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The teleparallel formulation of gravity theories reveals close structural analogies to electrodynamics, which
are more hidden in their usual formulation in terms of the curvature of spacetime.We show how every locally
Lorentz invariant teleparallel theory of gravity with second-order field equations can be understood as built
from a gravitational field strength and excitation tensor which are related to each other by a constitutive
relation, analogous to the premetric construction of theories of electrodynamics. We demonstrate how the
previously studied models of fðTÞ and fðTax; T ten; TvecÞ gravity as well as teleparallel dark energy can be
formulated in this language. The advantage of this approach to gravity is that the field equations for different
models all take the same compact form and general results can be obtained. An important new such result we
find is a constraint which relates the field equations of the tetrad and the spin connection.
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I. INTRODUCTION

Electrodynamics is described by thewell-knownMaxwell
equations. In the language of differential forms these can be
formulated in terms of the field strength two-form, a
conserved current three-form, an excitation two-form as
well as a relation between field strength and excitation called
the “constitutive relation.” In the most simple case of
Maxwell electrodynamics in vacuum, this constitutive rela-
tion is given by the Hodge dual. In the premetric approach to
electrodynamics [1] the constitutive relation is generalized to
an arbitrary dependence of the excitation on the field strength
and background fields, while the Maxwell equations retain
their form. This generalization allows for the description of
the vast physical phenomenology of the electromagnetic
interaction from linear and nonlinear effects in media to
various non-linear theories of electrodynamics like Born-
Infeld in one unified language.
Gravity, on the contrary, is described by general relativity

(GR) in a completely different way. The Einstein equations
determine the metric of spacetime from the matter energy-
momentum through the curvature of the Levi-Civita con-
nection of the metric. It is possible to construct various
extended/modified theories of Einstein’s gravity, which
typically lead to structurally different field equations. See
[2–5] for reviews.
An alternative description of the gravitational field and its

dynamics is given on the basis of so-called teleparallelism,
which allows to identify certain analogies between the
dynamics of gravity and electromagnetism. In teleparallelism

the Riemannian geometry of general relativity is replaced by
the curvature-free teleparallel geometry and the gravitational
interaction is attributed to the torsion of spacetime [6–13]. It
is possible to reformulate the dynamics of gravity known
from general relativity equivalently into the teleparallel
formalism, which is known as teleparallel gravity or tele-
parallel equivalent of general relativity (TEGR). This pro-
vides another starting point to construct further modified and
extended theories of gravity [14–21].
An interesting aspect of teleparallel gravity is that it arises

as a gauge theory of the translation group [9–11,13,22],
allowing to incorporate gravity into the gauge paradigm
together with other fundamental interactions. As a conse-
quence, the field equations of teleparallel gravity take a very
similar form to those of the standard Maxwell or Yang-Mills
theory. The torsion tensor can be viewed as the gravitational
analogue of the electromagnetic field strength, while the so-
called superpotential plays the role of the gravitational
excitation tensor. This similarity has recently been used by
Itin, Hehl and Obukhov [23] to demonstrate how one can
generalize teleparallel gravity by choosing a general local
and linear gravitational constitutive relation between the
superpotential and the torsion. This leads to thegravitymodel
known as New General Relativity [24], which includes
teleparallel gravity as a special case. The whole construction
can be seen as the gravitational analogue of the so-called
premetric generalization of Maxwell electrodynamics
[25–30], which is part of the framework of premetric electro-
dynamics. Note that another approach to understand tele-
parallel gravity in the line of gravitoelectromagnetism can
be found in the literature [31,32], while a constitutive relation
motivated by continuum mechanics is explored in [33].
In this paper we extend the analogy between general

theories of electrodynamics and teleparallel gravity,
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formulated covariantly in terms of constitutive relations, in
two directions:
Firstly we show that it is possible to realize every locally

Lorentz invariant teleparallel theory of gravity with second-
order field equations in the aforementioned framework. We
find that the field equations for all these models have a
common structure, which is similar to Maxwell’s equations
in premetric electrodynamics. The difference between the
theories lies solely in the choice of different gravitational
constitutive laws which supplement the field equations. In
particular, we construct the gravitational constitutive rela-
tion for previously studied modified teleparallel models
[14–21]. Moreover, we use this framework to outline more
general classes of teleparallel theories of gravity inspired by
Plebański electrodynamics. Thus, it is possible to under-
stand different theories of gravity in a similar way as
different theories of electrodynamics.
Secondly, we include in our construction a nonvanishing

teleparallel spin connection into the gravitational action
along the lines of the recently proposed Lorentz covariant
formulation of teleparallel theories [34–37]. The matter field
action, i.e. the coupling between gravity and all other matter
fields, is unaffected by the introduction of the spin con-
nection since we do not change the minimal coupling
prescription: matter couples to the metric and its Levi-
Civita connection, which can be expressed as functions of
the tetrads alone. The reason to consider only minimally
coupled fields is to introduce changes only in the gravita-
tional dynamics but not in the dynamics of the matter fields
on a fixed background geometry. Consequently, we show
that, for an arbitrary generalized model, the result of the
variationwith respect to the spin connection is identical to the
antisymmetric part of the tetrad field equations. This pro-
vides a constraint which relates the spin connection and the
tetrad to each other and leaves only the symmetric part of the
tetrad field equations determining the dynamics of the theory.
The outline of the article is as follows. We begin by

