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In the context of extended teleparallel gravity theories with a 3þ 1-dimensional Gauss-Bonnet analog
term, we address the possibility of these theories reproducing several well-known cosmological bouncing
scenarios in a four-dimensional Friedmann-Lemaître-Robertson-Walker geometry. We study which types
of gravitational Lagrangians are capable of reconstructing bouncing solutions provided by analytical
expressions for symmetric, oscillatory, superbounce, matter bounce, and singular bounce. Some of the
Lagrangians discovered are analytical at the origin, having both Minkowski and Schwarzschild vacuum
solutions. All these results open up the possibility for such theories to be competitive candidates of
extended theories of gravity in cosmological scales.
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I. INTRODUCTION

The appearance of cosmological bouncing scenarios has
attracted much attention in recent years due to its power to
avoid the unnaturalness of our Universe to be created from
a big bang initial singularity. In such scenarios, the
Universe contracts until reaching a minimal nonzero radius,
bounces off, and then expands (cf. [1] and references
therein for a recent thorough review on the subject),
similarly to the so-called ekpyrotic scenario [2]. Apart
from the possibility of preventing the initial cosmological
singularity, the so-called big bounce cosmologies have
been shown to provide competitive scenarios to the
standard inflationary paradigm [3–7]; in some realizations,
such as the so-called matter bounce scenario, they have
been shown to generate a nearly scale-invariant power
spectrum as in the usual inflationary models [8–19].
As such, bouncing solutions in the context of gravitational

theories beyond the Einsteinian paradigm have also drawn
some attention in recent literature. First, the idea of ekpyrotic/
cyclic cosmologies was analyzed in the framework of fðRÞ
gravities in Ref. [20]. Related works on bounce cosmology
reconstruction from scalar-tensor fðRÞ theories can be found
in [15,21]. Other recent proposals, such as unimodular fðRÞ
gravity, were studied in [22] where the authors studied well-
known cosmological bouncing models and investigated
which era of the whole bouncing model is responsible
for the cosmological perturbations. Also, in Ref. [23] the
authors investigated the superbounce and the loop quantum

cosmological ekpyrosis bounce for fðRÞ, fðGÞ, and fðTÞ
gravity theories, showing the qualitative similarity of the
different effective gravities realizing the two bouncing
cosmologies mentioned above. Moreover, by performing a
linear perturbation analysis, it was shown that the obtained
solutions are conditionally or fully stable. In addition, in
fðTÞ extended teleparallel gravity, Ref. [24] focused on the
simplest versionof amatter bounce and studied the scalar and
tensor modes of subsequent cosmological perturbations.
Results showed that scalar metric perturbations lead to a
background-dependent sound speed, which might be dis-
tinguishable from the Einsteinian prediction, and a scale-
invariant primordial power spectrum, which is consistent
with cosmological observations. Indeed, one can infer that
extensions of teleparallel gravity reach awide and rich family
of solutions in the context of cosmology [25]. In addition,
some alternative formulations of teleparallel gravity, where
the Palatini approach is applied, show some interesting
properties when dealing with the boundary terms in the
Euclidean action [26].
In the present work, we investigate several well-

established bouncing scenarios in the framework of
extended teleparallel gravity theories with nonvanishing
boundary terms, dubbed fðT; TGÞ theories, where an
analog of the Gauss-Bonnet invariant is assumed in the
framework of teleparallel gravity [27]. The existence of
cosmological solutions has already been studied in such
theories, where some reconstruction methods were imple-
mented (see Ref. [28], and cf. [29] for a thorough review on
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FIG. 1. A sample for each model analyzed in this paper, where the evolution of the scale factor, the Hubble parameter, and the torsion
tensor are depicted for a particular set of free parameters of the models. The bouncing character of the solutions is clearly shown, as are
the possible singularities that may occur.
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the existence of cosmological solutions in such theories).
Static spherically symmetric solutions and their relation
to other extensions of Teleparallel General Relativity
(TEGR) have also been analyzed [30]. Thus, we use the
reconstruction method for fðT; TGÞ theories to realize such
cosmological bouncing scenarios. In particular, we apply
this method to bouncing cosmologies in spatially flat,
four-dimensional, Friedmann-Lemaître-Robertson-Walker
(FLRW) geometries to paradigmatic bouncing solutions,
such as the symmetric bounce [15]; an oscillatory bouncing
solution where the universe oscillates through a series of
expansions and contractions [16–18]; a generic power-law
bounce which has been studied, for instance, in the context
of modified Gauss-Bonnet gravity [31] and loop quantum
cosmology scenarios [32,33]; the superbounce [23,34,35];
the matter bounce scenario [8–19], also dubbed critical
density bouncing, which naturally arises in loop quantum
cosmology scenarios [36–40] and provides a viable alter-
native scenario to inflation compatible with Planck data;
and finally, the so-called singular bounce [19,41–43] in
which the Hubble radius is infinite as t → −∞ and
gradually decreases until a minimal size, but near the
bouncing point (t ¼ 0), it increases and blows up at exactly
the bouncing point. In this latter case, after the bouncing
point, the Hubble radius eventually decreases gradually.
This is different in comparison to other bouncing cosmol-
ogies, and this can be seen by directly comparing the
behavior of the Hubble radius in Fig. 1.
For the sake of clarity, further technical details about

each bouncing scenario are provided in upcoming sections.
Moreover, in the bulk of the article, we show that these
bouncing solutions can be obtained in universes filled with
one standard fluid provided with a constant equation of
state (EOS) and, when possible, in vacuum configurations.
Thus, our results show that within this class of theories,
bounce realizations do not rely on the existence of extra
matter fields nor on the existence of fluids with an equation
of state which violates the null energy condition, as is the
case in other bouncing scenarios [44]. The types of
gravitational actions analyzed in the paper are based on
the idea of extending teleparallel gravity in such a way that
the corresponding Lagrangians are constructed as separable
(or multiplicative) additional terms, which perturbatively
(depending on the extra parameters in the Lagrangians and
the involved exponents) can be negligible in some scales
but relevant in others (cosmological).
The paper is organized as follows: InSec. IIwebrieflynote

the general features of the fðT; TGÞ gravity theories and the
state of the art within this class of extended theories of
gravity. Thereweprovide the key equations to consider so the
reconstruction mechanism can be performed. In the follow-
ing sections, we briefly discuss the main features of the
bouncing models to be studied and determine the fðT; TGÞ
gravity theories capable of realizing such cosmologies. Thus,
in Sec. III we discuss the reconstruction of the symmetric

bounce. Then, Sec. IV addresses the same issue when the
desired model to be reconstructed is a paradigmatic oscil-
latory bounce solution when parametrized as a squared sine
function. Finally, Secs. V–VII are devoted to studying the
possibility of reconstruction of superbounce, matter, and
singular bounce solutions, respectively. We give our con-
clusions in Sec. VIII. At the end of the paper, the scale factor,
the Hubble parameter, and the torsion scalar are depicted in
Fig. 1 for a particular set of free parameters for the five
bouncing models under consideration. The bouncing char-
acter of the solutions is clearly shown, as are the possible
singularities that may occur.
Throughout the paper we use the following conventions:

the Weitzenböck connection as defined in Sec. II will be
denoted by Γ̃α

μν; Dμ shall represent the covariant derivative
with respect to the usual Levi-Civita connection Γα

μν; Greek
indices such as μ; ν;… shall refer to spacetime indices,
whereas Latin letters a; b; c… refer to the tetrad indices
associated with the tangent space.

II. f ðT;TGÞ THEORIES

Teleparallel gravities can be expressed by defining the
mathematical objects known as vierbeins eaðxμÞ,

dxμ ¼ eaμωa; ωa ¼ eaμdxμ; ð2:1Þ
which relate the spacetime of a manifold with its tangent
space at every point xμ,

ds2 ¼ gμνdxμdxν ¼ ηabω
aωb; ð2:2Þ

where ηab ¼ diagð−1; 1; 1; 1Þ holds for the Minkowskian
metric. In addition, the tetrads have the following
properties:

eaμeaν ¼ δμν ; eaμebμ ¼ δba: ð2:3Þ
The theory is constructed as a gauge theory of the trans-
lation group, leading to the so-called Weitzenböck con-
nection, defined as

Γ̃α
μν ¼ eaα∂νeaμ ¼ −eaμ∂νeaα: ð2:4Þ

Whereas the Riemann tensor becomes null under this
connection, the torsion does not vanish, so the torsion
scalar is defined as

T ¼ Tα
μνSαμν ¼

1

4
Tλ

μνTλ
μν þ 1

2
Tλ

μνTνμ
λ − Tρ

μρTνμ
ν;

ð2:5Þ
where the torsion tensor is given by

Tα
μν ¼ Γ̃α

μν − Γ̃α
νμ ¼ eaαð∂νeaμ − ∂μeaνÞ ð2:6Þ

and
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Sαμν ¼
1

2
ðKμν

α þ δμαTβν
β − δναTβμ

βÞ: ð2:7Þ

Here the contorsion is given by the difference between the
Weitzenböck and the Levi-Civita connection:

Kα
μν ¼ Γ̃α

μν − Γα
μν ¼

1

2
ðT α

μ ν þ T α
ν μ − Tα

μνÞ: ð2:8Þ
Thus, the gravitational action for TEGR is solely given by
the torsion scalar (2.5),

SG ¼ −
1

2κ2

Z
eTd4x; ð2:9Þ

where κ2 ¼ 8πGN , with GN the usual gravitational con-
stant, and e ¼ detðeaμÞ. This action is equivalent to the
Einstein-Hilbert action since the relation of the torsion
scalar and the Ricci curvature is given by

R ¼ −T − 2DμTνμ
ν: ð2:10Þ

Here the last term is a total derivative and can be dropped
out of the action. However, any nonlinear function of the
torsion scalar will not be equivalent to fðRÞ gravity as
shown in Eq. (2.10).
Recently, the analog to the Gauss-Bonnet term with the

Weitzenböck connection was found by using the above
expression:

G ¼ TG þ BG; ð2:11Þ
where the Gauss-Bonnet invariant is defined as

G ¼ RμνλσRμνλσ − 4RμνRμν þ R2: ð2:12Þ
The second term in (2.11) is a total derivative, such that TG
can be expressed as follows [27]:

TG ¼ ðKα
γβKγλ

ρKμ
ϵσKϵν

φ − 2Kαλ
βKμ

γρKγ
ϵσKϵν

φ

þ 2Kαλ
βKμ

γρKγν
ϵKϵ

σφ þ 2Kαλ
βKμ

γρKγν
σ;φÞδβρσφαλμν :

ð2:13Þ
Hence, any linear action on TG leads to a total derivative, as
in the metric case. Nevertheless, beyond the linear order the
equivalence is broken. Here we are focusing on theories
containing, in the action, such types of functions beyond
the linear order on TG,

S ¼ SG þ Sm ¼
Z

eðfðT; TGÞ þ 2κ2LmÞd4x: ð2:14Þ

By assuming a spatially flat FLRW metric, T and TG
can be expressed in terms of the Hubble parameter as
follows:

T ¼ 6H2; TG ¼ 24H2ð _H þH2Þ: ð2:15Þ
Note that TG coincides with its GR counterpart, G, when
assuming a spatial flatness. Then, the FLRW equations
yield [28]

f − 12H2fT − TGfTG
þ 24H3 _fTG

¼ 2κ2ρm; ð2:16Þ

f − 4ð3H2 þ _HÞfT − 4H _fT − TGfTG
þ 2

3H
TG

_fTG

þ 8H2f̈TG
¼ −2κ2pm: ð2:17Þ

Here we have assumed the standard definition for the
energy-momentum tensor T μ

ν ¼ eaν

e
δLm
δeaμ

, together with the
assumption of a perfect fluid. Combination of the previous
equations leads to the usual conservation of the energy-
momentum tensor. Thus, by using the above tools, we
consider several types of bouncing solutions in the next
sections, and some classes of Lagrangians are reconstructed.

