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Gravitational waves (GW) are generally affected by modification of a gravity theory during propagation
at cosmological distances. We numerically perform a quantitative analysis on Horndeski theory at the
cosmological scale to constrain the Horndeski theory by GWobservations in a model-independent way. We
formulate a parametrization for a numerical simulation based on the Monte Carlo method and obtain the
classification of the models that agrees with cosmic accelerating expansion within observational errors of
the Hubble parameter. As a result, we find that a large group of the models in the Horndeski theory that
mimic cosmic expansion of the ΛCDM model can be excluded from the simultaneous detection of a GW
and its electromagnetic transient counterpart. Based on our result and the latest detection of GW170817 and
GRB170817A, we conclude that the subclass of Horndeski theory including arbitrary functions G4 and G5

can hardly explain cosmic accelerating expansion without fine-tuning.
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I. INTRODUCTION

As is already known, the expansion of the Universe is
accelerating. From the first direct measurement of the
cosmic accelerating expansion with type-Ia supernovae
[1,2], subsequent observations of the cosmic microwave
background (CMB) and surveys of large scale structure
(LSS) have strongly suggested that the Λ cold dark matter
(ΛCDM) model is the best explanation to describe the
dynamical evolution of the late-time Universe [3,4].
However, the ΛCDM model is less supported from the
theoretical point of view, because it has to assume the
existence of unknown components that make up over 95%
of the total in the Universe. Therefore, cosmic accelerating
expansion remains one of the largest riddles of modern
cosmology.
To solve this problem, two main ways have been

proposed: dark energy and modified gravity. The former
modifies only energy components of the Universe, leaving
gravity to be described with general relativity (GR). For
instance, quintessence [5] and the nonlinear kinetic term of
a scalar field [6,7] are the models in the former category.
The latter one, on the other hand, prescribes the cosmic
accelerating expansion with a modification of gravity at the
cosmological scale. Currently, in the case of modification
with a scalar field, the universal description to treat dark
energy and modified gravity together is called scalar-tensor
theory. In particular, Horndeski theory [8,9] is the most

general form of these theories, with a space-time curvature
and a scalar field whose equations of motion contain up to
second-order space-time derivatives. The Horndeski theory
includes not only the quintessence and nonlinear kinetic
theory, but also many specific theories: fðRÞ theories [10],
covariant Galileons [11,12], and kinetic gravity braiding
[13]. The Horndeski theory can also be extended further to
a more general framework in the language of an effective
field theory (EFT). An EFT for dark energy was formulated
by Gubitosi et al. [14], Gleyzes et al. [15,16], and Bellini
and Sawicky [17].
With the EFT formulation, some alternative theories

against the ΛCDM model have been examined using CMB
and LSS observations [18]. However, one still needs to
specify a model when calculating observables and compar-
ing with observational data. This makes the analyses model
dependent and may cause us to overlook the types of
theories that are not classified into specific models.
Therefore, it is important to investigate all of the subclasses
in the Horndeski theory in a numerical way beyond
analytical difficulties.
In the meantime, gravitational waves (GW) are gathering

attention as a new tool to probe modified gravity. In fact,
LIGO has succeeded at capturing GW for the first time [19].
LIGO has successively confirmed three more detections
from the coalescence of binary black holes (BBH) [20–22] at
cosmological distances. Moreover, the event rate of the
detection of GW with the second-generation detector net-
work at design sensitivity is expected to be 100–1000 yr−1,
which is statistically enough for cosmological applications.*arai.shun@a.mbox.nagoya-u.ac.jp
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As a result, we are able to extract cosmological information
from the GWobservations. For instance, GWare applicable
to measure the Hubble constant [23–26].
For the application to constrain a modified gravity that

explains the cosmic accelerating expansion, GW are a
promising tool. In fact, Lombriser and Taylor [27] and
Bettoni et al. [28] have reported that GW detections
potentially distinguish the models of the Horndeski theory
that describe the cosmic accelerating expansion. According
to this paper, the detection of the phase velocity of GW, cT ,
can exclude a wide range of the models that realize the
accelerating expansion. This is because those models
significantly displace cT from the speed of light. It is
known that the measurement of the deviation parameter δg,
which is defined as δg ≡ 1 − cT , can reach down to jδgj ≲
10−15 with GW Cherenkov radiation [29] or electromag-
netic counterparts for GW emission [30]. With these
remarkable features, we expect GW to be a tool to search
for the nature of the cosmic accelerating expansion.
In this paper, we develop the previous result in

Lombriser and Taylor [27] to a numerical approach to test
all possible Horndeski models and analyze the features
imprinted on the propagation of GW. This paper is
organized as follows. First of all, we review the previous
study on the modification of the GW waveform during
propagation in Sec. II. Next, in Sec. III we construct a
model-independent method of parametrization to distin-
guish models in the Horndeski theory at cosmological
scales. In Sec. IV, we compare with the analytical result in
[27] a more qualitative way with Monte Carlo simulations.
We find considerable deviation from their result. Finally, in
Sec. V we obtain the distributions of models on the
parameter plane, indicating that GW are the most efficient
probe to constrain the models of modified gravity.
Very recently, LIGO and VIRGO detected a binary

neutron star (BNS) merger named GW170817 [31]. This
event is special because a few gamma-ray telescopes
simultaneously caught the signal of a short gamma-ray
burst, GRB170817A, and it was identified as the electro-
magnetic transient counterpart of GW170817. By using the
difference of the arrival times between GW170817 and
GRB170817A, they obtained a stringent constraint on δg
down to −7.0 × 10−16 ≲ δg ≲ 3.0 × 10−15 [32]. Combining
this result and our report, we conclude that the models in
the Horndeski theory including the arbitrary functions G4

and G5 are not a main driver of the cosmic accelerating
expansion. We will discuss this in Sec. V.

