case than in EoS 1 case. Based on these
results we note that the relativistic polytropic spheres with
large polytropic exponents and charge fraction approaching
unity attain the quasiblack hole limit faster than the
nonrelativistic polytropic spheres.

B. The redshift at the surface of a quasiblack hole

For completeness, we calculate the quantityBðRÞ−1=2 − 1
for both the nonrelativistic and the relativistic charged
polytropes as a function of the charge fraction, and taking
two values of the polytropic exponent, γ ¼ 4=3 and 17.0667,
and central rest-mass density δc ¼ 1.78266 × 1016 ½kg=m3�,
the result being shown in Fig. 6. The charge fraction varies in
the range 0 < α < 1. The expressionBðRÞ−1=2 − 1 gives the
redshift at the surface of the star, which is defined in the usual
way by the fractional difference between the light wave
frequency at the surface of the star (at r ¼ R) with respect to
infinity (at r → ∞). As expected, the redshift at the surface of
the polytropes in the quasiblack hole limit is infinitely large.
Numerically we determine values of about 100 in the cases
with α ¼ 0.99 and γ ¼ 17.0667. Again the results for EoS 2
arevery close to those forEoS1 (see [22]), but the redshift is a
little higher for the relativistic polytropes (EoS 2).

VII. CONCLUSIONS

The static stellar equilibrium configurations of
uncharged and charged relativistic polytropic spheres were
investigated in the Maxwell-Einstein theory. These results
were compared with those of the nonrelativistic polytropic
spheres analyzed in [18].
First the analysis was done by varying the central rest-

mass density δc. A few different values of the polytropic
exponent and of the charge fraction were considered in
such an analysis. A detailed analysis of the equilibrium
configurations was done by calculating the radius, the
mass, and the charge of each configuration. The results
found for EoS 2 (2) were very similar to those for EoS 1 (1);
cf. Ref. [18]. The study also confirmed that the two
equations of state yield significantly different results just
in the limit of high energy densities.
The charge fraction parameter α was varied from zero to

very close to unity, α ¼ 0.99. A value higher than this was
also implied in numerical convergence problems. Again the
structure of the resulting equilibrium solutions were almost
the same for both models of fluids.
In the regime of high polytropic exponents γ, the main

differences are related to the central energy density behav-
ior, which goes with the pressure in EoS 2, while it is
almost a constant in EoS 1 case. In such a limit, we also
tested the various bounds for extremely compact objects.
The surface redshifts of the extremely compact solutions,
including the quasiblack hole limit, were analyzed. The
results show higher redshifts for relativistic polytropes
(EoS 2) than for nonrelativistic polytropes (EoS 1).
The dependence of the sound speed cs on the polytropic

exponent at the center of the compact objects was also
studied. In both cases cs reached values higher than the
speed of light for sufficiently high polytropic indexes.
Finally, we emphasize once again that the aim of this

work was to analyze the structure of relativistic polytropes
by comparing to nonrelativistic polytropes, with particular
interest in the upper bounds of compactness established
within the theory of general relativity. This is a complement
to previous works by us whose results were reported in
Refs. [18,22]. The conclusion of this investigation is that
the Buchdahl-Andréasson bound is not saturated in full
either by polytropic stars or by incompressible stars. On the
other hand, as shown in Ref. [24], that bound is saturated by

TABLE I. The values of the massM, chargeQ, and radius R of the charged polytropic spheres, in geometric units,
with the corresponding values of R=M and Q=M, for α ¼ 0.99 and γ ¼ 17.0667, are shown in rows A and B,
respectively, for case 1 and case 2. The values ofM,Q, R, R=M, andQ=M, for EoS 2 and γ ¼ 17.1109 are shown in
row C.

EoS γ M × 105 ½m� Q × 105 ½m� R × 105 ½m� R=M Q=M

A 1 17.0667 2.27478 2.27431 2.33566 1.02676 0.999793
B 2 17.0667 2.09502 2.09463 2.14769 1.02514 0.999813
C 2 17.1109 2.09662 2.09623 2.14929 1.02512 0.999814
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the Guilfoyle [25] solutions, which assume different con-
ditions on the fluid quantities. This result suggests that a
different equation of state for the charged fluid, associated
to an alternative charge density profile, may lead to
solutions that saturate that important bound, besides reach-
ing the quasiblack hole limit. The analysis of such
situations is left for future investigations.
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