III. BOUNCING COSMOLOGY I:
EXPONENTIAL EVOLUTION

Let us start by considering a bouncing solution described
by a scale factor with an exponential evolution,

aðtÞ ¼ A exp

�
α
t2

t�2

�
; ð3:1Þ

where t� is some arbitrary time, and A > 0 and α > 0 are
constants. By evaluating the expression at t ¼ 0, it can
easily be concluded that að0Þ ¼ A. In such cases, H is
given by

H ¼ 2αt
t�2

: ð3:2Þ

This means that a bounce is located at t ¼ 0 since H < 0
for t < 0, H ¼ 0 at t ¼ 0 and H > 0 for t > 0.
Consequently, T and TG are given by

T ¼ 6H2 ¼ 24α2t2

t�4
; TG ¼ 8α

t�2
T þ 2T2

3
: ð3:3Þ

Furthermore, the scale factor can be solely expressed in
terms of the torsion scalar T as

aðTÞ ¼ að0Þ exp
�
Tt�2

24α

�
¼ að0Þ exp

�
α
T
T�

�
; ð3:4Þ

where T� ≡ Tðt ¼ t�Þ ¼ 24α2=t�2.
In order to solve the Friedmann equations for this

model, some particular ansatz for the gravitational
Lagrangian are considered. Before doing so, let us first
simplify the stress-energy component of the field equations
by setting aðt0Þ ¼ 1 at some arbitrary time t0 > 0, such that

t02 ¼ −
t�2

α
lnA: ð3:5Þ

Since α is positive, the equation yields real values for the
time t0 if and only if 0 < A < 1. Thus, as long as the value
of A is restricted in the range A ∈ ð0; 1Þ, one can define the
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parameters T0 ≡ Tðt ¼ t0Þ and Ωwi;0 ≡Ωwi
ðt ¼ t0Þ, which

may describe their present time values.

A. f ðT;TGÞ= gðTÞ+ hðTGÞ
By assuming a gravitational Lagrangian of the type

fðT;TGÞ¼gðTÞþhðTGÞ, the Friedmann equation becomes

gþ h − 2TgT − TGhTG
þ 24H3hTGTG

_TG

¼ T0

X
i

Ωwi;0a
−3ð1þwiÞ: ð3:6Þ

Since the scale factor can be expressed in terms ofT only, the
differential equation (3.6) can be split into a pair of equations
as follows:

g − 2TgT ¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ exp

�
−
ð1þ wiÞTt�2

8α

�
;

ð3:7Þ

h − TGhTG
þ 2hTGTG

�
TG

2 −
4T4

9

�
¼ 0: ð3:8Þ

Then, the solution for g yields

gðTÞ ¼ c1
ffiffiffiffi
T

p
þ T0

X
i

Ωwi;0A
−3ð1þwiÞ½ ffiffiffiπp

xierfðxiÞ þ e−xi
2 �;

ð3:9Þ
where c1 is a constant of integration (which corresponds to

the DGP term) and xi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð1þwiÞt�2

8α

q
.

In order to solve Eq. (3.8) for h, we rewrite the equation
as follows:

hðxÞ−
x
�
x2þ84 α

t�2
xþ288 α2

t�4

�
2
�
xþ12 α

t�2

�
2

h0ðxÞþ
24 α

t�2
x2

xþ12 α
t�2
h00ðxÞ¼ 0;

ð3:10Þ

where

x≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6TG þ 144

α2

t�4

s
− 12

α

t�2
: ð3:11Þ

Here we have used (3.3). The solution of Eq. (3.10) yields

hðxÞ ¼ x
�
xþ 24

α

t�2

�
c1

þ c2 exp

�
xt�2

48α

�"
−6

ffiffiffiffiffiffiffiffiffi
α

t�2
x

r �
xþ 48

α

t�2

�

þ
ffiffiffi
3

p
x
�
xþ 24

α

t�2

�
F

 
1

4

ffiffiffiffiffiffiffiffi
xt�2

3α

r !#
; ð3:12Þ

where c1 and c2 are constants of integration and FðzÞ is the
Dawson integral which is defined as

FðzÞ≡ e−z
2

Z
z

0

ey
2

dy: ð3:13Þ

The next step would be to check the existence of vacuum
solutions, i.e., fð0; 0Þ ¼ gð0Þ þ hð0Þ ¼ 0. In this case,
hðTG ¼ x ¼ 0Þ is equal to 0. Thus, we require
gðT ¼ 0Þ ¼ 0. However, the resulting limit is

gð0Þ ¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ; ð3:14Þ

which is trivially satisfied in vacuum, where Ωwi;0 ¼ 0.

B. f ðT;TGÞ=TgðTGÞ
When considering T rescaling-type models, the

Friedmann equations become

g − TGgTG
þ 4T2

3
gTG

− 2gTGTG

�
TG

2 −
4T4

9

�

¼ −
T0

T

X
i

Ωwi;0A
−3ð1þwiÞ exp

�
−
ð1þ wiÞTt�2

8α

�
: ð3:15Þ

Similar to the previous case, the Friedmann equation has to
be fully expressed in terms of TG. By using the substitution

x≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6TG þ 144 α2

t�4

q
− 12 α

t�2
, the resulting equation is

given by

gðxÞþxðt�4x2þ36αt�2x−288α2Þ
2ð12αþ t�2xÞ2

g0ðxÞ− 24αx2

12αþ t�2x
g00ðxÞ

¼−2T0

X
i

Ωwi;0A
−3ð1þwiÞ

x
exp

�
−
ð1þwiÞxt�2

16α

�
: ð3:16Þ

The solution to this equation can be found by a power
series, such that

gðxÞ ¼
X∞
n¼0

anxnþr þ gpartðxÞ; ð3:17Þ

where gpartðxÞ corresponds to the particular solution of the
inhomogeneous equation, while the exponent r ¼ 1 and
r ¼ −1=2 for the homogeneous equation with the recur-
rence relation:

ðnþ rÞt�4an−2 þ 12½4þ ðnþ r − 1Þð11 − 4n − 4rÞ�
t�2αan−1 − 288ðnþ r − 1Þð2nþ 2rþ 1Þα2an ¼ 0;

ð3:18Þ

with a−2 ¼ a−1 ¼ 0, which yields the following solutions
for the homogeneous part of the equation:
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g1ðxÞ¼
X∞
n¼0

anxnþ1 ¼ 7c1
48t�5

�
12ðt�5x2þ84αt�3x−864α2t�Þ

þ
ffiffiffiffiffiffi
3π

αx

r
ðt�6x3þ108αt�4x2þ20736α3Þ

×erf
� ffiffiffiffiffiffiffiffi

t�2x
48α

r �
exp
�
t�2x
48α

��
; ð3:19Þ

g2ðxÞ ¼
X∞
n¼0

anxn−
1
2 ¼ t�6x3 þ 108αt�4x2 þ 20736α3

216α2t�2
ffiffiffi
x

p

× exp

�
t�2x
48α

�
c1; ð3:20Þ

where erfðzÞ ¼ 2ffiffi
π

p
R
z
0 e

−t2dt is the error function. Both

solutions satisfy the vacuum constraint gið0Þ ¼ 0.
Finally, the particular solution can be found by using a

Green function Gðx; sÞ ¼ g1ðsÞg2ðxÞ−g2ðsÞg1ðxÞ
WðsÞ , where WðsÞ

holds for the Wronskian. Nevertheless, it is not possible
to find an analytical solution. However, the resulting
particular solution at the T → 0 limit (which corresponds
to x → 0) is defined since the integral would be equal to
zero and since both g1ð0Þ ¼ g2ð0Þ ¼ 0 would
imply gpartð0Þ ¼ 0.

C. f ðT;TGÞ=TGgðTÞ
For a similar type of model where a rescaling of TG is

included, the Friedmann equation becomes

−
4T3

3
gT ¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ exp

�
−
ð1þ wiÞTt�2

8α

�
;

ð3:21Þ

whose solution is given by

gðTÞ ¼ c1 þ
X
i

3Ωwi;0T0A−3ð1þwiÞ

8T2

	�
1 −

Tð1þ wiÞt�2
8α

�

× exp

�
−
Tð1þ wiÞt�2

8α

�

−
�
Tð1þ wiÞt�2

8α

�
2

Ei

�
−
Tð1þ wiÞt�2

8α

�

; ð3:22Þ

where c1 is an integration constant and Ei(z) is the
exponential integral function, EiðzÞ≡ −

R
∞
−z

e−y
y dy. The

solution can be expressed in a more compact form by

making use of the substitution variable xi ≡ − Tð1þwiÞt�2
8α ,

which results in

gðxÞ ¼ c1 þ
X
i

3T0Ωwi;0A
−3ð1þwiÞð1þ wiÞ2t�4
512α2

×

�
1þ xi
xi2

exi − EiðxiÞ
�
: ð3:23Þ

For vacuum solutions, we require the Lagrangian
fðT ¼ x ¼ 0Þ ¼ 0. In this case, we find

fð0Þ ¼ −
T0

8

X
i

Ωwi;0A
−3ð1þwiÞ

×

�
1þ 3wi þ 3ð1þ wiÞ

exi

xi

�����
xi→0

: ð3:24Þ

In the case of vacuum, the condition is satisfied, although
the resulting Lagrangian would only be composed of the
Gauss-Bonnet term, which effectively does not contribute
to the field equations. On the other hand, for single fluids,
the Lagrangian diverges even for the case wi ¼ −1. For a
cosmological-constant-like fluid, xi is already 0 by defi-
nition; hence, it requires more attention when taking the
limit. The Lagrangian as T → 0 in the presence of this fluid
becomes

fð0Þ ¼ Ω−1;0T0

4
þ 3αΩ−1;0T0

Tt�2

����
T→0

; ð3:25Þ

which diverges as T → 0.