II. MODIFICATION OF GRAVITATIONAL-WAVE
PROPAGATION AT COSMOLOGICAL SCALES

We briefly introduce how GW is deformed during
propagation because of the modification of gravity.
This argument was originally proposed by Saltas et al.
[33] and recently it has been extended by Nishizawa to a

general framework to test gravity theories [34]. In these
papers, the propagation equation of GW is generally
given by

h00ij þ ð2þ νÞHh0ij þ ðc2Tk2 þ a2μ2Þhij ¼ a2Γγij; ð1Þ

where hij is a tensor perturbation (GW) and 0 denotes the
derivative with respect to conformal time. In Eq. (1) there
are four time-dependent parameters ν, cT , μ, and Γ. ν is the
Planck mass run rate, cT is the phase velocity of a GW and
μ is the graviton mass. Γ denotes extra sources generating
GW. In the case that ν, cT , μ are slowly varying functions
with a cosmological timescale and there is no source, i.e.,
Γ ¼ 0, the solution of Eq. (1) is given in [34] as

h ¼ CMGhGR; ð2Þ

where

CMG ≡ e−De−ikΔT; ð3Þ

D≡ 1

2

Z
τ
dτ0νH; ð4Þ

ΔT ≡
Z

τ
dτ0

�
δg −

a2μ2

2k2

�
: ð5Þ

In Eq. (5) we replace 1 − cT with the deviation parameter
δg. D and ΔT correspond to the amplitude damping index
and additional time delay of GW, respectively. We see that
the damping parameter ν only appears in the GW ampli-
tude, while δg and μ are both involved in the GW phase. In
order to measure the arrival time difference between a GW
and a photon, δg is small enough to make the time delay
shorter than the timescale of GW observations. In Sec. V,
we consider the case when δg is small.

III. NUMERICAL FORMULATION
OF HORNDESKI THEORY AT
COSMOLOGICAL SCALES

In this section we provide a numerical formulation of
Horndeski theory independent of specific models. As we
mentioned in Sec. I, the current observational analyses for
the Horndeski theory are only limited to specific models.
This is because the Horndeski theory is too general to
investigate. Consequently, one can hardly extract informa-
tion for which models are relatively favored from others
under observational constraints. To tackle this difficulty, we
perform a Monte Carlo simulation with a suitable para-
metrization independent of specific models. Although the
number of parameters would become large, numerically
this is not a problem. Now we construct a parametrization
in the Horndeski theory in the following way. First of all,
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we give a general Lagrangian density1 of the Horndeski
theory as

L ¼
X5
i¼2

Li; ð6Þ

where

L2 ¼ G2ðϕ; XÞ; ð7Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð8Þ

L4 ¼ G4ðϕ; XÞRþ G4Xðϕ; XÞ½ð□ϕÞ2 − ϕ;μνϕ
;μν�; ð9Þ

L5 ¼ G5ðϕ; XÞGμνϕ
;μν −

1

6
G5Xðϕ; XÞ½ð□ϕÞ3 − 3□ϕ;μνϕ

;μν

þ 2ϕ;μ
;νϕ;ν

;λϕ;λ
;μ�: ð10Þ

Here ;μ is a covariant derivative and X ¼ −ϕ;μϕ
;μ=2, the

canonical kinetic energy density of ϕ. The Lagrangian in
Eq. (6) is the most general Lagrangian density in the
Horndeski theory. What we now focus on is a phenomenon
occurring at the Hubble timescale. In other words, we
assume that gravity at small scales is irrelevant to our
analysis at cosmological distances. This assumption is
reasonable when testing GR at the cosmological scale
due to nontrivial screening mechanisms in a nonlinear
regime known as chameleon mechanisms [35] or
Vainshtein mechanisms [36]. Indeed, Babichev et al.
[37] and Kimura et al. [38] have successively reported
that in the Horndeski theory the Vainshtein mechanism
recovers GR at a short distance, while the time variation of
gravitational coupling at cosmological distances remains
unsuppressed. These facts indicate that we are justified in
assuming that a GW waveform is modified only at the
cosmological scale. As for a cosmological background, we
define the flat Friedmann-Lemaître-Robertson-Walker
(FLRW) metric as

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj: ð11Þ

We now focus on the late time of the Universe below
redshift z ¼ 1. In this regime, time-dependent functions are
approximately given by the Taylor expansion in powers of
H0tLB, where H0 and tLB are the Hubble constant and the
look back time given by

tLBðzÞ ¼
Z

z

0

dz0

Hðz0Þ · ð1þ z0Þ ; ð12Þ

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3 þ 1 −Ωm0

q
: ð13Þ

Here HðzÞ is the Hubble parameter and Ωm0 is the matter
density parameter. As we will see in Sec. IVAwe consider
the two cases Ωm0 ¼ 0.308 (ΛCDM) and Ωm0 ¼ 1
[Einstein–de Sitter (EdS)] to give the Hubble parameter
for each case. Now we expand the scalar field ϕðtÞ as