recalling the premetric formulation of electrodynamics in
Sec. II. In Sec. III A, we summarize the teleparallel equiv-
alent formulation of general relativity in the language of
differential forms. Thenwe formulate gravity in the analogue
language of electrodynamics in Sec. III B,which is one of the
central results of this article. Afterwards, in Sec. IV, we
illustrate howwithin this scheme several models of modified
and extended teleparallel theories of gravity can be formu-
lated in terms of different gravitational constitutive laws.
Finallywe discuss our findings and give an outlook for future
developments in Sec. V. A detailed derivation of the
gravitational field equations is presented in the appendix.
We use the following conventions in this article: Greek

indices μ; ν;… label the Lorentz (tetrad) indices and are
raised and lowered with the Minkowski metric
ημν ¼ diagð1;−1;−1;−1Þ. Latin indices a; b; c;… denote
spacetime indices. Differential m-forms Ω are expanded in
local coordinates with a factor 1

m!
,

Ω ¼ 1

m!
Ωa1a2…amdx

a1 ∧ dxa2 ∧ … ∧ dxam:

Tensors with Greek index describe the gravitational inter-
action, tensors without a Greek index denote objects used
in electrodynamics.

II. PREMETRIC ELECTRODYNAMICS

General electrodynamics can be described by the field
equations

dF ¼ 0; dH ¼ J; ð1Þ
where F is the electromagnetic field strength two-form, H
is the excitation two-form and J the closed current three-
form. In the case of Maxwell electrodynamics, the exci-
tation form is related to the field strength form using the

Hodge dual map and the vacuum impedance λ0 ¼
ffiffiffiffi
ϵ0
μ0

q

H ¼ λ0⋆F: ð2Þ
For the following arguments we will choose units such that
the vacuum impedance is normalized λ0 ¼ 1, in SI units its
value is λ0 ¼ 1

377Ω.
The basic idea behind this premetric approach to

electrodynamics is that the field equations (1) define every
gauge invariant theory of electrodynamics which realizes
electric charge and magnetic flux conservation. The only
additional ingredient needed to make the theory predictive
is a constitutive relation which expresses the excitation in
terms of the fields strengthH ¼ HðFÞ [1]. This constitutive
relation can be of any kind and does not necessarily involve
a metric tensor, as it is used in Maxwell electrodynamics on
curved spacetime (2).
The specification of the constitutive relation HðFÞ

distinguishes different theories. The most familiar constit-
utive law is a local and linear relation H ¼ κðFÞ, which in
local coordinates takes the form

Hab ¼
1

2
κab

cdFcd ¼
1

4
ϵabcdχ

cdefFef: ð3Þ

The map κ maps two-forms to two-forms and is called the
constitutive map while the object χcdef is the constitutive
density and ϵ the totally antisymmetric Levi-Civita symbol.
The fields κ or χ equivalently define the class of theories
called local and linear premetric electrodynamics.
As mentioned above Maxwell electrodynamics on a

spacetime ðM; gÞ is defined by choosing κ ¼ ⋆, the Hodge
dual operator of the metric, which implies

χabcd ¼ 2jgj12ga½cgd�b; ð4Þ
with jgj ¼ j det gabj. Electrodynamics in media, like in an
uniaxial birefringent crystal for example [38,39], is
described by the constitutive density
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χabcd ¼ jgj12ð2ga½cgd�b þ 4X½aUb�X½dUc�Þ; ð5Þ
where X is the spacelike direction of the optical axis of the
crystal and U the timelike direction which characterizes the
rest frame of the crystal. Recently local and linear premetric
electrodynamics has gained some interest as model for a
quantum field theory based on a more general causal
structure than that of a Lorentzian metric [39–42].
In general there is no a priori need to choose the

constitutive relation κ to be linear. It is well-known that
electrodynamics in media exhibits nonlinear effects. The
important and interesting point to make here is, that in order
to capture and describe these effects it is not necessary to
change the fundamental field equations (1), but it suffices to
change the constitutive relation HðFÞ, for example to a
local and nonlinear one. A famous class of nonlinear
electrodynamics are so-called Plebański theories [1].
They are defined by a constitutive relation involving two
general functions U and V

HðFÞ ¼ UðI1; I2ÞF þ VðI1; I2Þ⋆F; ð6Þ
where I1 and I2 are the scalars

I1 ¼
1

2
⋆ðF ∧ ⋆FÞ; I2 ¼

1

2
⋆ðF ∧ FÞ: ð7Þ

The ⋆ denotes again the Hodge dual operator on a 4-
dimensional spacetime ðM; gÞ. Special instances of
Plebański electrodynamics are the Born-Infeld theory [43],

HðFÞ ¼
⋆F þ 1

f2 I2Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

f2 I1 −
1
f4 I

2
2

q ; ð8Þ

and the Heisenberg-Euler theory [44] emerging as counter
term in quantum electrodynamics,

HðFÞ ¼
��

1þ 16α

45B2
I1

�
⋆F þ 28α

45B2
I2F

�
: ð9Þ

At the end of this article we will find the teleparallel
theories of gravity which are analogs to the Plebański
theories of electrodynamics.