D. f ðT;TGÞ= −T +TGgðTÞ
If we consider a model expressed as a correction to the

teleparallel action with a rescaling of TG, the Friedmann
equation becomes

T −
4T3

3
gT ¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ exp

�
−
ð1þ wiÞTt�2

8α

�
;

ð3:26Þ

whose solution is identical to the previous model with an
extra particular solution of the form

gpartðTÞ ¼ −
3

4T
: ð3:27Þ

The contribution to the Lagrangian in this case is given by

fpartðT; TGÞ ¼ −
3TG

4T
¼ −

6α

t�2
−
T
2
; ð3:28Þ

which in the T → 0 limit reduces to a nonzero constant. As
in the previous case, there is no trivial vacuum solution.
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E. f ðT;TGÞ = −T + μð TT0
Þβð TG

TG;0
Þγ

For TEGR with a power-law model, the Friedmann
equation becomes

μ

�
T
T0

�
βþγ
�
12αþTt�2

12αþT0t�2

�
γ
�
1−2β− γþ 24αβγ

12αþTt�2

þ48γðγ−1Þαð6αþTt�2Þ
ð12αþTt�2Þ2

�
þT¼T0

X
i

Ωwi;0a
−3ð1þwiÞ;

ð3:29Þ

where μ, β, and γ are constants. By evaluating the
expression at current times, the value of μ is found to be

μ ¼ T0ð−1þ
P

iΩwi;0Þ
1 − 2β − γ þ 24αβγ

12αþT0t�2
þ 48γðγ−1Þαð6αþT0t�2Þ

ð12αþT0t�2Þ2

≡ T0ð−1þ
P

iΩwi;0Þ
ν

; ð3:30Þ

where ν is defined as the denominator. The expression is
true provided that ν ≠ 0. To obtain vacuum solutions, the
following condition must be satisfied:

β þ γ > 0: ð3:31Þ

Since when t ¼ 0, T ¼ 0, another condition has to be
obeyed:

X
i

Ωwi;0A
−3ð1þwiÞ ¼ 0: ð3:32Þ

This condition is satisfied in the case of vacuum. However,
this condition cannot be satisfied if fluids exist since
Ωwi;0; A > 0. Therefore, we only consider the former.
From the definition of μ, the Friedmann equation
simplifies to

�
T
T0

�
βþγ
�
12αþ Tt�2

12αþ T0t�2

�
γ
�
1 − 2β − γ þ 24αβγ

12αþ Tt�2

þ 48γðγ − 1Þαð6αþ Tt�2Þ
ð12αþ Tt�2Þ2

�
¼ ν

T
T0

: ð3:33Þ

In order to determine which values of β and γ satisfy this
equation, the equation must hold at all times. The equation
trivially holds when t ¼ 0; however, this must also hold for
arbitrary time. Thus, the time-dependent (torsion scalar)
terms must cancel. The only possible solution is γ ¼ 0,
β ¼ 1, which sets ν ¼ −1 and consequently μ ¼ T0.
However, this implies that fðT; TGÞ ¼ 0, which is not
physical. Thus, a power-law solution with a TEGR con-
tribution cannot describe this bouncing cosmology.

IV. BOUNCING MODEL II:
OSCILLATORY MODEL

The second bouncing model we are considering here is
described by an oscillatory scale factor:

aðtÞ ¼ Asin2
�
B

t
t�

�
; ð4:1Þ

where t� > 0 is some reference time, and A > 0 and B > 0
are dimensionless constants. Here, the restrictions for t�
and B can be relaxed to simply be nonzero. The choice here
helps us define the subsequent parameters and ease the
analysis for determining which models obey the necessary
conditions. For such a model, the Hubble parameter is

H ¼ 2B
t�

cot

�
B

t
t�

�
: ð4:2Þ

This oscillatory model produces two different bounces. For
times t ¼ nπt�

B , n ∈ Z, the model describes the time when
the universe reaches a crunch (a ¼ 0, H → −∞) and is
reborn with a big bang (a ¼ 0, H → ∞). This corresponds

to a superbounce. On the other hand, for times t ¼ ð2nþ1Þπt�
2B ,

n ∈ Z, the universe reaches its maximum size with no
further expansion (a ¼ A,H ¼ 0). This also corresponds to
a bounce since H transitions from positive to negative. In
this case, T and TG are

T ¼ 6H2 ¼ 24B2

t�2
cot2

�
B

t
t�

�
; TG ¼ 4T

�
T
12
− 2B2

t�2

�
:

Using these definitions, the scale factor can be expressed in
terms of the torsion scalar to be

aðTÞ ¼ A

1þ Tt�2

24B2

: ð4:4Þ

Before solving for the gravitational actions considered
above, we first assume the existence of some time
t0 > 0 at which the scale factor is 1,

1

A
¼ sin2

�
B
t0
t�

�
: ð4:5Þ

Since 0 ≤ sin2ðxÞ ≤ 1, A > 1 is required. If we set our first
big bang to be at t ¼ 0, for instance, and the first maximum
of the expansion at t ¼ πt�

2B, then the present time would lie

at t0 ¼ t� sin−1ð1AÞ
B . With this time defined, the remaining

present-time parameters—such as the Ωwi;0 density
parameters, current times torsion scalar T0 ≡ Tðt ¼ t0Þ ¼
24ðA2−1ÞB2

t�2
, and so on—can be defined.
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A. f ðT;TGÞ= gðTÞ+ hðTGÞ
For this type of model, the Friedmann equation in

gþh−2TgT −TGhTG
−
4Tð2T2−3TGÞðTt�2−12B2Þ

9t�2
hTGTG

¼T0

X
i

Ωwi;0A
−3ð1þwiÞ

�
1þ Tt�2

24B2

�
3ð1þwiÞ

: ð4:6Þ

Before solving the Ordinary differential equation (ODE),
we point out that since the T and TG are related through a
quadratic expression (4.3), the torsion scalar can be
expressed in terms of TG as

T ¼ 12B2

t�2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ TGt�4

48B4

s !
; ð4:7Þ

where the plus solution is neglected since it is inconsistent
at maximum size periods (i.e., when T ¼ TG ¼ 0). In doing

so, the ODE can be separated into two ODEs, for g and
for h. This is only possible provided their respective
ODEs result in a constant. It turns out that, similar to
other bouncing models, this constant drops out of the
Lagrangian, so it is neglected from the solutions. The
resulting ODEs to solve are the following:

g − 2TgT ¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ

�
1þ Tt�2

24B2

�
3ð1þwiÞ

;

ð4:8Þ

h − TGhTG
−
4Tð2T2 − 3TGÞðTt�2 − 12B2Þ

9t�2
hTGTG

¼ 0;

ð4:9Þ

where T is expressed in terms of TG in the ODE for h.

The solution for gðTÞ is given by

gðTÞ ¼ c1
ffiffiffiffi
T

p
− T0

X
i

Ωwi;0A
−3ð1þwiÞ

69120B6

	
T3t�62F1

�
5

2
;−3wi;

7

2
;−

Tt�2

24B2

�

þ 120B2Tt�2
�
72B2

2F1

�
1

2
;−3wi;

3

2
;−

Tt�2

24B2

�
þ Tt�22F1

�
3

2
;−3wi;

5

2
;−

Tt�2

24B2

��

− 69120B6
2F1

�
−
1

2
;−3wi;

1

2
;−

Tt�2

24B2

�

; ð4:10Þ

where c1 is an integration constant corresponding to the DGP contribution in the Lagrangian. The solution for hðTGÞ leads to

hðxÞ ¼ xðx − 2Þc1 þ
�
2ð8 − 3xÞ ffiffiffi

x
p

− 3
ffiffiffi
2

p
xðx − 2Þtan−1

� ffiffiffi
x
2

r ��
c2; ð4:11Þ

where c1;2 are integration constants and x≡ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ TGt�4

48B4

q
.

In the vacuum limit TG → 0 (or equivalently, x → 0),
hð0Þ ¼ 0, whereas in the limit T → 0, the resulting function
leads to gð0Þ ¼ T0

P
iΩwi;0A

−3ð1þwiÞ. Hence, fð0; 0Þ ¼ 0 is
only possible in the absence of fluids, Ωwi;0 ¼ 0, as usual.

B. f ðT;TGÞ=TgðTGÞ
For a TEGR rescaling model, the Friedmann equation is

given by

gþ
�
4T2

3
−TG

�
gTG

þ4Tð2T2−3TGÞðTt�2−12B2Þ
9t�2

gTGTG

¼−
T0

T

X
i

Ωwi;0A
−3ð1þwiÞ

�
1þ Tt�2

24B2

�
3ð1þwiÞ

: ð4:12Þ

Using Eq. (4.7), the ODE can be expressed fully in terms of
TG and hence can be solved for g. To simplify the ODE, we

make a change of variables by introducing the variable

x≡ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ TGt�4

48B4

q
. This results in

gðxÞ þ xðx2 − 5x − 2Þ
2ðx − 1Þ2 g0ðxÞ þ x2ðxþ 2Þ

x − 1
g00ðxÞ

¼ −T0

X
i

Ωwi;0
t�22−3wi−5

3B2x

�
A

xþ 2

�
−3ð1þwiÞ

: ð4:13Þ

The homogeneous solution can be expressed by a power
series, leading to

gðxÞ ¼
X∞
n¼0

anxn; ð4:14Þ

where the following recurrence relation is obtained:
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2ðn − 1Þ2an þ nan−2 þ ðn − 5Þð2n − 1Þan−1
¼ 4nðnþ 1Þanþ1; ð4:15Þ

with a−2 ¼ a−1 ¼ 0. A general solution to the recurrence
relation cannot be found. Nonetheless, the first few terms of
the series are found to be

a0 ¼ 0; a1 ¼ 1; a2 ¼ 0; a3 ¼ −
3

8
a1;

a4 ¼ 0; a5 ¼
21

640
a1; a6 ¼ −

11

1600
a1: ð4:16Þ

Thus, the first solution to the homogeneous equation is

g1ðxÞ ¼
X∞
n¼0

anxn ¼ a1

�
x −

3x3

8
þ 21x5

640
−
11x6

1600
þ � � �

�
;

ð4:17Þ

where a1 takes the role of the integration constant. In order
to find the second solution, one can use Abel’s identity,
although only in certain intervals [45]. By using Abel’s
identity, we obtain

g2ðxÞ ¼ Cg1ðxÞ
Z

x ð1 − ηÞffiffiffi
η

p ð2þ ηÞg12ðηÞ
dη; ð4:18Þ

where C is an integration constant. However, the above
homogeneous solution is only applicable for x ∈ ð0; 1Þ ∪
ð1;∞Þ, as g1ðxÞ and its derivative are not continuous at
x ¼ 0 and x ¼ 1, respectively. Finally, since the power
series is not expressed in terms of some analytical function,
integrating over an infinite series is intractable. We also
point out that, in the vacuum limit, g1ð0Þ ¼ 0 although
nothing can be inferred about g2ð0Þ.

C. f ðT;TGÞ=TGgðTÞ
For a Teleparallel Gauss-Bonnet (TEGB) rescaling, the

Friedmann equation is given by

−
4T3

3
gT ¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ

�
1þ Tt�2

24B2

�
3ð1þwiÞ

:

ð4:19Þ

To simplify this equation, we introduce a change of variables
defined by x≡ 1þ Tt�2

24B2, which leads to

ðx − 1Þ3gx ¼
X
i

ξwi
x3ð1þwiÞ; ð4:20Þ

where ξwi
≡ − 3

4
½ t�2
24B2�2T0Ωwi;0A

−3ð1þwiÞ. Depending on the
value of wi, we have different particular solutions. Because
the sum is finite, the sum of the particular solutions
corresponding to each wi will be the general solution.

1. Case 1: w ≠ n=3, n ∈ Z, n ≥ − 1

For this set of values, the solution is given by

gðxÞ¼ ξwi

2
x1þ3wi

	
−

1

3wiðx−1Þ3
�
ðx−1Þð2−xþ3wixÞ

× 2F1

�
1;1;1−3wi;

1

1−x

�
þxð4þ3wi−5x−3wixÞ

× 2F1

�
1;2;1−3w;

1

1−x

��
þ 2

1þ3wi



: ð4:21Þ

For every wi, the Lagrangian diverges in the vacuum limit.

2. Case 2: w = n=3, n ∈ Z, n ≥ − 1

For the remaining set of values, we solve the ODE as
follows:

ðx − 1Þ3gx ¼ ξwi
x3þn; ð4:22Þ

where the summation is suppressed for simplicity. Next, we
define the variable y≡ x − 1 to transform the ODE into

gy ¼ ξwi

ðyþ 1Þ3þn

y3
: ð4:23Þ

Since n ∈ Z, n ≥ −1, by the binomial theorem, the
binomial term can be expanded as

ðyþ 1Þ3þn ¼
X3þn

k¼0

�
n

k

�
yk: ð4:24Þ

Therefore, the resulting solution is given by

gðyÞ ¼ ξwi

X3þn

k¼0

�
n

k

�Z
yk−3dy: ð4:25Þ

For these values, the Lagrangian diverges in the vac-
uum limit.