ϕðtÞ ≃Mϕ

�
a0 þ a1H0tLB þ a2

2
ðH0tLBÞ2

�
; ð14Þ

where Mϕ is the mass scale of ϕ. Since Mϕ normalizes ϕ,
the coefficients anðn ¼ 0; 1; 2Þ can be chosen with the
range −1 < an < 1.
Next we parametrize arbitrary functions Giði ¼

2; 3; 4; 5Þ in the Horndeski theory as

GðappÞ
i ðϕ; XÞ≡ Gi

�
gi þ

X
ρ¼ϕ̂;X̂

giρρþ
X

ρ;σ¼ϕ̂;X̂

giρσ
2

ρσ

þ
X

ρ;σ;λ¼ϕ̂;X̂

giρσλ
6

ρσλ

�
ði ¼ 2; 3; 4; 5Þ;

ð15Þ

where ϕ̂ and X̂ are dimensionless quantities given as rϕ̂≡
ϕ=Mϕ and X̂ ≡ _ϕ2=2H2

0M
2
ϕ. Note that jϕ̂j < 1 and X̂ < 1,

which ensures the expansion given in Eq. (15). Throughout
this paper, the dot is the derivative with respect to t, not tLB.
Note that dtLB ¼ −dt. gi, giρ, giρσ, and giρσλ in Eq. (15) are
the model parameters set at random ranging from −1 to 1.
Gi are normalization factors such as

G2 ¼ M4; G3 ¼
M4

MϕH2
0

;

G4 ¼
M4

H2
0

; G5 ¼
M4

MϕH4
0

; ð16Þ

where M ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
MplH0

p
and Mpl is the reduced Planck mass.

These normalization factors are determined in the way that
the Lagrangian density of the system is of the order
of M2

plH
2
0 ¼ M4.

The parametrization in Eqs. (14) and (15) is convenient
for the numerical simulation we perform in Sec. IV. In the
Horndeski theory, it takes too much time to collect all the
models consistent with observations in the whole model
space by solving the equations of motion. On the contrary,
once ϕðtÞ and Giðϕ; XÞ are given, it is able to avoid
solving the equations of motion while we can check the
validity of the given solutions numerically. To this end, a
given form of ϕðtÞ and Giðϕ; XÞ is useful to search the
models that satisfy the observational conditions. This
parametrization has in total 44 coefficients to distinguish
models, which one is hardly able to obtain in analytical
ways. Here is an advantage of the numerical approach with1G2ðϕ; XÞ is often written Kðϕ; XÞ in literature.
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the Monte Carlo method. Given ϕðtÞ and Giðϕ; XÞ, we can
compute all variables, including αM and αT , which are
relevant to GW observations. In the Horndeski theory, αM
and αT are given by

M2�ðtÞ≡ 2ðG4 − 2XG4X þ XG5ϕ − _ϕHXG5XÞ; ð17Þ

αMðtÞ ¼
1

HM2�

dM2�
dt

; ð18Þ

αTðtÞ ¼
2Xð2G4X − 2G5ϕ − ðϕ̈ − _ϕHÞG5XÞ

M2�
: ð19Þ

αM andαT are related to the observable parameters ν and δg as

ν ¼ αM; ð20Þ

δg ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αT

p
: ð21Þ

Note that δg ≃ −αT=2 if δg is small. Substituting ϕðtÞ, the
Hubble parameter in Eq. (12), and all GðappÞ

i in Eq. (15) into
Eqs. (17)–(19), we can compute αM and αT as a function of
redshift.
However, one has to be careful about the consistency of

this formulation. According to our setup above, we give the
Hubble parameter as in Eq. (13) while we assume the time
dependence of ϕðtÞ without solving the Friedmann equa-
tions of the system, which may cause inconsistency of the
Hubble parameter. To avoid this, we have to impose an
alternative criterion to obtain proper solutions. In the
following section, we concretely implement our method
with a Monte Carlo analysis by imposing additional criteria
and show that this remedy appropriately finds the consis-
tent models.

IV. MODEL CLASSIFICATION WITH
MONTE CARLO SIMULATION

Next we classify models in the Horndeski theory into
subgroups, depending on which arbitrary functions Gi play
a role in accelerating the cosmic expansion. To this end, we
now compute all physical quantities by randomly drawing
all the coefficients from a uniform distribution, ½−1; 1�, with
a Monte Carlo method.