III. TELEPARALLEL GRAVITY

Teleparallel gravity can be viewed as a gauge theory of
the translation group [9–11,13,22], which allows us to
understand the gravitational interaction in analogy to
electrodynamics and Yang-Mills theories. We start with
a review of the ordinary teleparallel gravity, highlight its
analogy with Maxwell electrodynamics, and briefly discuss
some of its aspects in which it is more akin to Yang-Mills
theories. Then we proceed with the construction of the
analogue of teleparallel gravity to the premetric formulation
of electrodynamics. It was introduced recently [23] for the
class of local and linear, i.e., premetric, gravitational
constitutive relations, and we will generalize this formu-
lation and construction to general nonlinear constitutive
relations.

A. Teleparallel Equivalent of General Relativity

The fundamental variables in teleparallel gravity are a
frame feμg3μ¼0 or, equivalently, a coframe fθμg3μ¼0, which
form local bases of TxM and T�

xM, and a curvature-free
spin connectionωμ

ν with torsion. In a local coordinate basis
these frame fields may be expanded as

eμ ¼ eμa∂a; θμ ¼ θμadxa; ð10Þ
and their components are defined to be inverse and so can
be related to each other with help of the identities

θμaeνa ¼ δμν ; θμaeμb ¼ δba: ð11Þ
The components can be used to convert spacetime indices
into Lorentz indices, and vice versa, e.g.

Xa1���
b1���

μ1���
ν1��� ¼eρ1

a1 ���θσ1b1 ���θμ1c1 ���eν1d1 ���
×Xρ1���

σ1���
c1���

d1��� ð12Þ
where X������ is a general tensor with mixed indices. In
addition the coframe defines a Lorentzian spacetime metric

gab ¼ ημνθ
μ
aθ

ν
b ð13Þ

which is used to raise and lower spacetime indices. From
now on, as it is common in the literature, we will refer to
both frames and coframes, as well as their components, as
tetrads.
The first Cartan structure equation defines the torsion as

a covariant exterior derivative of a tetrad,

Tμ ≡ Dθμ ¼ dθμ þ ωμ
ν ∧ θν; ð14Þ

where Tμ are two-forms, which in local coordinates can be
expressed as

Tμ ¼ 1

2
Tμ

abdxa ∧ dxb; ð15Þ

while the connection coefficients ωσ
ν are one-forms

ωσ
ν ¼ ωσ

νadxa; ð16Þ
which satisfy the condition of vanishing curvature
expressed by the second Cartan structure equation

Dωμ
ν ¼ dωμ

ν þ ωμ
ρ ∧ ωρ

ν ≡ 0: ð17Þ
Based on analogy with F ¼ dA we can view the torsion as
an analogue of the electromagnetic field strength and the
tetrad as an analogue of the electromagnetic potential.
Taking the exterior covariant derivative of the torsion (14)
and using (17) we find the Bianchi identity

DTμ ¼ 0 ð18Þ
that plays the role of the first Maxwell equation in (1).
To derive the field equations of teleparallel gravity we

introduce the teleparallel gravity excitation two-forms H̃μ

as function of the tetrad and the torsion given by
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H̃μðθν; TνÞ ¼ 1

4
jθjϵabcdSμcddxa ∧ dxb; ð19Þ

where jθj≡ j det θμð∂aÞj ¼ j det θμaj and we expressed its
components here in terms of the more commonly used
superpotential

Sμab ¼
1

2
ðTba

μþTμ
ab−Tab

μÞ−eμbTca
cþeμaTcb

c; ð20Þ

which can be understood in terms of a linear operator χ̃
acting on the torsion

Sμab ¼
�
eσ1

½bga�c1eμd1 þ
1

2
ημσ1g

ac1gbd1 þ 2eμ½agb�c1eσ1
d1

�

× Tσ1
c1d1

¼ 1

2

1

jθj χ̃μ
ab

ν
cdðθÞTν

cd: ð21Þ

This representation is the gravitational analogue of the
expansion of the electromagnetic excitation in terms of the
electromagnetic field strength in Maxwell electrodynamics,
see (3) and (4), as well as the discussion in [23]. As in the
electrodynamics case the dimensionful constant which
needs to appear in the relation between superpotential
and torsion is set to one by our choice of units. Up to the
density factor jθj the operator χ̃ appeared in the literature in
analysis of propagating degrees of freedom [45] and the
Hamiltonian formulation of teleparallel gravity [46].1

The teleparallel action, including the coupling to matter
fields ΨI and setting the gravitational constant 8πGc4 ¼ 1, can
then be written as

S̃½θν;ωρ
σ;ΨI� ¼ S̃g½θν;ωρ

σ� þ Sm½θν;ΨI�; ð22Þ
where the gravitational action is defined by the torsion
scalar T

S̃g ¼
1

2

Z
M
Tμ ∧ H̃μ

¼ 1

4

Z
M
jθjTμ

abSμabd4x≡ 1

2

Z
M
jθjTd4x: ð23Þ

We remark that it is possible to derive this action and the
above postulated superpotential directly from the Einstein–
Hilbert action. One may rewrite the latter in terms of the
tetrad, instead of in terms of the metric, and directly obtain
the action (23). The canonical momentum of the tetrad θμ is
then given by the teleparallel gravity excitation two-forms
H̃μ and the superpotential (20) is its Hodge dual.