D. f ðT;TGÞ= −T +TGgðTÞ
For a TEGB rescaling with TEGR, the Friedmann

equation is given by

T −
4T3

3
gT ¼ T0

X
i

Ωwi;0a
−3ð1þwiÞ; ð4:26Þ

whose solution is

gðTÞ ¼ c1 −
3

4T
þ hðTÞ; ð4:27Þ

where c1 is a constant of integration corresponding to the
Gauss-Bonnet contribution in the Lagrangian and hðTÞ is
the solution found in the previous model. In the vacuum
limit, the Lagrangian is
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fð0; 0Þ ¼ 6B2

t�2
þ TGhðTÞjT;TG→0: ð4:28Þ

Following the discussions in the previous section,
the last term is finite only in vacuum, leading to
TGhðTÞjT;TG→0 ¼ 0. However, since B, t� > 0, the
Lagrangian does not satisfy the vacuum condition.
Therefore, this model cannot describe the oscillating
cosmology while obeying the vacuum condition.

E. f ðT;TGÞ = −T + μð TT0
Þβð TG

TG;0
Þγ

For a power-law model with a TEGR contribution, the
Friedmann equation becomes

T þ μ

�
T
T0

�
β
�
TG

TG;0

�
γ
�
1 − 2β − γ þ βγ

�
2 −

4T2

3TG

�

−
γðγ − 1Þ
9t�2

4Tð2T2 − 3TGÞðTt�2 − 12B2Þ
TG

2

�

¼ T0

X
i

Ωwi;0a
−3ð1þwiÞ: ð4:29Þ

The Lagrangian satisfies the vacuum condition as long as
β þ γ > 0. At times when T ¼ TG ¼ 0 (which occurs at the
maximum universe size), the Friedmann equation yields the
following condition:

0 ¼
X
i

Ωwi;0A
−3ð1þwiÞ: ð4:30Þ

However, this is possible only in vacuum. Then, the
Friedmann equation can be evaluated at current times to
evaluate μ,

μ¼ −T0

1−2β− γþβγ
�
2− 4T0

2

3TG;0

�
− γðγ−1Þ

9t�2
4T0ð2T0

2−3TG;0ÞðTt�2−12B2Þ
TG;0

2

≡−
T0

ν
; ð4:31Þ

where ν ≠ 0 is defined as the denominator. This simplifies
the Friedmann equation to

T−
T0

ν

�
T
T0

�
β
�
TG

TG;0

�
γ
�
1−2β− γþβγ

�
2−

4T2

3TG

�

−
γðγ−1Þ
9t�2

4Tð2T2−3TGÞðTt�2−12B2Þ
TG

2

�
¼ 0: ð4:32Þ

This equation has to be satisfied at all times. Trivially, this
is satisfied when T ¼ TG ¼ 0 and at t ¼ t0, so other time
instances are assumed. This allows for a rearranging of the
equation to

�
T
T0

�
β−1
�
TG

TG;0

�
γ
�
1−2β− γþβγ

�
2−

4T2

3TG

�

−
γðγ−1Þ
9t�2

4Tð2T2−3TGÞðTt�2−12B2Þ
TG

2

�
¼ ν: ð4:33Þ

Since ν is a constant, all time-dependent (or, equivalently,
the torsional and TEGB terms) must vanish. This is
possible for the following cases: β ¼ −1, γ ¼ 1 and
β ¼ 1, γ ¼ 0. In the former case, although it leads to a
nontrivial Lagrangian, the vacuum condition is not satis-
fied. On the other hand, the latter is the TEGR result, which
leads to ν ¼ −1 and, consequently, a zero Lagrangian
which is nonphysical. Thus, there is no Lagrangian which
describes the oscillating cosmology while obeying the
vacuum condition.
In a Lagrangian composed of the TEGR term with DGP

and Gauss-Bonnet terms, the resulting Friedmann equation
is given by

T ¼ T0

X
i

Ωwi;0a
−3ð1þwiÞ: ð4:34Þ

However, evaluating at times when the universe size is
maximum (i.e., T ¼ TG ¼ 0) yields the previous restriction
on the omega parameters:

0 ¼
X
i

Ωwi;0A
−3ð1þwiÞ; ð4:35Þ

which is only possible in vacuum. If this is assumed, this
sets T ¼ 0 at all times, which is clearly not the case. Thus,
this Lagrangian composition cannot describe the oscillating
cosmology.

V. BOUNCING MODEL III: POWER-LAW MODEL

For this section, we consider a scale factor of the form

aðtÞ ¼
�
ts − t
t0

�
2=c2

; ð5:1Þ

where ts represents the time at which the bounce occurs,
t0 > 0 is an arbitrary time parameter which defines the
scale factor to be 1 when t ¼ ts þ t0, and c is a constant. In
this case, we have the following expressions

H ¼ −
2

c2
1

ts − t
; T ¼ 6H2; TG ¼ 2T2

3

�
1 −

c2

2

�
:

ð5:2Þ
Furthermore, the scale factor can be solely expressed in
terms of the torsion scalar as

aðTÞ ¼
�

24

Tc4t02

�
1=c2

: ð5:3Þ

Before continuing further, we make note of the following.
We define the quantities t� ≡ t − ts and α≡ 2=c2. Thus, the
scale factor becomes aðt�Þ ¼ ðt�=t0Þα, while the Hubble
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parameter, torsion, and teleparallel Gauss-Bonnet quan-
tities become

H ¼ α

t�
; T ¼ 6H2 ¼ 6

α2

t�2
; TG ¼ 2T2

3

�
1 −

1

α

�
:

ð5:4Þ
Note that at t� ¼ t0, T0 ≡ Tðt� ¼ t0Þ ¼ 6α2=t02. This
simplifies the expression for the scale factor to

aðTÞ ¼
�
T0

T

�
α=2

: ð5:5Þ

This transformation effectively simplifies the model
to a standard power-law model encountered in single-
fluid-dominated universes with the difference being that
multiple fluids are considered. In fact, the Friedmann
equation remains unchanged since the time-dependent
differentiations remain unchanged: _T ≡ dT=dt ¼ dT=dt�
and _TG ≡ dTG=dt ¼ dTG=dt�. Hence, the resulting
Friedmann equation is

f − 2TfT − TGfTG
−
4T3

3α
fTTG

−
8T2TG

3α
fTGTG

¼ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2

: ð5:6Þ

Let us now find the corresponding Lagrangians for this type
of cosmology.

A. f ðT;TGÞ= gðTÞ+ hðTGÞ
For an additive-type model, with two functions g and h

of the torsion scalar and TEGB term, respectively, the
Friedmann equation simplifies to

gþ h − 2TgT − TGhTG
−
8T2

3α
TGhTGTG

¼ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2

: ð5:7Þ

Note that when α ¼ 1 sets TG ¼ 0, one has to be careful in
solving the Friedmann equation in this scenario. Thus, we
solve the Friedmann equation for the cases when α ¼ 1 and
α ≠ 1 separately.
For α ¼ 1, the function h results in a constant, say,

hðTGÞ ¼ hð0Þ ¼ μ.1 However, nothing can be inferred on
the behavior of its derivatives, becoming degenerate.
However, we can analyze the case when the derivatives
are constant, i.e., h0ð0Þ ¼ β and h00ð0Þ ¼ γ for some con-
stants β and γ. Here, the resulting Friedmann equation is

g − 2TgT ¼ −μþ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2

; ð5:8Þ

whose solution is given by

gðTÞ ¼ c1
ffiffiffiffi
T

p
− μþ BjT

ffiffiffiffiffi
T0

T

r
ln

�
T0

T

�

þ
X
i

Ai

�
T0

T

�
−3αð1þwiÞ=2

; ð5:9Þ

for some integration constant c1, whose term corresponds to

the DGP term, with Ai≡ Ωwi;0
T0

1−3αð1þwiÞ having 1−3αð1þwiÞ≠
0∀i andBj ≡ Ωwj;0

2
obeying1 − 3αð1þ wjÞ ¼ 0∃j.Next,we

demand the vacuum condition fð0;0Þ¼gð0Þþhð0Þ¼0. This
can be satisfied for various scenarios, for instance, in vacuum
(Bj ¼ Ai ¼ 0 ∀ i; j), for a single fluid obeying the Bj

condition, for fluids having EOS wi > −1 ∀ i, and so on.
Examples of functions obeying these sets of conditions
include hðTGÞ ¼

P
i
n¼1 ηn exp ðξnTG

nÞ for i < ∞ and con-
stants ηn and ξn and hðTGÞ ¼ ξþPi

n¼1 ηnTG
n for i < ∞,

where ξ and ηn are constants.
Lastly, another solution can be obtained for the case

when h0ð0Þ ¼ β and h00ð0Þ → ∞ with TGh00ðTGÞjTG→0 ¼ γ.
In this case, the Friedmann equation reduces to

g − 2TgT ¼ −μþ 8T2

3
γ þ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2

:

ð5:10Þ

The resulting solution is

gðTÞ ¼ c1
ffiffiffiffi
T

p
−
8γT2

9
− μþ BjT

ffiffiffiffiffi
T0

T

r
ln

�
T0

T

�

þ
X
i

Ai

�
T0

T

�
−3αð1þwiÞ=2

; ð5:11Þ

where c1, Ai, and Bj have the same definitions and
conditions as the previous case. The only difference lies
in the extra contribution of −8γT2=9 in the Lagrangian.
Since in the T → 0 limit this reduces to 0, the same vacuum
conditions obtained previously can be applied. An example
of a function with these properties is the function hðTGÞ
such that h00ðTGÞ ¼ sinðα=TGÞ, for some constant α > 0.
In principle, other solutions can be obtained under differ-

ent conditions, say, h0ð0Þ → ∞ with TGh0ðTGÞjTG→0 ¼ β
and h00ð0Þ → ∞ with TGh00ðTGÞjTG→0 ¼ γ. However, since
functions obeying these properties have not been found,
these were not considered in the analysis.
For α ≠ 1, the Friedmann equation can be expressed

fully in terms of T and TG as follows:

1Note that, in principle, hð0Þ could be divergent. However, in
order to satisfy the vacuum condition, this would require that gð0Þ
also diverges and would need to cancel exactly. Thus, for
simplicity, we consider only the finite case.
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gþ h − 2TgT − TGhTG
−
4TG

2

α − 1
hTGTG

¼ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2

; ð5:12Þ

which can be split into the following system of equations:

g − 2TgT − T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2 ¼ λ; ð5:13Þ

h − TGhTG
−
4TG

2

α − 1
hTGTG

¼ −λ: ð5:14Þ

Here, λ is a constant. Hence, the following solutions are
obtained,

gðTÞ ¼ λþ c1
ffiffiffiffi
T

p
þ BjT

ffiffiffiffiffi
T0

T

r
ln

�
T0

T

�

þ
X
i

Ai

�
T0

T

�
−3αð1þwiÞ=2

; ð5:15Þ

hðTGÞ ¼ −λþ TGc2 þ TG
1−α
4 c3; ð5:16Þ

where Ai ≡ Ωwi;0
T0

1−3αð1þwiÞ, with 1 − 3αð1þ wiÞ ≠ 0 ∀ i, Bj ≡
Ωwj;0

2
obeying 1 − 3αð1þ wjÞ ¼ 0∃j, and c1;2;3 are integra-

tion constants. The c1 term corresponds to the DGP term,
while c2 corresponds to the Gauss-Bonnet term. We also
remark that the contribution of λ is fictitious since the total
contribution of λ to the Lagrangian f is zero.
In order to keep vacuum solutions where gð0Þ ¼

hð0Þ ¼ 0, the following conditions must be satisfied:

αð1þ wiÞ > 0 ⇒ wi > −1 ∀ i; ð5:17Þ

α < 1: ð5:18Þ

The first condition is obtained provided that a fluid obeying
the Ai condition exists; otherwise the condition is not
applicable in vacuum. On the other hand, the second
condition holds provided that c3 ≠ 0. Otherwise, for cases
for which α ≥ 1, c3 can be set to zero, and we can obtain
nontrivial solutions from the gðTÞ contribution.