A. Consistency and stability conditions

As shown in Fig. 1, we filter the solutions by the
following two conditions.
As shown in Fig. 1, two conditions are introduced:

consistency and stability.
(i) Consistency:

Collecting the models whose cosmological time
evolutions are HHorn and _HHorn. HHorn and _HHorn are
given by the Friedmann equations in Eqs. (A6) and

(A7) in the Appendix. To obtain HHorn and _HHorn,
we substitute HΛCDM and ϕðtÞ for the right-hand
side of Eqs. (A8) and (A9). Then we impose the
consistency criteria

j1 −HHorn=HΛCDMj < 20%; ð22Þ

j1 − _HHorn= _HΛCDMj < 20%: ð23Þ

Equations (22) and (23) work to select the models
that pass the observational bound on the cosmic
expansion by assessing the deviation from HΛCDM
and _HΛCDM. We choose the allowed range of
estimation errors for the Hubble parameter up to
20% based on current variable observations of the
Hubble parameter below z ¼ 0.1, as shown in Table I
of [39].

(ii) Stability:
Avoidance of ghost and gradient instabilities for

the perturbations of scalar and tensor modes:

Qs>0; c2s >0; QT >0; c2T >0: ð24Þ

All of these quantities are given by Eqs. (A11)–
(A13) in the Appendix, respectively. For the com-
putation, we substituteH ¼ HΛCDM, _H ¼ _HΛCDM in
the quantities. Although we should use HHorn to
compute the quantities in Eq. (24), the difference of
the quantities stays within observational errors.
Hence the systematic misestimation of the stability
condition associated with the choice of the Hubble
parameter is negligibly small to sample consistent

FIG. 1. The procedure to extract observationally reliable
models with Monte Carlo simulation.
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models. Matter density ρ̃m and pressure p̃m are
identified with cold dark matter density, such as
ρ̃m ¼ Ωm0a−3=M2� and p̃m ¼ 0, respectively. The
stability conditions guarantee linear perturbation at
the cosmological scale.

In addition to the conditions above, we assume the
following to make our discussion transparent. The third-
order coefficients ofG2 orG3 are set to be zero because these
are not directly related to all the physical quantities con-
sidered above. Also, for simplicity, the current value of the
scalar fieldϕ0 is set to zero, i.e., a0 ¼ 0, to recover GR at the
present. To satisfy the condition ϕ0 ¼ 0, we have to restrict
the function G2 in the form of G2 ¼ g2 þ g2XX þ g2ϕϕϕ2.

B. Model distribution on the observables
of gravitational waves

We show the distribution of models on the αT-αM plane,
both of which are constrained from a GW measurement. In
Sec. IVA, we explained the procedure to assign the values
of all the parameters. Executing this procedure provides all
the physical quantities, including αT and αM, at a referred
redshift. We repeat the procedure and produce 1,000,000
discriminative models. In the following subsection,
we firstly deal with a typical example, G4, G5 ≠ 0,
G2 ¼ 0 ¼ G3, and then we provide a general case in which
all functions including G2 and G3 are switched on.

1. The effect of G4 and G5

The functionsG4 andG5 play significant roles for αT and
αM. In fact, one can see that αT and αM are determined

solely by G4 and G5 in Eqs. (18) and (19). In addition, G4

and G5 can control the cosmic accelerating expansion.
Because of their importance, we firstly perform our
simulation while leaving G4 and G5 nontrivial and setting
G2 ¼ 0 ¼ G3.
Firstly we see how the different histories of cosmic

expansion affect the model distribution on the αT-αM plane.
Here we refer to the cosmic expansion in the EdS universe.
We now obtain the distribution in the case of the EdS just
by replacing HΛCDM and _HΛCDM in Eqs. (22) and (23) with
those of the EdS model, HEdS and _HEdS, respectively.
Figure 2 shows how distinctively the models distribute on
the αT-αM plane under two different histories of the cosmic
expansion. Moreover, to realize the cosmic expansion close
to the case in the ΛCDM model with G4 and G5, either αT
or αM must be Oð1Þ. This result is expected from the
analytic estimation of Lombriser and Taylor [27], but the
shape of our distribution is different in detail from theirs.
The dots are very sparse at the top left or bottom right,
where either αT or αM is extremely small. The main reason
for this is due to the random sampling of models from all
possible models. In other words, the models that have tiny
values of αM and αT need fine-tuning to realize the cosmic
expansion in the same way as the ΛCDM model.

2. Model classification on the αT-αM plane
in general cases

We now allow all the model parameters to vary; namely,
G2 and G3 are both nonzero. The parameters in Eqs. (14)
and (15) are now provided at random.What we show in this
section is how the models belonging to the different
subclasses of the Horndeski theory are distributed on the
αT-αM plane. For instance, quintessence and the scalar field
with nonlinear kinetic theory are exactly at the point of
αT ¼ 0 ¼ αM, while fðRÞ theory is on the αM axis
(αT ¼ 0). We now classify the models into four categories,
as shown in Table I. Based on the classification, we carry
out the Monte Carlo simulation and obtain the distributions
of each subclass in Fig. 3.
As we see in Fig. 3, the models except the subclass (II)

are distributed in the domain with large αT . This is because
in those cases G4 and G5 mainly drive the cosmic
accelerating expansion and αT consequently becomes large.
In the subclass (II), on the contrary, the models diagonally
concentrate toward the area in which both αT and αM are

FIG. 2. Distribution of the models in the αT -αM plane with
different cosmic expansion histories. The ΛCDM model (cyan
dots) and the EdS model (dark blue dots) are considered.

TABLE I. Division of subclasses with parameters in GðappÞ
i and corresponding theories.