The matter action which describes the coupling between
gravity and all other physical fields is given by

Sm ¼
Z
M
Lmðθν;ΨIÞd4x; ð24Þ

Observe that the matter action we consider only depends on
the tetrad and the matter fields and not on the teleparallel
spin connection, i.e., we still consider matter fields which
are minimally coupled to the metric only. Note that this
assumption does not exclude spinning matter, but simply
means that spinning matter couples via the Levi-Civita
connection derived from the metric, in the same way as in
general relativity.
Varying the total action (22) with respect to the tetrad we

find the field equations

DH̃μ − Υ̃μ ¼ Σμ; ð25Þ
where

Υ̃σ ¼
1

48
ϵabcdTμ

cd
δH̃μab

δθσr
ϵrklmdxk ∧ dxl ∧ dxm; ð26Þ

Σμ ¼
1

6

∂Lm

∂θμa ϵabcddx
b ∧ dxc ∧ dxd ð27Þ

are known as the gravitational and matter energy-
momentum three-forms, respectively. Note that local
Lorentz invariance of the matter action implies that the
corresponding energy-momentum tensor is symmetric
[13,48],

Σ½μ ∧ θν� ¼ 0: ð28Þ
The variation with respect to the spin connection

vanishes identically [35]. Therefore, the spin connection
does not have dynamics on its own, but it plays an
important role in keeping the theory locally Lorentz
invariant and defining correct conserved charges and the
finite action [34,35,49].
Having all the fundamental defining relations of tele-

parallel gravity at hand we can observe the following
analogy with Maxwell electrodynamics: Bianchi identities
(18) look like the first equation in (1), the field equa-
tions (25) like the second equation in (1), and the
constitutive relations (19) and (2) also have a similar form.
However, one can also notice two differences:
Firstly, in teleparallel gravity appears the exterior covar-

iant derivative while in electromagnetism the exterior
derivative is the ordinary one.2 This is due to the fact that
the tetrad, and hence also the torsion, carries a representa-
tion of an external gauge group, given by the Lorentz group
and gauged with the spin connection ωμ

ν. This is not the

1Note that in the literature one also encounters the so called
Lucas-Pereira dual � on soldered bundles [47]. It allows to write
the teleparallel excitation form in a very compact way
H̃μ ¼ ημσð�TÞσ , which resembles the constitutive relation of
Maxwell electrodynamics (2). It is a map from tangent space
valued two-forms to tangent space valued two-forms and takes
into account the soldered nature of the tangent bundle, i.e., allows
contractions between Lorentz and spacetime indices.

2In [23], authors considered a special gauge ωμ
ν ¼ 0, in which

the covariant exterior derivative reduces to the ordinary one. As
we argue later, it is not necessary to consider this gauge and we
can work in a fully covariant theory.
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case for the electromagnetic vector potential and field
strength.
Secondly, there appears the gravitational energy-

momentum Υ̃μ on the left hand side of the equation (25).
This term appears here as a consequence of the constitutive
relation (19) depending on the dynamical field, i.e., the
tetrad, itself. From a physical viewpoint it represents self-
interaction and is related to the nonlinear nature of the
gravitational interaction in general relativity.3 In principle,

one can consider the total energy-momentum ΣðtotalÞ
μ that

includes both the gravitational and matter contributions,
and rewrite the field equations (25) as

DH̃μ ¼ Υ̃μ þ Σμ ¼ ΣðtotalÞ
μ : ð29Þ

In this form the similarity to the corresponding electromag-
netic field equation dH ¼ J becomes the most apparent.
The presence of both the covariant exterior derivatives and

the self-interaction terms imply that the teleparallel gravity is
actuallymore similar to theYang-Mills gauge theory than the
Maxwell electrodynamics. Nevertheless, the analogy with
electrodynamics is still sufficient for our main task here: to
construct generalized gravity models by different choices of
constitutive laws as it is done in premetric electrodynamics.

B. Teleparallel gravity with general constitutive relation

The teleparallel equivalent of GR, ordinary teleparallel
gravity, which we discussed in the previous section, was
recently generalized in a similar fashion as premetric
electrodynamics generalizes Maxwell electrodynamics
[23]. These local and linear teleparallel gravity theories,
i.e., the gravitational excitation depends linearly on the
torsion tensor, cover basically what is known as new GR
theories in the literature [24].
In order to extend the use of the language of premetric

electrodynamics from local and linear theories covered in
[23] to local, but in general nonlinear teleparallel gravity
theories, we now consider gravitational excitation tensorsHμ

which are general functions of the tetrad (the potential of the
theory) and the torsion (the field strength of the potential),