B. f ðT;TGÞ=TgðTGÞ
For a rescaling of the T model, the resulting Friedmann

equation is

gþ
�
TG þ 4T2

3α

�
gTG

þ 8T2

3α
TGgTGTG

¼ −
X
i

Ωwi;0

�
T0

T

�−3ð1þwiÞαþ2

2

: ð5:19Þ

Similar to the previous case, the equation yields different
solutions depending on the values of α, i.e., between α ¼ 1
and α ≠ 1.
For α ¼ 1, TG ¼ 0, such that the function gðTGÞ results

in a constant, namely, gðTGÞ ¼ gð0Þ ¼ μ.2 Note that this
automatically satisfies the vacuum condition fð0; 0Þ ¼ 0.
For α ≠ 1, the Friedmann equation can be expressed

fully in terms of TG as

gþ αþ 1

α − 1
TGgTG

þ 4TG
2

α − 1
gTGTG

¼ −
X
i

Ωwi;0

�
TG;0

TG

�−3ð1þwiÞαþ2

4

; ð5:20Þ

which yields a solution of the form

gðTGÞ ¼ c1TG
m− þ c2TG

mþ −
X
i

Ai

�
TG;0

TG

�−3ð1þwiÞαþ2

4

;

ð5:21Þ

where

m� ≡ 1

8

�
3 − α�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 22αþ 25

p �
; ð5:22Þ

Ai ≡ 4ðα − 1ÞΩwi;0

3α2ð3wi
2 þ 7wi þ 4Þ − αð21wi þ 19Þ þ 6

; ð5:23Þ

provided that the denominator of Ai is nonzero ∀i, which is
satisfied as long as

wi ≠
7 − 7α −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 22αþ 25

p

6α
: ð5:24Þ

It is important to distinguish the different solutions stem-
ming from the c1 and c2 contributions. This is done by
examining the square-root term. The following subcases are
obtained:

(i) α2 − 22αþ 25 > 0: When the square root is real,
this gives two distinct power-law solutions. Here, the
ranges of values of α obeying the condition are 0 <
α < 11 − 4

ffiffiffi
6

p
and α > 11þ 4

ffiffiffi
6

p
. In this case, the

vacuum condition is satisfied as long as
0 < α < 11 − 4

ffiffiffi
6

p
; otherwise the integration con-

stants are set to zero.
(ii) α2 − 22αþ 25 ¼ 0: In this case, mþ ¼ m−, effec-

tively combining the two solutions into one,

2Similar to the additive case, hð0Þ could diverge. Even though
this satisfies the vacuum condition, one needs to satisfy the
resulting Friedmann equation. Since here we are only interested
in illustrating some possible solutions, this case is not considered,
for simplicity.
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gðTGÞ ∝ TG
3−α
8 . The values of α giving rise to this

particular case are α ¼ 11� 4
ffiffiffi
6

p
. In this case, the

vacuum condition for this homogeneous solution is
satisfied only for α ¼ 11 − 4

ffiffiffi
6

p
unless the constant

of integration is zero for the other value.
(iii) α2 − 22αþ 25 < 0: When the square root becomes

complex, the homogeneous solution has to be reex-
pressed using the relation

abþic ¼ ab½cosðc ln aÞ þ i sinðc ln aÞ�: ð5:25Þ

For simplicity, we define iβ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 22αþ 25

p
.

This leads to the following homogeneous solution:

ghomðTGÞ ¼ c1TG
3−α
8 cos

�
β

8
lnTG

�

þ c2TG
3−α
8 sin

�
β

8
lnTG

�
; ð5:26Þ

where the constants of integration c1 and c2 have
been redefined. Equivalently, the homogeneous
solution can be expressed as

ghomðTGÞ ¼ c3TG
3−α
8 cos

�
c4 þ

β

8
lnTG

�
; ð5:27Þ

where c3 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12 þ c22

p
and c4 ¼ − arctanðc1=c2Þ.

In this case, α lies in the range 11 − 4
ffiffiffi
6

p
<

α < 11þ 4
ffiffiffi
6

p
. For 11 − 4

ffiffiffi
6

p
< α < 7, the vacuum

condition is satisfied, while for 7 ≤ α < 11þ 4
ffiffiffi
6

p
,

the latter is satisfied when c3 ¼ 0; i.e., therewould be
no contribution from the homogeneous solution for
this particular range of values.

On the other hand, the particular solution satisfies the
vacuum condition as long as wi > −1, ∀i.

C. f ðT;TGÞ=TGgðTÞ
For this model, the Friedmann equation becomes

−
4T3

3
gT ¼ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2

; ð5:28Þ

whose solution is given as

gðTÞ ¼ c1 þ Bj ln

�
T0

T

�
þ
X
i

Ai

T2

�
T0

T

�
−3αð1þwiÞ=2

;

ð5:29Þ

where Ai ≡ 3Ωwi;0
T0

2½4−3αð1þwiÞ�, with 4 − 3αð1þ wiÞ ≠ 0 ∀ i,

Bj ≡ 3Ωwj;0

4T0
obeying 4 − 3αð1þ wjÞ ¼ 0∃j, and c1 a con-

stant of integration. The latter corresponds to the Gauss-
Bonnet term in the Lagrangian, while the others are the
nontrivial solutions. Trivially, the vacuum solution is also a

solution since Ai ¼ Bj ¼ 0 ∀i and fð0; 0Þ ¼ 0, although
this leaves the Lagrangian to be the Gauss-Bonnet term,
which does not contribute to the Friedmann equation and
hence cannot be a source to the bounce. Thus, a fluid must
exist. In this case, the vacuum condition is satisfied
provided that any fluid obeying the Ai condition satisfies

1þ 3α

2
ð1þ wiÞ > 0 ⇒ wi >

−2 − 3α

3α
∀i: ð5:30Þ

D. f ðT;TGÞ= −T +TGgðTÞ
In this case, we enforce the presence of the TEGR term.

This yields the following Friedmann equation:

T −
4T3

3
gT ¼ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2

; ð5:31Þ

which yields the same solutions found in the previous
section with an extra particular solution of the form

gpartðTÞ ¼ −
3

4T
: ð5:32Þ

This introduces an extra contribution in the Lagrangian of
the form fpartðT; TGÞ ¼ − 3TG

4T . The vacuum conditions are
identical to those found in the previous model since the new
contributions reduce to zero in the T → 0 limit.

E. f ðT;TGÞ= −T + μð TT0
Þβð TG

TG;0
Þγ

For this model, the Friedmann equation becomes

T þ μ

�
T
T0

�
β
�
TG

TG;0

�
γ
	
1 − 2β − γ −

2βγ

α − 1
−
4γðγ − 1Þ
α − 1




¼ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2

: ð5:33Þ

The constant μ can be found by evaluating the expression at
t� ¼ t0, resulting in

μ ¼ T0ð−1þ
P

iΩwi;0Þ
1 − 2β − γ − 2βγ

α−1 −
4γðγ−1Þ
α−1

; ð5:34Þ

provided that the denominator is nonzero. This simplifies
the Friedmann equation to

T
T0

þ
�
T
T0

�
β
�
TG

TG;0

�
γ
�
−1þ

X
i

Ωwi;0

�

¼
X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞα=2

: ð5:35Þ

At this point, we consider two distinct scenarios, α ¼ 1 and
α ≠ 1. In the former case, TG ¼ 0 at all times. Thus, the
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ratio of TG=TG;0 is not properly defined in this instance.
Nonetheless, since T0 and TG;0 are constants, one
can alternatively define a Lagrangian of the form
fðT; TGÞ ¼ −T þ νTβTG

γ , for some constant ν. The
Lagrangian is defined provided that γ > 0 (and by the
vacuum condition, provided that β ≥ 0). In this case,
the field equation reduces to

T þ νTβTG
γ

�
1 − 2β − γ −

4T2

3TG
γðβ þ 2γ − 2Þ

�

¼ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞ=2

: ð5:36Þ

For the field equation to give physical results, one needs to
further restrict the parameters β and γ. The following
cases are generated. If either γ > 1 or β ¼ 2 − 2γ (and
since β ≥ 0 and γ > 0, this restricts to 0 < γ ≤ 1), the
equation simplifies to

1 ¼
X
i

Ωwi;0

�
T0

T

�−3ð1þwiÞþ2

2

: ð5:37Þ

Since the lhs is a constant, the Friedmann equation is
satisfied only when there exists a single fluid with EOS
w ¼ −1=3. Lastly, if γ ¼ 1, the Friedmann equation sim-
plifies to

T −
4

3
βνTβþ2 ¼ T0

X
i

Ωwi;0

�
T0

T

�
−3ð1þwiÞ=2

: ð5:38Þ

By evaluating the expression at t� ¼ t0, the value of ν can
be found, which is

ν ¼ 1 −
P

iΩwi;0
4
3
βT0

βþ1
; ð5:39Þ

which is defined when β > 0. Assuming this is the case, the
Friedmann equation can be expressed as

1 ¼
�
1 −

X
i

Ωwi;0

��
T
T0

�
βþ1

þ
X
i

Ωwi;0

�
T0

T

�−3ð1þwiÞþ2

2

:

ð5:40Þ
Since the lhs is a constant, the time (torsional)-dependent
components must cancel. Irrespective of whether or not
vacuum or fluids exist, the condition β ¼ −1 must be
satisfied, which originates from the first term on the lhs.
However, this does not obey the vacuum condition
fð0; 0Þ ¼ 0 since it requires β ≥ 0. Now, if we consider
β ¼ 0, this would correspond to a Gauss-Bonnet contri-
bution. However, from Eq. (5.38), this is only possible
provided that a fluid exists with EOSw ¼ −1=3. In fact, the
result agrees with the case when β ¼ 2 − 2γ since when
γ ¼ 1, β ¼ 0.
For the case when α ≠ 1, the Friedmann equation (5.35)

can be expressed in terms of time as

�
t0
t�

�
2

þ
�
t0
t�

�
2βþ4γ

�
−1þ

X
i

Ωwi;0

�

¼
X
i

Ωwi;0

�
t0
t�

�
3ð1þwiÞα

: ð5:41Þ

The expression is satisfied for all times when the powers of
t� cancel, leading to the following conditions:

β þ 2γ ¼ 1; ð5:42Þ
3ð1þ wiÞα ¼ 2; ∀i: ð5:43Þ

The first condition restricts the powers of β and γ, while the
second restricts the possible choice of fluids depending on
the value of α. In the case of vacuum, the second condition
is not present. One can easily conclude that, in a non-
vacuum universe, since all fluids must satisfy the second
condition, the only possibility is that only one fluid is
present (i.e., two fluids with different EOS parameters are
not achievable). This reduces the problem to a standard
single-fluid-dominated universe (unless vacuum is consid-
ered). Furthermore, since α > 0, the range of EOS param-
eter values is restricted within w > −1.
Lastly, given that the denominator of μ has to be nonzero,

we get an extra condition,

γ ≠
α − 1

3α − 1
; ð5:44Þ

while the vacuum solution condition demands β þ 2γ > 0,
which is ensured by the first condition.