Subclass of Horndeski theory Parameters of GðappÞ
i Models References

(I) G4 þ G5 G2, G3 ¼ 0 Self-acceleration [27]
(II) G4 þ G5 þG2 g2, g2X; g2ϕϕ ≠ 0 Quintessence/nonlinear kinetic theory/

fðRÞ theories [5,6,10,40]
(III) G4 þ G5 þG3 G3 ≠ 0 Cubic Galileons [41,42]
(IV) Cov. Gal g2X; g3X; g4XX; g5XX ≠ 0 Covariant Galileons [11,12]
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small. This is becauseG2 in turn plays a role in accelerating
the cosmic expansion, which relaxes the constraints on G4

and G5. In this subclass, we also find that the models are
predicted to align along the diagonal line, jαT j ∝ jαMj2. We
discuss analytically why this feature appears in the follow-
ing way. First of all, we assume that _ϕ is initially tiny and
the time evolution of _ϕ is very slow as jϕ̈=H _ϕj ≪ 1. In this
case, we expand Gi as

Giðϕ; XÞ ≃ Giðϕ0; X0Þ −Giϕðϕ0; X0Þ _ϕ0tLB; ð25Þ

where the subscript 0 denotes the values at the present time.
Hereafter we simplify the expressions Giðϕ0; X0Þ ¼ Gi;0

and Giρðϕ0; X0Þ ¼ Giρ;0, where ρ ¼ ϕ or X. In the same
way as in Eq. (25), we obtain the observable parameters αM
and αT from Eqs. (17)–(19) as

αM ≃
G4ϕ;0

G4;0

_ϕ0; ð26Þ

αT ≃
2ðG4ϕ;0 −G5ϕ;0Þ

G4;0
X0: ð27Þ

Considering X0 ¼ _ϕ2
0=2, we obtain the relation between αM

and αT as

αT
α2M

≃
G4;0ðG4X;0 −G5ϕ;0Þ

G4ϕ;0
2

¼ g4ðg4X − g5ϕÞ
g4ϕ2

: ð28Þ

Equation (28) is only valid if g4ϕ ¼ 0. The second equality
is obtained from Eq. (15). Since in our computation the
model parameters are given by constants at random, we see
that models are distributed along the line of jαT j ∝ jαMj2,
which corresponds to a diagonal line on the αT-αM plane in
the logarithmic scale.
Our analysis also suggests that the naive parametrization

of α’s is not always applicable. In the literature, it is widely
accepted that the time evolution of all α’s is proportional to
the energy density of dark energy, α ¼ ΩDEαi, where
ΩDEðtÞ≡ Ẽ=3H2

0 and αi is the initial value of α [17].
Indeed, this parametrization has proved to be valid in
Galileon theories [43] and it is supported in cosmological
surveys by Bayesian evidence [44]. However, as Linder has
pointed out recently, this assumption is not always correct

in the case of fðRÞ gravity [45]. Our results also support
this statement. Here we only see the correlation between αT
and αM, but our technique is easily applicable to investigate
the correlations among other parameters, including αK and
αB. We will address this issue in a future publication.

V. OBSERVATIONAL CONSTRAINTS
ON MODELS

As seen in the previous section, G4 and G5 induce the
large deviation of αT even in general cases. Next we derive
the observational constraints on the Horndeski theory with
GW propagation. Firstly we derive the analytic approxima-
tion for the observables of GW, which is applicable to the
future observations ofGW.Thenwe apply the expressions to
the latest detection of GW170817 and GRB170817A to
obtain the observational bound on the Horndeski theory.
From Eqs. (4), (5), (20), and (21), we can write down D

and ΔT in terms of αM and αT . Note that D and ΔT are the
observables given after integrating all effects between
emission and detection. However, we are now interested
in the case that all the quantities vary in the cosmological
timescale. In such a case it is justified to use the Taylor
expansion with respect toH0tLB as given in Eq. (14). As we
introduced in Sec. II, ν and δg are the observational
parameters that are model independent. With the definitions
of the time evolution of ν and δg as

ν ¼ ν0 − ν1H0tLB; ð29Þ

δg ¼ δg0 − δg1H0tLB; ð30Þ
expanding up to the next-to-leading order in H0tLB gives
the approximated expressions of Eqs. (4) and (5) as

D ≃
1

2

�
ν0 ln ð1þ zÞ − ν1

2
ðH0tLBÞ2

�
; ð31Þ

ΔT ≃
1

H0

�
δg0H0tLB −

δg1
2

ðH0tLBÞ2
�
: ð32Þ

Since we consider the Horndeski theory, ν and δg are given
as a function of αM and αT . Expanding both sides of
Eqs. (20) and (21) with respect toH0tLB and assuming δg to
be considerably small, we obtain ν0, ν1, δg0, and δg1 as

ν0 ¼ αM;0; ð33Þ

ν1 ¼
_αM;0

H0

; ð34Þ

δg0 ¼ −
αT;0
2

; ð35Þ

δg1 ¼ −
_αT;0
2H0

: ð36Þ

FIG. 3. Distribution of models in each subclass shown in
Table I on the αT -αM plane.
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Converting the model parameters in the previous section to
those in Eqs. (33)–(36), we obtain the distributions of the
observable parameters as shown in Fig. 4. Similar to Figs. 4
and 5 shows that the effect of the G4 and G5 functions is
distinguishable in both parameters ν and δg, while Fig. 4
additionally shows the information about the time evolution
of the models in terms of ν1 and δg1.
We now give observational constraints on ν0, ν1, δg0, and