Hμ ¼ Hμðθν; TνÞ: ð30Þ

Observe that there is an important difference between our
formulation of gravity in terms of constitutive laws and
electrodynamics. In contrast to electrodynamics the gravi-
tational excitation depends not only on the corresponding

field strength, but also on the potential itself. The feature
already appeared for the teleparallel equivalent of GR in the
previous section and is the source of the gravitational energy
term Υ̃μ, which will appear in the field equations in general
for gravity, but is absent in electrodynamics.
The Bianchi identities (18) and the matter energy-

momentum (27) with the conservation laws (28) do not
involve the excitation form and, hence, stay the same as in
the previous section. Only the field equations (25) change
due to the generalization of the constitutive relation (30).
The details of the calculation can be found in the

Appendix, where we consider the generalized gravitational
action

Sg½θν;ωρ
σ� ¼

1

2

Z
M
Tμ ∧ Hμ ð31Þ

in (22) instead of S̃g. Variation of the action S ¼ Sg þ Sm
yields the new extended field equations

DΠμ − Υμ ¼ Σμ; ð32Þ
where we introduced the two-form

Πσ ¼
1

2
ðHσ þQσÞ

¼ 1

2
Hσ þ

1

16
ϵabcdTμ

ab
δHμcd

δTσ
rs
ϵrskldxk ∧ dxl; ð33Þ

which is the canonical momentum of the tetrad, as can be
seen from the form of the variation of the action in (A3). Note
that in the TEGR case, discussed in the previous section,
Πσ ¼ Hσ ¼ H̃σ, while in generalΠσ is different fromHσ due
its possible nonlinear dependence on the torsion. The three-
form Υμ is defined analogous to Υ̃μ, see (26), by replacing
H̃μab with Hμab,

Υσ ¼
1

48
ϵabcdTμ

cd
δHμab

δθσr
ϵrklmdxk ∧ dxl ∧ dxm: ð34Þ

Note that for explicit calculations the variational derivative is
given by

δTμ
ab

δTσ
cd

¼ δμσδc½aδ
d
b�; ð35Þ

which is different from a simple derivativewith respect to the
components of the torsion, and takes into account the
antisymmetry in the last two indices.
The presence of the extra term Qσ makes the form of the

field equations differ slightly from the ones in ordinary
teleparallel gravity (25). However, for excitation two-forms
Hμðθν; TνÞ which are homogeneous of any degree r in the
torsion, i.e., ifHμðθν; kTνÞ ¼ krHμðθν; TνÞ holds for k ∈ R,
it turns out thatQμ ¼ rHμ. Hence, for these models the field
equations take the same form as in the case of a linear
gravitational constitutive relation, up to constant factor.

3Note that one should distinguish between the linearity of the
interaction and constitutive relation, which are two different
concepts. For example, the teleparallel equivalent of general
relativity is defined by the constitutive relation (19), which is
linear in the torsion, but the gravitational interaction is deter-
mined by nonlinear equations of motion, since the tetrad itself
enters the constitutive relation as well.
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Observe that the same is true when one derives the field
equations of electrodynamics from an action

Z
M

�
1

2
F ∧ HðFÞ þ A ∧ J

�
: ð36Þ

The equations of motion only have the form dH ¼ J ifH is
local and linear in F, otherwise one finds dΠ ¼ J with
Π ¼ 1

2
ðH þQÞ, where Q contains derivatives of H with

respect to F.
The field equations (32) can be decomposed into their

symmetric part,

DΠðμ ∧ θνÞ − Υðμ ∧ θνÞ ¼ Σðμ ∧ θνÞ; ð37Þ
and their antisymmetric part

DΠ½μ ∧ θν� − Υ½μ ∧ θν� ¼ 0; ð38Þ
where we have used the symmetricity of the matter energy-
momentum tensor (28).
Differently to the case of the ordinary teleparallel gravity,

the variation with respect to the spin connection does not
vanish identically but—as we explicitly show in the
Appendix—it yields the antisymmetric part of the field
equations for the tetrad (38). This antisymmetric part can
then equally be viewed as the “field equations” for the spin
connection. However, since it does not contain second
derivatives of the spin connection, it rather yields con-
straints than equations which encode new dynamics.
For spin connections which solve the constraint (38)

only the symmetric part of the field equations (37) need to
be solved. A possible method to obtain spin connections
which satisfy the constraint explicitly was recently dis-
cussed for fðTÞ gravity in [36,37].

IV. GRAVITATIONAL
CONSTITUTIVE RELATIONS

The advantage of the generalization of teleparallel
gravity in the language of general constitutive laws is that
it allows us to study properties of various extended models
of gravity in a unified way. The field equations of these
models always take the form

DTμ ¼ 0; ð39Þ
DΠμ − Υμ ¼ Σμ ð40Þ

and differ only in the constitutive relation defining the
particular model. The different building blocks of the
equations were defined in the previous section, see
(33) for the highest derivative term Πμ, (26) for the
gravitational self-energy Υμ and (27) for the matter energy
momentum Σμ.
Here we now present different teleparallel gravity con-

stitutive relations and demonstrate how they realize various

popular modified teleparallel gravity models such as fðTÞ
gravity in this framework.