VI. BOUNCING MODEL IV:
CRITICAL DENSITY

For this bouncing model, the scale factor takes the form

aðtÞ ¼ A

�
3

2
ρcrt2 þ 1

�
1=3

; ð6:1Þ

where ρcr is the critical density and A > 0 is a dimension-
less constant, which is the value of the scale factor at t ¼ 0,
i.e., A ¼ að0Þ. In this case, we find

H ¼ 2tρcr
2þ 3t2ρcr

; T ¼ 6H2 ¼ 6

�
2tρcr

2þ 3t2ρcr

�
2

;

TG ¼ T2

3

�
2

t2ρcr
− 1

�
: ð6:2Þ

Here, the bounce occurs at t ¼ 0 since Hðt < 0Þ < 0,
Hðt ¼ 0Þ ¼ 0, and Hðt > 0Þ > 0. Let us first express the
scale factor and TG solely in terms of T. This can be
achieved by expressing the time parameter t in terms of H.
From the definition of H, we have

3t2ρcrH − 2tρcr þ 2H ¼ 0; ð6:3Þ
which is a quadratic in t whose solution is
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3Ht ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

6H2

ρcr

s
: ð6:4Þ

The correct sign was obtained by evaluating the expression
at t ¼ 0 since for t ¼ 0, H ¼ 0, thus leaving the negative
sign as the physical solution. Therefore, the scale factor can
be expressed in terms of T as

aðTÞ ¼ A

"
2ρcr
T

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
ρcr

s !#
1=3

; ð6:5Þ

while the TEGB term is given by

TG ¼ −
4T2

3
þ 2Tρcr

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
ρcr

s !
: ð6:6Þ

We also remark that the square root is always real. From the
definition ofH, one can easily find that the maximum value
is achieved at the maximum turning point(s), which occurs

at tmax ¼ �
ffiffiffiffiffiffi
2

3ρcr

q
, withHmax ¼ � ffiffiffiffiρcr

6

p
. Thus, the maximum

value for the torsion scalar is Tmax ¼ ρ. Consequently, this
leads to 0 ≤ T=ρcr ≤ 1. In addition, in order to simplify the
field equations and express them to be compared to
observational data, we define the current time t0 > 0 where
aðt0Þ ¼ 1,

t02 ¼
2

3ρcr

�
1

A3
− 1

�
: ð6:7Þ

Since ρcr > 0, this equation holds provided that A < 1,
which will be assumed from here on. Then, the parameters

T0 ≡ Tðt ¼ t0Þ ¼ 4A3ð1 − A3Þρcr and Ωwi;0 ≡Ωwi
ðt ¼ t0Þ

provide their values at the current time.

A. f ðT;TGÞ = gðTÞ+ hðTGÞ
For this type of model, the Friedmann equation becomes

gþ h − 2TgT − TGhTG

þ 2T
9
ð−20T3 þ 12ρT2 − 51TTG þ 36ρTGÞhTGTG

¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ

"
2ρcr
T

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
ρcr

s !#−ð1þwiÞ
:

ð6:8Þ

By using the above expressions for T and TG, the following
relation is found:

T¼ 3ρcr
16

−
1

32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96TG

�
9ρcrffiffiffi
x

p −8

�
þ27ρ2

�
ρcrffiffiffi
x

p þ4

�
−256x

s

þ
ffiffiffi
x

p
2

; ð6:9Þ

where

x≡ 9ρcr
2

64
þ 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−512TG

3 þ 1161ρcr
2TG

2 þ 9
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3072ρcr2TG

5 þ 4523ρcr
4TG

4 þ 192ρcr
6TG

3

q
3

r

þ 16TG
2 − 9ρcr

2TG

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−512TG

3 þ 1161ρcr
2TG

2 þ 9
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3072ρcr2TG

5 þ 4523ρcr
4TG

4 þ 192ρcr
6TG

3
p

3

q − TG: ð6:10Þ

Thus, Eq. (6.8) can be split in the following system of equations:

g − 2TgT ¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ

"
2ρcr
T

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
ρcr

s !#−ð1þwiÞ
; ð6:11Þ

h − TGhTG
þ 2T

9
ð−20T3 þ 12ρcrT2 − 51TTG þ 36ρcrTGÞhTGTG

¼ 0; ð6:12Þ

whose solution for gðTÞ yields

gðTÞ ¼ c1
ffiffiffiffi
T

p
−
Ω0;0

ffiffiffiffi
T

p
T0

4A3

"
2
ffiffiffiffi
T

p

ρcr
� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − T
ρcr

q
− 1
�þ 2tan−1ð ffiffiffiffiffiffiffiffiffiffiffiffiρcr

T − 1
p Þffiffiffiffiffiffi
ρcr

p
#
þ
X
i

Ωwi;0T0

2wi
A−3ð1þwiÞ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
ρcr

s
þ 1

!

×

"
ð1þ wiÞ2F1

 
−
1

2
; wi;

1

2
; 1 −

2ffiffiffiffiffiffiffiffiffiffiffiffi
1 − T

ρcr

q
þ 1

!
−

 
2ffiffiffiffiffiffiffiffiffiffiffiffi

1 − T
ρcr

q
þ 1

!−wi
#
; ð6:13Þ

where c1 is an integration constant corresponding to the DGP term. Note that in the case of dust (w ¼ 0), it has a distinct
solution due to the divergence present in the summation. In this case, the vacuum condition implies
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gð0Þ ¼
X
j

Ωwj;0T0A−3ð1þwjÞ; ð6:14Þ

where the summation includes the matter fluid.
The solution for hðTGÞ is more difficult to obtain

analytically, as Eq. (6.12), together with the expression
(6.12), requires numerical resources. Moreover, vacuum
fð0; 0Þ ¼ gð0Þ þ hð0Þ ¼ 0 is only achieved in the absence
of matter fluids for gðTÞ, while the absence of an analytical
solution for hðTGÞ prevents us from going further with this
analysis.

B. f ðT;TGÞ=TgðTGÞ
For a T rescaling model for some function gðTGÞ, the

Friedmann equation simplifies to

gþ
�
4T2

3
−TG

�
gTG

−
2T
9
gTGTG

ð−20T3þ12ρcrT2−51TTGþ36ρcrTGÞ

¼−
T0

T

X
i

Ωwi;0A
−3ð1þwiÞ

"
2ρcr
T

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

T
ρcr

s !#−ð1þwiÞ
:

ð6:15Þ

Let us rewrite this equation by defining the variable

x≡
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − T

ρcr

q
, which yields

− 3ðx2 − 1Þ2½xð2xþ 1Þð7x − 2Þ − 3�2g00ðxÞ
þ ðx2 − 1Þð332x7 þ 778x6 − 1036x5 − 1013x4

þ 164x3 þ 388x2 − 36x − 9Þg0ðxÞ
þ ð8x2 þ x − 3Þ½xð2xþ 1Þð7x − 2Þ − 3�2gðxÞ

¼
X
i

ξi
ðx2 − 1Þ ð8x

2 þ x − 3Þ½xð2xþ 1Þð7x − 2Þ − 3�2

× ð1þ xÞ1þwi ; ð6:16Þ

where ξi ≡ Ωwi;0
T0

ρcr
2−1−wiA−3ð1þwiÞ.

The solution for the homogeneous part of Eq. (6.16) is
given by

gðxÞ ¼ c1

�
1 −

1

2
x2 þ 15

648
x4 þ 1851

2430
x5 þ � � �

�

þ c2

�
xþ a1

6
x2 −

769a1
648

x4 þ 1706

2430
x5 þ � � �

�
:

ð6:17Þ

For the vacuum condition, we require fð0; 0Þ ¼ 0. In this
case, after multiplying the homogeneous solution by the
torsion scalar, the condition is satisfied. Nevertheless, the

general solution cannot be found analytically since the rhs
of Eq. (6.16) is not necessarily a polynomial, depending on
wi. Furthermore, using the Wronskian and Green’s function
method is not feasible either since neither homogeneous
solution is expressed analytically in terms of some known
function. Nonetheless, the homogeneous solutions corre-
spond to the vacuum solution, which satisfies the vacuum
condition.

C. f ðT;TGÞ=TGgðTÞ
For a TG rescaling model, the Friedmann equation is

given by

−
4T3

3
gT ¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ

×

"
2ρcr
T

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
ρcr

s !#−ð1þwiÞ
: ð6:18Þ

By defining the variable x≡ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − T

ρcr

q
, the equation

becomes

ð2 − xÞ3gx ¼ ð1 − xÞ
X
i

ξwi
xwi−2; ð6:19Þ

where ξwi
≡ − 3T0

2ρcr
2 Ωwi;02

−ð1þwiÞA−3ð1þwiÞ. The general sol-
ution is given by

gðxÞ ¼ c1 þ
1

16
ξwxw

�
2

ðw − 1Þxþ
1

w

þ 4ð x
x−2Þ−w2F1ð2 − w;−w; 3 − w;− 2

x−2Þ
ðw − 2Þðx − 2Þ2

−
ð x
x−2Þ−w2F1ð−w;−w; 1 − w;− 2

x−2Þ
w

�
; ð6:20Þ

which diverges for dust w ¼ 0. For the case of a pressure-
less fluid, the solution reduces to

gðxÞ ¼ c1 þ
ξ0
16

�
−

2

ðx − 2Þ2 −
2

x
þ ln

�
x

2 − x

��
: ð6:21Þ

Nevertheless, such Lagrangians diverge in vacuum, where
T ¼ TG ¼ 0. However, by assuming more than a single
fluid, the general solution leads to the sum of the solutions
(6.20) for each EOS w, and vacuum may be achieved by the
cancelation of the divergences. Particularly, by assuming an
arbitrary number of fluids, the following condition is found:

0 ¼
X
i

aiξwi
; ð6:22Þ

where ai > 0 are unknown coefficients corresponding to
each EOS. However, as aiξwi

< 0 ∀i, the solution does not
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describe the bouncing cosmology while obeying the
vacuum condition.

D. f ðT;TGÞ= −T +TGgðTÞ
For a TG rescaling with a TEGR contribution, the

Friedmann equation becomes

T −
4T3

3
gT ¼ T0

X
i

Ωwi;0A
−3ð1þwiÞ

×

"
2ρcr
T

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
ρcr

s !#−ð1þwiÞ
: ð6:23Þ

In this case, the solution is similar to the previous model
with an extra particular solution of the form gpart ¼ −3=4T.
Thus, the Lagrangian is given by

fðT; TGÞ ¼ −T −
3TG

4T
þ TGhðTÞ; ð6:24Þ

where hðTÞ represents the previous model’s solution. To
satisfy the vacuum condition, we again require fð0; 0Þ ¼ 0.
However, as indicated in the previous model,
TGhðTÞjT;TG→0 yields finite results only in vacuum. This
leads to fð0; 0Þ ¼ −3ρcr < 0. Therefore, this model does
not satisfy the vacuum condition.