δg1 from the detection of GW170817 and GRB170817A.
The reason to choose this GW event is that the redshift of
the GW is independently measured from the optical follow-
up observation of NGC4993 [46], which resolves the
degeneracy between the redshift and the luminosity dis-
tance in the GW observation. For the observables, D and
ΔT, we have to take into account their estimation errors. In
the case of measuring the arrival time difference, errors
arise due to the accuracy of time resolution and intrinsic
time delay at the source. As mentioned in the paper [30],
the time resolution is sufficient so that we ignore the timing
error and consider only the arrival time difference. As we
see in [31], the arrival time difference is measured as 1.7 s,
which gives the upper bound on cT . We also set the intrinsic
time delay at the source to 10 s to obtain the lower bound
of cT .
The constraint on ν is given by comparison between the

observed luminosity distance and the computed one using
redshift determined by optical observations. As shown in
[31], the observed luminosity distance is given with error
as 40þ8

−14 Mpc. The computed luminosity distance at a
given redshift is obtained once we assume the cosmology.

To obtain the computed luminosity distance, H0, and tLB,
we take the cosmology to the best fit ΛCDM model in [4],
i.e., H0 ¼ 67.8 km s−1 Mpc−1 and Ωm0 ¼ 0.308 as prior
values to maintain consistency with the CMB observation.
We are interested in the models that explain the cosmic
accelerating expansion at low redshifts z < 1 while recov-
ering the standard ΛCDM cosmology at higher redshifts
z > 1. To keep the consistency of the models, we set H0

and Ωm0 to fit with the CMB observation.
After all the procedures, we finally obtain the constraints

as shown in Figs. 5 and 6. Comparing the left panel in
Fig. 4 with Fig. 5, we find that ν0 and ν1 are loosely
constrained, but not enough to distinguish the models in
Table I. By contrast, in the right panel of Fig. 4 and in
Fig. 6, all the models are excluded by the single observation
of GW170817 unless one carries out exceptional fine-
tuning for the models. Consequently, we conclude that the

FIG. 4. Model distributions on the observable parameter plane
for the subclasses shown in Table I. Each color of the dots
corresponds to that in Fig. 3.

FIG. 5. Observational constraint on ν0 and ν1. The width of the
colored region is given at a 1σ confidence level of the GW
observation. The red solid line is ν1 ¼ 0.

FIG. 6. Observational constraint on δ0 and δ1. The width of the
colored region is given between the lower and upper bounds.
Inset: The enlarged version around the center of the figure. The
width of the colored region is given at a 1σ confidence level of the
GW observation. The red solid line is δg1 ¼ 0.
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models in the Horndeski theory that include G4 or G5

without G2 can be excluded unless the model parameters
are fine-tuned so that cT ¼ 1. The models in subclass (II)
are such that quintessence, nonlinear kinetic theory, or fðRÞ
theories survive because these models satisfy cT ¼ 1. In
other words, without fine-tuning for the G4 and G5

functions, the cosmic expansion must be driven by the
G2 function.
If we take the cases that ν1 ¼ 0 or δg1 ¼ 0, we obtain the

constraints on ν0 and δg0 as

−75.3 ≤ ν0 ≤ 78.4; ð37Þ

−4.7 × 10−16 ≤ δg0 ≤ 2.2 × 10−15: ð38Þ

ν0 is too loose to constrain the models in Table I, while δg0
is well determined enough to exclude the models. The
constraint of δg0 is consistent with the one in [32].
Finally, we comment on a future prospect of tightening

the constraints. In the above, we used a single source to
constrain the Horndeski theory. However, given multiple
sources at different distances in the future observation, one
can tighten the constraint by combining the sources in two
ways [47]. First with a single source, there exists a
parameter degeneracy in the time evolution, as shown by
the shaded bands in Figs. 5 and 6. If one uses multiple
sources at different distances, the bands cross at a point and
the degeneracy is broken. Second, currently the intrinsic
time delay limits the sensitivity to δg. However, the intrinsic
time delay can be distinguished from the modification of
GW propagation and partially canceled out by combining
multiple signals. This is possible because those effects
depend on redshift differently at cosmological distances.

VI. CONCLUSIONS

In this paper, we have discussed constraints on
Horndeski theory with GW propagation. We firstly
reviewed the general framework for the waveform defor-
mation from modified gravity, including the Horndeski
theory. Then we numerically formulated the Horndeski
theory at the cosmological scale to compute αM and αT .
Next, we performed a Monte Carlo simulation that keeps

the models consistent with the observations of cosmic
expansion. In this procedure, we adopted two criteria:
consistency and stability. Carrying out the simulation, we
obtained the model distribution on the αT-αM plane. Then
we found that αM and αT have large values in the models
including only G4 or G5, while including G2 together with
G4 or G5 allows both αM and αT to be smaller. Thanks to
this feature, the models are significantly distinguishable
depending on whether or not the models include the
function G2.
Finally, we constrained the Horndeski theory from the