A. Polynomial teleparallel constitutive relations

A very convenient choice of constitutive relation is a
polynomial in the torsion tensors which are contracted by a
constitutive tensor κ. This constitutive tensor can be built
from the tetrads θν. The components of Hμ take the form

Hμabðθν; TνÞ ¼ 1

2r
κμabσ1

c1d1
σ2

c2d2
…:

…

σr

crdrðx; θνÞ
× Tσ1

c1d1T
σ2

c2d2…Tσr
crdr

¼ 1

2rþ1
ϵabcdχμ

cd
σ1

c1d1
σ2

c2d2
…:

…

σr

crdrðx; θνÞ
× Tσ1

c1d1T
σ2

c2d2…Tσr
crdr ; ð41Þ

where we introduced the constitutive density
χμ

ab
σ1

c1d1
σ2

c2d2
…:

…

σr

crdrðx; θνÞ. From the form of the action

it is clear that the constitutive density χ has a pairwise triple
exchange symmetry, i.e., is symmetric under the pairwise
exchange of any triple of indices σi

piqi including the free
indices μ

ab

χμ
cd

σ1
c1d1

σ2

c2d2
…:

…

σr

crdr ¼ χμ
cd

σ2
c2d2

σ1

c1d1
…:

…

σr

crdr ¼ …

¼ χσ1
c1d1

μ
cd

σ2

c2d2
…:

…

σr

crdr ¼ χμ
cd

σ1
c1d1

σr

crdr
…:

…

σ2

c2d2 :

ð42Þ
The two-forms Qσ can now be calculated and become

Qσ ¼
1

8
ϵabcdTμ

ab
δHμcd

δTσ
rs
ϵrskldxk ∧ dxl ¼ rHσ; ð43Þ

so that the field equations are given by

DHμ ¼
2

ð1þ rÞ ðΥμ þ ΣμÞ; ð44Þ

which we recognize to be a special instance of the field
equations for general homogeneous constitutive relations.
The gravitational self-interaction energy three-forms Υμ

depend on how the constitutive tensor κ is constructed from
the tetrad.
For r ¼ 1 one obtains the class of constitutive relations

which were discussed in [23] yielding the new GR models
[24],

Hμabðθν; TνÞ ¼ 1

2
κμabσ1

c1d1ðx; θνÞTσ1
c1d1

¼ 1

4
ϵabcdχμ

cd
σ1

c1d1ðx; θνÞTσ1
c1d1 : ð45Þ

Comparing this expression with the induction form of the
teleparallel equivalent of GR (19), we can read off the
corresponding constitutive density in terms of the super-
potential, which itself is linear in the torsion, or as a
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contraction operator built from the tetrads acting on the
torsion (21), where themetric is understood as function of the
tetrads, see (13)

1

2
χμ

cd
σ1

c1d1ðθνÞTσ1
c1d1

¼ jθj
�
eσ1

½dgc�c1eμd1 þ
1

2
ημσ1g

cc1gdd1 þ 2eμ½cgd�c1eσ1
d1

�

× Tσ1
c1d1 ¼ jθjSμcd: ð46Þ

B. f ðTÞ gravity
The most studied extension of teleparallel gravity is the

so-called fðTÞ gravity [14–17] constructed from an arbi-
trary function of the torsion scalar

T ¼ 1

2
SμabTμ

ab: ð47Þ

It can be read off from the action (23) and the superpotential
Sμab was displayed in (20).
One easily checks that fðTÞ gravity can be realized in

our approach using a constitutive relation of the form

Hμabðθν; TνÞ ¼ 1

2

fðTÞ
T

jθjϵabcdSμcd: ð48Þ

Note that one of the original motivations to consider fðTÞ
gravity [15] was the construction of a gravitational ana-
logue of Born-Infeld theory by taking the function

fðTÞ ¼ ϵ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2T

ϵ

r �
; ð49Þ

where ϵ is a constant controlling the scale of the deforma-
tion. Within our framework inspired by nonlinear electro-
dynamics such a construction appears naturally and can be
easily understood.

C. Gravitational analogue of
Plebański electrodynamics

Recently [21], an even larger class of modified tele-
parallel gravity theories–so-called fðTax; T ten; TvecÞ
gravity–were proposed, which include fðTÞ-gravity
and other relevant models in the literature, such as
teleparallel conformal gravity [20]. We now show how
fðTax; T ten; TvecÞ gravity naturally fits in our new frame-
work and can be realized as special case of the gravitational
analogue of Plebański electrodynamics, discussed in
Sec. II, which we develop here.
To construct this analogue, we consider all quadratic

invariants of torsion. It turns that it is more suitable to first
decompose the torsion tensor into irreducible pieces with
respect to the Lorentz group as

Tabc¼
2

3
ðtabc− tacbÞþ

1

3
ðηabvc−ηacvbÞþ ϵabcdad; ð50Þ

where

va ¼Tb
ba ab ¼

1

6
ϵbcdeTcde;

tabc ¼
1

2
ðTabcþTbacÞþ

1

6
ðgcavbþgcbvaÞ−

1

3
gabvc; ð51Þ

are known as the vector, axial, and purely tensorial torsions,
respectively.
The advantage of this decomposition is that we can then

distinguish between parity preserving invariants that we
denote as

Tax ¼ abab; T ten ¼ tabctabc; Tvec ¼ vbvb; ð52Þ
and parity violating invariants

I4 ¼ vbab; and I5 ¼ ϵabcdteabtecd: ð53Þ
The gravitational analogue of Plebański electrodynamics
(6) is now obtained from the gravitational constitutive
relation