E. f ðT;TGÞ= −T + μð TT0
Þβð TG

TG;0
Þγ

For a power-law model, the Friedmann equation
becomes

T0

X
i

Ωwi;0a
−3ð1þwiÞ

¼ T þ μ

�
T
T0

�
β
�
TG

TG;0

�
γ
�
1 − 2β − γ þ βγ

�
2 −

4T2

3TG

�

þ γðγ − 1Þ 2T
9TG

2
ð−20T3 þ 12ρcrT2 − 51TTG

þ 36ρcrTGÞ
�
: ð6:25Þ

For this model, the vacuum condition fð0; 0Þ ¼ 0 is
satisfied as long as β þ γ > 0. Evaluating the Friedmann
equation at t ¼ 0 yields the following condition,

0 ¼
X
i

Ωwi;0A
−3ð1þwiÞ: ð6:26Þ

However, since both parameters are positive, this is not
achievable unless vacuum is considered. Thus, the latter is
assumed. By evaluating the Friedmann equation at t ¼ t0,
the constant μ can be determined to be

μ ¼ −T0

1 − 2β − γ þ βγ
�
2 − 4T0

2

3TG;0

�
þ 2γðγ−1ÞT0

9TG;0
2 ð−20T0

3 þ 12ρcrT0
2 − 51T0TG;0 þ 36ρcrTG;0Þ

≡ −
T0

ν
; ð6:27Þ

where ν ≠ 0 is defined as denominator. This simplifies the Friedmann equation to

T¼T0

ν

�
T
T0

�
β
�
TG

TG;0

�
γ
�
1−2β− γþβγ

�
2−

4T2

3TG

�
þ γðγ−1Þ 2T

9TG
2
ð−20T3þ12ρcrT2−51TTGþ36ρcrTGÞ

�
: ð6:28Þ

Since we require the equation to hold at all times, assuming
T ≠ 0, the Friedmann equation can be rearranged to be in
the form ν ¼ gðTÞ, for some function g. Thus, since the lhs
is a constant, the rhs must also be a constant, meaning that
the function must be independent of T. This is true in two
cases, β ¼ −1, γ ¼ 1 and β ¼ 1, γ ¼ 0. The former, albeit
leading to a nontrivial Lagrangian, does not satisfy the
vacuum condition. On the other hand, the second case
corresponds to a TEGR rescaling with ν ¼ −1. However,
this leads to a zero Lagrangian, which is nonphysical.
Therefore, this case is also neglected.
We conclude this section by examining the TEGR with

DGP and Gauss-Bonnet terms since the latter two do not
contribute to the Friedmann equation. In this case, the
equation becomes

T ¼ T0

X
i

Ωwi;0a
−3ð1þwiÞ: ð6:29Þ

At time t ¼ 0, the same condition is obtained, which is only
true when vacuum is considered. However, this would
imply that T ¼ 0 at all times, which is a contradiction.
Thus, this implies that the TEGR term cannot describe the
bouncing cosmology. Therefore, no Lagrangian has been
found which satisfies the vacuum condition.

VII. BOUNCING MODEL V:
EXPONENTIAL MODEL II

The last bouncing model is similar to the first one, but it
may include a future singularity, similar to the power-law
model studied above:

aðtÞ ¼ A exp

�
f0

αþ 1
ðt − tsÞαþ1

�
; ð7:1Þ

where A > 0 is a dimensionless constant which corre-
sponds to the scale factor at the bouncing point time ts;
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i.e., A ¼ aðtsÞ, f0 > 0 is some arbitrary constant having
time dimensions ½T�−α−1, and α is a constant. In this case,
the Hubble parameter and, consequently, the torsion scalar
and TEGB term are given by

H ¼ f0ðt − tsÞα; T ¼ 6H2;

TG ¼ 4T

�
T
6
þ f0α

�
T

6f02

�α−1
2α

�
: ð7:2Þ

Furthermore, the scale factor can be solely expressed in
terms of the torsion scalar as

aðTÞ ¼ A exp

�
f0

αþ 1

�
T

6f02

�αþ1
2α

�
: ð7:3Þ

A type IV singularity (see Ref. [46]) may occur in this
bouncing cosmology when

α ¼ 2nþ 1

2mþ 1
; ð7:4Þ

where n, m ∈ N and α > 1. Before reconstructing the
corresponding Lagrangians, we make note that by intro-
ducing the new time variable t� ≡ t − ts, the scale factor
and Hubble parameter become

aðt�Þ ¼ A exp

�
f0

αþ 1
t�αþ1

�
; H ¼ f0t�α: ð7:5Þ

This effectively simplifies the Hubble parameter to a
standard power-law relation in the time variable t�.
Lastly, we define an instant of time t� ¼ t0 > 0 at which
aðt0Þ ¼ 1 to simplify the Friedmann equation’s calcula-
tions. The time is given by

t0αþ1 ¼ −
αþ 1

f0
lnA: ð7:6Þ

Since we demand that t0 > 0 and α, f0 > 0, we require
0 < A < 1. In what follows, this will be assumed. By
defining this time, we define the torsion scalar at this instant
as follows:

T0 ≡ Tðt� ¼ t0Þ ¼ 6f02t02α: ð7:7Þ
By doing so, the scale factor simplifies to

aðTÞ ¼ A1−ð T
T0
Þαþ1
2α
; ð7:8Þ

where we have used Eq. (7.6). Furthermore, the TEGB term
can be reexpressed into a simpler form as follows:

TG ¼ 4T

�
T
6
þ αf0t0α−1

�
T
T0

�α−1
2α

�
: ð7:9Þ

However, working with this scale factor may introduce
difficulties when reconstructing the corresponding

gravitational actions. Instead, we make use of Eq. (7.6),
such that the scale factor can be expressed as

aðTÞ ¼ exp

	
−
f0t0αþ1

αþ 1

�
1 −

�
T
T0

�αþ1
2α

�

: ð7:10Þ

A. f ðT;TGÞ = gðTÞ+ hðTGÞ
For a separable additional model for T and TG, the

Friedmann equation reduces to

gþ h − 2TgT − TGhTG

−
ð2T2 − 3TGÞ½2ðαþ 1ÞT2 þ 3ð3α − 1ÞTG�

9α
hTGTG

¼ T0

X
i

Ωwi;0 exp

	
3f0t0αþ1ð1þ wiÞ

αþ 1

�
1 −

�
T
T0

�αþ1
2α

�

:

ð7:11Þ

This equation cannot be split as in previous cases due to the
coefficient of hTGTG

. There may exist an invertible relation
for T in terms of TG, such that T ¼ pðTGÞ, but there is not a
general one for any arbitrary α. Indeed, given the form of α
in Eq. (7.4) with α > 1, the form of TG is given as

TG ¼ μT2 þ νT
3n−mþ1
2nþ1 ; ð7:12Þ

where μ and ν are the corresponding coefficients of
Eq. (7.9). It is clear that due to the last term, the equation
is, in general, not invertible. Nonetheless, in some particu-
lar cases, the equation is invertible. For the sake of
generality, we assume that T is invertible and that some
function pðTGÞ exists. In other words, the Friedmann
equation now becomes

gþ h − 2TgT − TGhTG
− qðTGÞhTGTG

¼ T0

X
i

Ωwi;0 exp

	
3f0t0αþ1ð1þ wiÞ

αþ 1

�
1 −

�
T
T0

�αþ1
2α

�

;

ð7:13Þ

where qðTGÞ is a function of the TEGB term only
representing the coefficient of hTGTG

, which is now possible
due to the demand that T ¼ pðTGÞ. Now, the equation can
be separated, with each side of the equation in terms of T
and TG independently, leading to the same procedure used
in Sec. VA. In fact, the constant which is generated can be
set to zero, as it will not contribute to the Lagrangian. Thus,
the system of differential equations leads to
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g − 2TgT ¼ T0

X
i

Ωwi;0

× exp

	
3f0t0αþ1ð1þ wiÞ

αþ 1

�
1 −

�
T
T0

�αþ1
2α

�

;

ð7:14Þ

h − TGhTG
− qðTGÞhTGTG

¼ 0: ð7:15Þ

The solution for gðTÞ is given by

gðTÞ ¼ c1
ffiffiffiffi
T

p

þ
X
i

X∞
n¼0

Ωwi;0T0

n!

�
3f0t0αþ1ð1þ wiÞ

αþ 1

�
n

× 2F1

�
−n;−

α

αþ 1
;

1

αþ 1
;

�
T
T0

�αþ1
2α

�
; ð7:16Þ

where c1 is an integration constant whose term corresponds
to the DGP term and 2F1ða; b; c; zÞ is Gauss’ hypergeo-
metric function. Note that since α > 1, the hypergeometric
function is always defined. When T ¼ 0, the solution
reduces to

gð0Þ ¼
X
i

Ωwi;0T0 exp

�
3f0ð1þ wiÞt0αþ1

αþ 1

�
: ð7:17Þ

As discussed at the beginning of this section, the form of
qðTGÞ is unknown or nonexistent depending on the value of
α. The exponent of the last term in Eq. (7.12) lies in the
range ð1; 3=2Þ, which makes it difficult to obtain an
invertible condition. Nonetheless, the equation generates
two independent homogeneous solutions since it is a linear
homogeneous type, say, u1ðTGÞ and u2ðTGÞ. Thus, the
solution for h can always be expressed as

hðTGÞ ¼ c1u1ðTGÞ þ c2u2ðTGÞ; ð7:18Þ

for some arbitrary integration constants c1;2. In fact, it is
easy to verify that one of the solutions is the Gauss-Bonnet
contribution TG. In other words, the solution is

hðTGÞ ¼ c1u1ðTGÞ þ c2TG: ð7:19Þ

Now, independently of the form of u1, we can reach the
following conclusions. If the function u1ð0Þ ¼ 0, then this
gives a nontrivial solution with hð0Þ ¼ 0. This demands
that gð0Þ ¼ 0 for the vacuum condition to be satisfied,
which is possible only in the absence of matter. On the
other hand, if this results in a constant, it still defines a
nontrivial solution; however, hð0Þ can be nonzero depend-
ing on the integration constant. If the integration constant is
set to zero, then gð0Þ ¼ 0, which is only possible in
vacuum. On the other hand, if hð0Þ is equal to some
constant μ ≠ 0, then gð0Þ ¼ −hð0Þ ¼ −μ. Furthermore,

since gð0Þ > 0 in these cases, this restricts to μ < 0.
Lastly, if the function diverges at TG ¼ 0, the singularity
can be removed by setting the integration constant to zero.
Again, this sets hð0Þ ¼ 0; thus, we need gð0Þ ¼ 0 for
vacuum solutions to occur, which is again only satisfied in
vacuum.

B. f ðT;TGÞ=TgðTGÞ
For a rescaling of the T model, the resulting Friedmann

equation is given by

gþ gTG

�
−TG þ 4T2

3

�

þ ð2T2 − 3TGÞ½2ðαþ 1ÞT2 þ 3ð3α − 1ÞTG�
9α

gTGTG

¼ −
T0

T

X
i

Ωwi;0 exp

	
3f0t0αþ1ð1þ wiÞ

αþ 1

×

�
1 −

�
T
T0

�αþ1
2α

�

: ð7:20Þ

Similar to the previous case, a problem arises due to the
invertibility issue of the torsion scalar as a function of the
TEGB term. Nonetheless, we can extract and analyze some
behaviors of the solution even in the absence of its explicit
form. Let us express Eq. (7.20) in terms of TG:

gþ pðTGÞgTG
þ qðTGÞgTGTG

¼ hðTGÞ; ð7:21Þ

where p, q, and h are unknown functions of TG. Thus, the
complete solution would be given by

gðTGÞ ¼ c1u1ðTGÞ þ c2u2ðTGÞ þ
Z

TG

GðTG; sÞhðsÞds;

ð7:22Þ

where GðTG; sÞ is the Green function of Eq. (7.21), while
u1;2ðTGÞ are the solutions of the homogeneous part of
Eq. (7.21). Finally, the vacuum condition is satisfied; i.e.,
T ¼ TG ¼ 0 implies fð0; 0Þ ¼ 0, as long as the solution
(7.22) is finite at TG ¼ 0.