simultaneous detection of GW170817 and GRB170817A.
We provided the observational bounds for the physical

parameters that are involved in GW propagation: ν0, ν1, δg0,
and δg1. As a result, we found that the constraints on ν0 and
ν1 are still too weak to distinguish the specific models
shown in the Table I, while those on δg0 and δg1 are
sufficiently strong enough to exclude the models that
contain G4 or G5 without G2. Consequently, we concluded
that the model space of the Horndeski theory must be
significantly reduced to explain the cosmic accelerating
expansion and the GW propagation simultaneously. In
other words, in the Horndeski framework the main driver
of the cosmic accelerating expansion should be G2. At
present, the models such as quintessence, nonlinear kinetic
theory, or fðRÞ theories are still allowed.
In addition to our work, we comment on the theories

other than the Horndeski theory, including higher deriva-
tives of a scalar curvature and a scalar field. Our formu-
lation in effect contains those theories because the higher
derivative terms become too tiny to be observed at the
cosmological scale. This argument agrees with the recent
reports just after the detection of GW170817 was
announced [48–51]. However, our work quantitatively
discusses how much the fine-tuning of the model is
required within the current observational errors. In addi-
tion, as shown in Eq. (37), we obtained for the first time the
constraint on the amplitude damping parameter ν by the
observation of GW170817. Although the constraint is
loose, it plays an important role in further restricting the
models whose δg is fine-tuned to zero.
In the end, we report on an accidental finding that the

parametrization of α ∝ ΩDEαi is not valid in general. This
assumption is now widely used when computing cosmo-
logical observables, particularly the CMB angular power
spectrum, using Einstein-Boltzmann solvers [52–54].
Therefore, it is important to revisit the previous constraints
on the Horndeski theory that parametrized α ∝ ΩDEαi and
to investigate the application of our simulation to other
cosmological observations such as CMB or LSS. We will
address this issue in a future publication.
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APPENDIX: COMPUTATION
OF MODEL PARAMETERS

We introduce physical quantities necessary for compu-
tation in the main text. Here we use the α parametrization of
Bellini and Sawacki [17]. First of all, the time-evolving the
parameters are defined as

M2� ≡ 2ðG4 − 2XG4X þ XG5ϕ − _ϕHXG5XÞ; ðA1Þ
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HM2�αM ≡ d
dt

M2�; ðA2Þ

H2M2�αK≡2XðG2Xþ2XG2XX−2G3ϕ−2XG3ϕXÞ
þ12 _ϕXHðG3XþXG3XX−3G4ϕX−2XG4ϕXXÞ
þ12XH2ðG4Xþ8XG4XXþ4X2G4XXXÞ
−12XH2ðG5ϕþ5XG5ϕXþ2X2G5XXXÞ
þ4 _ϕXH3ð3G5Xþ7XG5XXþ2X2G5XXXÞ; ðA3Þ

HM2�αB ≡ 2 _ϕðXG3X − G4ϕ − 2XG4ϕXÞ
þ 8XHðG4X þ 2XG4XX −G5ϕ − XG5ϕXÞ
þ 2 _ϕXH2ð3G5X þ 2XG5XXÞ; ðA4Þ

M2�αT ≡ 2Xð2G4X − 2G5ϕ − ðϕ̈ − _ϕHÞG5XÞ: ðA5Þ

Of all the four parameters, αM and αT are relevant to GW
propagation. αK and αB are irrelevant to GW propagation,
but they are necessary to evaluate the stability condition
discussed in Sec. IVA. The Friedman equations in the
Horndeski theory are given by

3H2 ¼ ρ̃m þ Ẽ; ðA6Þ

2 _H þ 3H2 ¼ −p̃m − P̃; ðA7Þ

where ρ̃m ≡ ρm=M2� and p̃m ≡ pm=M2�. Then Ẽ and P̃ are
given by

M2�Ẽ ¼ −G2 þ 2XðG2X −G3ϕÞ
þ 6 _ϕHðXG3X − G4ϕ − 2XG4ϕXÞ
þ 12H2XðG4X þ 2XG4XX −G5ϕ − XG5ϕXÞ
þ 4 _ϕH3XðG5X þ XG5XXÞ; ðA8Þ

M2�P̃ ¼ G2 − 2XðG3ϕ − 2G4ϕϕÞ
þ 4 _ϕHðG4ϕ − 2XG4ϕX þ XG5ϕϕÞ

−M2�αBH
ϕ̈
_ϕ
− 4H2X2G5ϕX þ 2 _ϕH3XG5X: ðA9Þ

As we can see in all the quantities above, the third
derivatives of G2 and G3 implicitly affect the quantities.
Therefore, we set the third derivatives of G2 and G3 to be
zero in the main text.
Finally, we provide essential quantities to avoid the ghost

and gradient instability. The action at quadratic order of a
scalar field ζ and tensor modes hij is given by

S2 ¼
Z

dtd3xa3
�
Qs

�
_ζ2 −

c2s
a2

ð∂iζÞ2
�

þQT

�
_h2ij −

c2T
a2

ð∂khijÞ2
��

; ðA10Þ

where

Qs ¼
2M2�D

ð2 − αBÞ2
;

c2s ¼ −
ð2 − αBÞ
H2D

�
_H −

1

2
H2αBð1þ αTÞ

−H2ðαM − αTÞ −H _αB þ ρ̃m þ p̃m

�
; ðA11Þ

D≡ αK þ 3

2
α2B; ðA12Þ

while

QT ¼ M2�
8

; ðA13Þ

c2T ¼ 1þ αT: ðA14Þ

To avoid the theoretical instabilities, we should impose the
condition that Qs > 0, c2s > 0, QT > 0, and c2T > 0.
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Galileon, Phys. Rev. D 79, 084003 (2009).