Hμabðθν; TνÞ ¼ 1

2
UðTax; T ten; Tvec; I4; I5ÞTμab

þ 1

2
VðTax; T ten; Tvec; I4; I5ÞjθjϵabcdSμcd;

ð54Þ
where U and V are arbitrary functions of five invariants
(52)–(53).
It becomes clear now that fðTax; T ten; TvecÞ gravity can

be realized by restricting to the parity preserving invariants
(52) and choosing functions U and V as

U ¼ 0; V ¼ fðTax; T ten; TvecÞ
T

: ð55Þ

With the constitutive relation (54) we further enlarged
the class of possibly interesting teleparallel gravity models
which may be investigated for their physical relevance in
the future. The striking insight of our construction is that it
is possible to analyse all of these different theories of
gravity by a set of field equations which have a common
universal form (32).

D. Teleparallel dark energy

Another popular model is the so-called teleparallel dark
energy model [19], where the torsion scalar (47) is non-
minimally coupled to a scalar field. This model can be
realized through an extension of our framework in terms of
an excitation tensor which further depends on a scalar field
ϕ and a constant parameter ξ,
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Hμabðθν; Tν;ϕÞ ¼ 1

4
jθjϵabcdð1þ ϕ2ξÞSμcd: ð56Þ

The dynamics of the scalar field is given by an additional
field equation. It is obtained by including a kinetic term as
well as a potential term for the scalar field to the action (31)
and performing the corresponding variation.
The teleparallel dark energy constitutive density then

also contains the scalar field,

1

2
χμ

cd
σ1

c1d1ðθν;ϕÞ

¼ jθjð1þ ϕ2ξÞ
�
eσ1

½dgc�c1eμd1 þ
1

2
ημσ1g

cc1gdd1

þ 2eμ½cgd�c1eσ1
d1

�
: ð57Þ

In electrodynamics, theories with different fields in the
constitutive relation describe for example the uniaxial
crystal, see (5).

V. DISCUSSION

We have developed a general framework in which
teleparallel theories of gravity can be formulated in analogy
to various theories of electrodynamics. Our building blocks
are: the torsion tensor, which is the gravitational analogue
of the field strength, an excitation tensor, and a gravitational
constitutive relation expressing the excitation as a function
of the torsion and the tetrad. The gravitational dynamics
then are described by the Bianchi identities (18) and the
field equations (32), which we have derived for a general
constitutive relation.
We realized various teleparallel models like fðTÞ gravity,

fðTax; T ten; TvecÞ gravity and teleparallel dark energy
model within our framework by explicitly stating their
constitutive relation. Moreover, we outlined how to con-
struct gravity theories in analogy to theories of electrody-
namics and demonstrated this procedure by proposing a
new class of gravity theories based on analogy with
Plebański electrodynamics (54).
One central advantage of our framework is that the

gravitational field equations have always the same compact
form and different models of gravity are defined by the
choice of a constitutive relation. This allows us to system-
atically study modified teleparallel theories. A particularly
important systematic result we derived here is that the
variation of the action with respect to the spin connection
yields a constraint equation that coincides with the antisym-
metric part of the tetrad field equations (38). To obtain a
consistent solution of the theory the spin connection and the
tetradmust be chosen such that this constraint is satisfied, i.e.,
the spin connection cannot be chosen arbitrarily. These
findings agree with the result of [37,50] for fðTÞ gravity,
but now can be understood as a generic feature of all
teleparallel theories with second-order field equations.

Further our framework allows for a new systematic
classification of modified gravity theories according to their
defining constitutive relation. The task now is to systemati-
cally identify those constitutive relations which lead to
theories of gravity with correct (post) Newtonian limit, being
ghost-free and consistent with observations in general.
A possible extension of our framework is to consider more

general constitutive relations which include higher deriva-
tives of the tetrad, respectively derivatives of the torsion. In
electrodynamics such constitutive laws are known and
appear for example in Bopp-Podolsky electrodynamics; a
higher derivative theory of electrodynamics with finite self-
interaction of the electron with its own electromagnetic field
[51–53].
Another direction of generalization is to allow additional

fields in constitutive relations. A most simple example was
already presented here by using a scalar field in the
example of a teleparallel dark energy model (56).
However, it can be generalized to include additional
background fields that could be used for an effective
description of gravitational effects at certain scales and
environments. For example, an additional one-form may be
considered which is present in some phenomenological
models of quantum gravity [54].
Going even further, we may address quantum gravity

itself in the teleparallel formulation and search for gravi-
tational constitutive laws which could yield new renorma-
lizable theories of gravity. In [39] the quantization of
electrodynamics with general local and linear constitutive
law was performed. The reformulation of gravity theories
in a similar language may have the potential to approach the
search for a consistent theory of quantum gravity from a
new point of view.
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APPENDIX: DERIVATION OF THE
FIELD EQUATIONS