C. f ðT;TGÞ=TGgðTÞ
For a TEGB rescaling model, the resulting equation

yields

−
4T3

3
gT ¼ T0

X
i

Ωwi;0

× exp

	
3f0t0αþ1ð1þ wiÞ

αþ 1

�
1 −

�
T
T0

�αþ1
2α

�

:

ð7:23Þ
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The first solution of this equation is given by

g1ðTÞ ¼ c1 þ
X
i

X∞
n¼0

3Ωwi;0T0

8T2n!

�
3f0t0αþ1ð1þ wiÞ

αþ 1

�
n

2F1

�
−n;−

4α

αþ 1
; 1 −

4α

αþ 1
;

�
T
T0

�αþ1
2α

�
; ð7:24Þ

where c1 is an integration constant, which corresponds to the Gauss-Bonnet contribution in the Lagrangian, and

2F1ða; b; c; zÞ is Gauss’ hypergeometric function. The solution exists and is defined provided that the third argument in the
hypergeometric function c≡ 1 − 4α

αþ1
∉ Z− ∪ f0g. For the values of α considered for the type IV singularity in Eq. (7.4)

with α > 1, the only allowed value is α ¼ 3, which results in c ¼ −2. This leads to the second solution

g2ðTÞ ¼ c1 þ
X
i

3Ωwi;0T0

16T2
exp

�
3f0t04ð1þ wiÞ

4

�
½exiðxi2 þ xi þ 2Þ − xi3EiðxiÞ�; ð7:25Þ

where xi ≡ − 3f0t04ð1þwiÞ
4

T2=3

T0
2=3 and EiðzÞ is the exponential integral. Whether both solutions satisfy fð0; 0Þ ¼ 0 can be

checked by evaluating the solutions in vacuum:

fð0; 0Þ ¼
X
i

Ωwi;0T0

4
exp
�
3f0t0αþ1ð1þ wiÞ

αþ 1

�
þ
X
i

X∞
n¼0

3αf0Ωwi;0T0t0α−1

2Tn!

�
T
T0

�α−1
2α

�
3f0t0αþ1ð1þ wiÞ

αþ 1

�
n

× 2F1

�
−n;−

4α

αþ 1
; 1 −

4α

αþ 1
;

�
T
T0

�αþ1
2α

�
; ð7:26Þ

which gives a singularity in the second summation due to the α > 1 condition. Trivially, the condition is satisfied when
vacuum is considered, although this results in a Lagrangian with only the Gauss-Bonnet term which is nonphysical. On the
other hand, the singularity can be removed only when all the coefficients sum to zero, i.e.,

0 ¼
X
i

X∞
n¼0

3αf0Ωwi;0T0t0α−1

2n!

�
3f0ð1þ wiÞt0αþ1

αþ 1

�
n

¼
X
i

3αf0Ωwi;0T0t0α−1

2
exp

�
3f0t0αþ1ð1þ wiÞ

αþ 1

�
: ð7:27Þ

However, since every contribution is positive, the condition cannot be satisfied.
On the other hand, for the second solution, one finds

fð0;0Þ¼
X
i

Ωwi;0

2
exp

�
3f0t04ð1þwiÞ

4

�	
−
T0ð1þ9wiÞ

16
þ9f0t02

�
T0

T

�
2=3

exp

�
−
3

4
f0t04ð1þwiÞ

T2=3

T0
2=3

�
����
T→0

; ð7:28Þ

which has a singularity in the exponential term provided that vacuum is not considered (in this case, the solution trivially
holds, although the Lagrangian would only be provided by the Gauss-Bonnet term which is nonphysical). The singularity in
the exponential term can be removed only if the coefficients sum to 0, i.e.,X

i

f0t02Ωwi;0 ¼ 0: ð7:29Þ

However, since f0, t0, Ωwi;0 > 0, this condition cannot be satisfied, leading to the vacuum solution as the only solution
which satisfies the vacuum condition, as usual.

D. f ðT;TGÞ= −T +TGgðTÞ
For models with a TEGB rescaling and a TEGR contribution, the resulting equation is

T −
4T3

3
gT ¼ T0

X
i

Ωwi;0 exp

	
3f0t0αþ1ð1þ wiÞ

αþ 1

�
1 −

�
T
T0

�αþ1
2α

�

: ð7:30Þ

Here, the solutions are identical to the previous case with an extra particular solution

gpartðTÞ ¼ −
3

4T
: ð7:31Þ

To check for vacuum solutions, we demand the condition fð0; 0Þ ¼ 0. Since the results in the previous section show that only
vacuum can yield finite results in the T, TG → 0 limit, the resulting Lagrangian which must be checked for the vacuum
condition is
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fðT; TGÞ ¼ −T −
3TG

4T
þ c1TG; ð7:32Þ

where c1 is a constant of integration. In this case, the limit does satisfy the vacuum condition and hence can describe the
bouncing cosmology.

E. f ðT;TGÞ= −T + μð TT0
Þβð TG

TG;0
Þγ

For a power-law model in both T and TG, the Friedmann equation reduces to

T þ μ

�
T
T0

�
βþγ3α−1

2α

"
6αf0t0α−1 þ T0ð TT0

Þαþ1
2α

6αf0t0α−1 þ T0

#γ8<
:1 − 2β − γ þ 12βγαf0t0α−1

6αf0t0α−1 þ T0ð TT0
Þαþ1

2α

þ
12αγðγ − 1Þf0t0α−1

h
3ð3α − 1Þf0t0α−1 þ 2T0ð TT0

Þαþ1
2α

i
h
6αf0t0α−1 þ T0ð TT0

Þαþ1
2α

i
2

9=
; ¼ T0

X
i

Ωwi;0a
−3ð1þwiÞ: ð7:33Þ

For this model, vacuum solutions are obtained provided that

β þ ð3α − 1Þγ
2α

> 0: ð7:34Þ

The value of μ is obtained by evaluating the expression at the current time, yielding

μ ¼ −T0 þ T0

P
iΩwi;0a

−3ð1þwiÞ

1 − 2β − γ þ 12βγαf0t0α−1

6αf0t0α−1þT0
þ 12αγðγ−1Þf0t0α−1½3ð3α−1Þf0t0α−1þ2T0�

ð6αf0t0α−1þT0Þ2
≡ 1

ν

�
−T0 þ T0

X
i

Ωwi;0a
−3ð1þwiÞ

�
; ð7:35Þ

where ν is defined by the denominator provided that it is nonzero. Note that the DGP (β ¼ 1=2, γ ¼ 0) and Gauss-Bonnet
(β ¼ 0, γ ¼ 1) contributions give ν ¼ 0 and hence are excluded for the subsequent analysis. The special case when these are
considered is discussed at the end of the section. Furthermore, by evaluating the expression at the bouncing time t ¼ ts (or
equivalently, t� ¼ 0) results in the following condition:X

i

Ωwi;0A
−3ð1þwiÞ ¼ 0: ð7:36Þ

This condition can only be satisfied in the absence of any type of matter, i.e., Ωwi;0 ¼ 0. Let us assume such a case. The
Friedmann equation is simplified as follows:

T0

ν

�
T
T0

�
βþγ3α−1

2α

"
6αf0t0α−1 þ T0ð TT0

Þαþ1
2α

6αf0t0α−1 þ T0

#
γ
8<
:1 − 2β − γ þ 12βγαf0t0α−1

6αf0t0α−1 þ T0ð TT0
Þαþ1

2α

þ
12αγðγ − 1Þf0t0α−1

h
3ð3α − 1Þf0t0α−1 þ 2T0ð TT0

Þαþ1
2α

i
h
6αf0t0α−1 þ T0ð TT0

Þαþ1
2α

i
2

9=
; ¼ T: ð7:37Þ

By assuming T ≠ 0 (which already trivially satisfies the relation), we obtain

�
T
T0

�
βþγ3α−1

2α −1
"
6αf0t0α−1 þ T0ð TT0

Þαþ1
2α
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9=
; ¼ ν: ð7:38Þ
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Since the lhs is constant, all the torsion terms on the rhs
must vanish and yield a constant. This is possible only if
β ¼ 1 and γ ¼ 0. This sets ν ¼ −1, so the Lagrangian is
zero, which is not physical.

VIII. CONCLUSIONS

Bouncing cosmologies have become a reliable alter-
native to the inflationary paradigm, especially because of
the absence of initial conditions to start the cosmological
evolution and also because of the absence of an initial
singularity within some models. In general, such a
scenario results in a universe that expands and then
slows down and contracts again, a similar framework
to the so-called ekpyrotic universes. Here, we have
investigated the possibility of reproducing some bouncing
cosmologies in the framework of a class of extended
teleparallel theories, where the gravitational action
includes functions of the torsion scalar and an analog
of the Gauss-Bonnet invariant. To do so, we have
considered some particular forms of the Lagrangian
according to some physical properties.
Then, several bouncing cosmologies have been con-

sidered, including some singular bouncing solutions, and
the corresponding Lagrangian is reconstructed. The exist-
ence of vacuum (null torsion) solutions has also been
analyzed since it guarantees that such Lagrangians will
indeed contain both Minkowski and Schwarzschild sol-
utions, a fundamental requirement for the viability of any
theory of gravity. Let us now summarize the solutions
explored throughout the paper. First, we have considered
a class of exponential laws for the scale factor, free of
singularities, where the scale factor decreases and reaches
a minimum, avoiding the occurrence of big bang-like
singularity, and then increases. The Hubble parameter is
then described by a linear function of the cosmic time, as
shown in the first row of Fig. 1. Even though this is not a
realistic example, it represents quite well the idea of a
bounce in the universe expansion. By considering several
forms of the gravitational action, the corresponding
function of the torsion scalar and the Gauss-Bonnet
invariant is reconstructed. As shown in Sec. III, the
analytical expression for the gravitational Lagrangian is
difficult to obtain, but in general, the action fulfills the
requirement of vacuum solutions. In addition, an oscil-
lating bouncing universe is considered. Such an example
is unusual for the whole cosmological history but con-
tains a singularity, a big bang/crunch singularity, such
that the scale factor goes to zero and then the universe
starts in a big bang again. Nevertheless, note that such a
singularity may be alleviated by imposing a minimum
value larger than zero on the scale factor. The recon-
structed Lagrangians corresponding to this oscillating
solution are provided in Sec. IV, although, in general,
the Lagrangians do not behave well in vacuum, where
some of the reconstructed functions diverge. Then, a

similar solution in terms of the occurrence of a big bang/
crunch singularity is also given in the form of a power-
law solution in Sec. V. This case makes the gravitational
action simpler for some of the classes of Lagrangians
explored in the paper. In addition, vacuum solutions are
better achieved for the power-law solution than in the
previous case. Another important bouncing solution
widely explored in the literature is the so-called critical
density solution, which is free of singularities and very
similar to the exponential case even though it exhibits a
more complex—and realistic—evolution of the Hubble
parameter. Nevertheless, the reconstruction of the corre-
sponding Lagrangians turns out to be more difficult than
in the previous cases, and only some analytical expres-
sions are obtained, as shown in Sec. VI. Finally, we have
explored an extension of the first model, the exponential
case, with the presence of a possible future singularity.
The corresponding discussion about the gravitational
Lagrangians is given in Sec. VII, but in general, the
action becomes very complex and the analysis of vacuum
solutions is not possible.
Hence, we have explored a wide range of bouncing

solutions in the framework of fðT; TGÞ actions, such that
the corresponding Lagrangians can be reconstructed.
Here, we have thus provided some techniques and tools
for the analysis of these types of Lagrangians when
analyzing such cosmological solutions. Thus, we have
shown the viability of some Lagrangians to reproduce
the corresponding bouncing solution and the possi-
bility of containing other important physical features
to be considered a viable alternative to teleparallel
gravity.
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