[12] A. Nicolis, R. Rattazzi, and E. Trincherini, The galileon as a
local modification of gravity, Phys. Rev. D 79, 064036
(2009).

[13] C. Deffayet, O. Pujolas, I. Sawicki, and A. Vikman,
Imperfect dark energy from kinetic gravity braiding, J. Cos-
mol. Astropart. Phys. 10 (2010) 026.

[14] G. Gubitosi, F. Piazza, and F. Vernizzi, The effective field
theory of dark energy, J. Cosmol. Astropart. Phys. 02 (2013)
032.

[15] J. Gleyzes, D. Langois, F. Piazza, and F. Vernizzi, Essential
building blocks of dark energy, J. Cosmol. Astropart. Phys.
08 (2013) 025.

[16] J. Gleyzes, D. Langois, M. Mancarella, and F. Vernizzi,
Effective theory of interacting dark energy, J. Cosmol.
Astropart. Phys. 08 (2015) 054.

[17] E. Bellini and I. Sawicki, Maximal freedom at minimum
cost: Linear large scale structure in general modification of
gravity, J. Cosmol. Astropart. Phys. 07 (2014) 050.

[18] E. Bellini, A. J. Cuesta, R. Jimenez, and L. Verde, Con-
straints on deviations from ΛCDM within Horndeski
gravity, Astron. Astrophys. 584, A35 (2015).

[19] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[20] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW151226: Observation of Gravitational Waves
from a 22-Solar-Mass Binary Black Hole Coalescence,
Phys. Rev. Lett. 116, 241103 (2016).

[21] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170104: Observation of a 50-Solar-Mass Binary
Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.
118, 221101 (2017).

[22] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170814: AThree-Detector Observation of Gravi-
tational Waves from a Binary Black Hole Coalescence,
Phys. Rev. Lett. 119, 141101 (2017).

[23] B. F. Schutz, Determining the Hubble constant from
gravitational wave observations, Nature (London) 323,
310 (1986).

[24] S. Nissanke, D. E. Holz, N. Dalal, S. A. Hughes, J. L.
Sievers, and C. M. Hirata, Determining the Hubble constant
from gravitational wave observations of merging compact
binaries, arXiv:1307.2638.

[25] A. Nishizawa, Measurement of Hubble constant with
stellar-mass binary black holes, Phys. Rev. D 96, 101303
(2017).

[26] LIGO Scientific Collaboration, Virgo Collaboration,
1M2H Collaboration, Dark Energy Camera GW-EM

Collaboration, DES Collaboration, DLT40 Collaboration,
Las Cumbres Observatory Collaboration, VINROUGE
Collaboration, and MASTER Collaboration, A gravita-
tional-wave standard siren measurement of the Hubble
constant, Nature (London) 551, 85 (2017).

[27] L. Lombriser and A. Taylor, Breaking a dark degeneracy
with gravitational waves, J. Cosmol. Astropart. Phys. 03
(2016) 031.

[28] D. Bettoni, J. M. Ezquiaga, K. Hinterbichler, and M.
Zumalacárregui, Breaking a dark degeneracy with gravita-
tional waves, Phys. Rev. D 95, 084029 (2017).

[29] G. D. Moore and A. E. Nelson, Lower bound on the
propagation speed of gravity from gravitational Cherenkov
radiation, J. High Energy Phys. 023 (2001) 0109.

[30] A. Nishizawa and T. Nakamura, Measuring speed of
gravitational waves by observations of photons and neu-
trinos from compact binary mergers and supernovae, Phys.
Rev. D 90, 044048 (2014).

[31] B. P. Abbott (LIGO Scientific Collaboration and Virgo
Collaboration), GW170817: Observation of Gravitational
Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett.
119, 161101 (2017).

[32] B. P. Abott et al., Gravitational waves and gamma-rays from
a binary neutron star merger: GW170817 and GRB
170817A, Astrophys. J. Lett. 848, L13 (2017).

[33] I. Saltas, I. Sawicki, L. Amendola, and M. Kunz, Aniso-
tropic Stress as Signature of Non-standard Propagation of
Gravitational Waves, Phys. Rev. Lett. 113, 191101 (2014).

[34] A. Nishizawa, preceding article, Generalized framework for
testing gravity with gravitational-wave propagation. I.
Formulation, Phys. Rev. D 97, 104037 (2018).

[35] J. Khoury and A. Weltman, Chameleon cosmology, Phys.
Rev. D 69, 044026 (2004).

[36] A. I. Vainstein, To the problem of nonvanishing gravitation
mass, Phys. Lett. 39B, 393 (1972).

[37] E. Babichev, C. Deffayet, and G. Esposito-Farése, Con-
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