Here we present the details of the derivation of the
teleparallel field equations (32), (37) and (38) in differential
form language. We assume that the gravitational action is of
the form (31) and, hence, its variation is given by

δSg ¼
1

2

Z
M
ðδTμ ∧ Hμ þ Tμ ∧ δHμÞ: ðA1Þ

Using Hμ ¼ Hμðθν; TνÞ we can write the second term as
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1

2
Tμ ∧ δHμ ¼

1

8

�
Tμ

abϵ
abcd δHμcd

δTσ
rs
δTσ

rs þ Tμ
abϵ

abcd δHμcd

δθσr
δθσr

�
dx0 ∧ dx1 ∧ dx2 ∧ dx3

¼ 1

8

�
1

4
Tμ

abϵ
abcd δHμcd

δTσ
rs
ϵklrsϵ

klijδTσ
ij þ

1

6
Tμ

abϵ
abcd δHμcd

δθσr
ϵklmrϵ

klmiδθσ i

�
dx0 ∧ dx1 ∧ dx2 ∧ dx3

¼ 1

2
Qσ ∧ δTσ þ Υσ ∧ δθσ; ðA2Þ

and write (A1) then as

δSg ¼
Z
M
ðΥμ ∧ δθμ þ Πμ ∧ δTμÞ; ðA3Þ

where the (twisted) three-formsΥμ and (twisted) two-forms
Πμ are defined in Eqs. (33) and (34). Note that δTμ contains
the variation with respect to dθμ, see equation (A6). Hence,
we can identify Πμ with the canonical momentum asso-
ciated to θμ.
We further demand that the action is invariant under local

infinitesimal Lorentz transformations λμν, where λðμνÞ ¼ 0,
which induce the variations δλθ

μ ¼ λμνθ
ν and

δλTμ ¼ λμνTν. One finds that the corresponding variation
of the action is given by

δλSg ¼
Z
M
½Υμ ∧ ðλμνθνÞ þ Πμ ∧ ðλμνTνÞ�

¼
Z
M
ðΥ½μ ∧ θν� þ Π½μ ∧ Tν�Þλμν: ðA4Þ

It follows that the action is locally Lorentz invariant if
and only if

Υ½μ ∧ θν� þ Π½μ ∧ Tν� ¼ 0: ðA5Þ

Note that this must hold also off-shell. To derive the field
equations, we decompose the variation of the torsion as

δTμ ¼ δDθμ ¼ dδθμ þ ωμ
ν ∧ δθν þ δωμ

ν ∧ θν ðA6Þ

and find that the variation of the total action S ¼ Sg þ Sm,
including also the matter part, is given by

δS ¼
Z
M
½Υμ ∧ δθμ þ Πμ ∧ ðdδθμ þ ωμ

ν ∧ δθν þ δωμ
ν ∧ θνÞ þ Σμ ∧ δθμ�

¼
Z
M
½ðΥμ − dΠμ þ ων

μ ∧ Πν þ ΣμÞ ∧ δθμ − Πμ ∧ θν ∧ δωμ
ν�

¼
Z
M
½ðΥμ − DΠμ þ ΣμÞ ∧ δθμ − Πμ ∧ θν ∧ δωμ

ν�: ðA7Þ

From the variation with respect to the tetrad we now obtain the field equation

DΠμ − Υμ ¼ Σμ: ðA8Þ
Note that the right hand side, which is given by the energy-momentum three-form, is symmetric; see Eq. (28). To see that
also the left hand side is symmetric, we consider the variation δωμ

ν of the spin connection. Here we allow only variations
which preserve the flatness of the spin connection and, hence, satisfy

0 ¼ δRμ
ν ¼ dδωμ

ν þ δωμ
ρ ∧ ωρ

ν þ ωμ
ρ ∧ δωρ

ν ¼ Dδωμ
ν: ðA9Þ

Since the connection is flat and, hence, D2 ¼ 0, this is solved by δωμ
ν ¼ Dξμν, where ξðμνÞ ¼ 0 in order to preserve the

antisymmetry of ωμ
ν. The corresponding variation of the action is given by

δωSG¼−
Z
M
Πμ ∧ θν ∧Dξμν¼−

Z
M
Πμ ∧ θν ∧ ðdξμνþωμ

ρ ∧ ξρν−ωρ
ν ∧ ξμρÞ

¼−
Z
M
ðdΠμ ∧ θνþΠμ ∧ dθνþΠρ ∧ θν ∧ωρ

ν−Πμ ∧ θρ ∧ων
ρÞξμν¼−

Z
M
ðDΠμ ∧ θνþΠμ ∧DθνÞξμν: ðA10Þ

Since the matter action does not depend on (ω), we find the field equation
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DΠ½μ ∧ θν� þ Π½μ ∧ Tν� ¼ 0: ðA11Þ

Together with the Lorentz invariance condition (A5) we,
thus, find that

DΠ½μ ∧ θν� − Υ½μ ∧ θν� ¼ 0: ðA12Þ

This is simply the condition that also the left hand side
of the tetrad field equation (A8) is symmetric. Note that
the same result was obtained in the case of fðTÞ
gravity recently [50], but our analysis shows that it holds
for all teleparallel theories with the action that can be
written as (31).
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