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The direct detection of gravitational waves (GWs) from merging binary black holes and neutron stars
marks the beginning of a new era in gravitational physics, and it brings forth new opportunities to test
theories of gravity. To this end, it is crucial to search for anomalous deviations from general relativity in a
model-independent way, irrespective of gravity theories, GW sources, and background spacetimes. In this
paper, we propose a new universal framework for testing gravity with GWs, based on the generalized
propagation of a GW in an effective field theory that describes modification of gravity at cosmological
scales. Then, we perform a parameter estimation study, showing how well the future observation of GWs
can constrain the model parameters in the generalized models of GW propagation.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) from
merging binary black holes (BH) by aLIGO [1–4] has
demonstrated that the advanced detectors have sufficient
enough sensitivity to detect GWout to the distant Universe.
The fifth GW event has been observed by a detector
network composed of two aLIGO and one aVIRGO for
the first time [5] and has proven that three detectors can
localize well the sky direction of a source. Recently, a GW
from binary neutron stars (NSs) has been detected
for the first time [6] in coincidence with a short gamma-
ray burst [7], followed by kilonova observations with
multiple electromagnetic telescopes around the world,
e.g., Refs. [8–12]. In the coming years, the currently
operating detectors will improve their sensitivities further,
and KAGRA will join the detector network [13]. It is
expected that GWs from the variety of compact binaries
will enable us to test gravity theories in strong and
dynamical regimes precisely [14].
To this end, it is crucial to search for anomalous

deviations from general relativity (GR) in a model-
independent way, because in practice, it is impossible from
the computational point of view to perform comprehensive
GW searches in all gravity theories. One of such model-
independent tests is measuring the propagation speed of a
GW [14]. In GR, a GW propagates with the speed of light,
while in alternative theories of gravity, the propagation
speed could deviate from the speed of light due to the
modification of gravity (see Refs. [15–18] for general

formulations and for more specific cases, nonzero graviton
mass [19,20], and extra dimensions [21]). Also, the
modification of spacetime structure at a quantum level
may affect the propagation of a GW [22,23]. From the GW
data of BH binaries detected by aLIGO, the constraints
have been obtained on the graviton mass mg <
7.7 × 10−23 eV [3] and on the modified dispersion relation
[3,24], though the latter constraint is rather weak from a
theoretical point of view. Before the occurrence of the
coincidence event, GW170817/GRB170817A [6], it had
been expected that comparing arrival times between
GWs from a binary NS merger and high-energy photons
from a short gamma-ray burst emitted almost at the same
time can measure GW propagation speed at a precision of
10−16–10−15 [25,26] and consequently tightly constrain the
modification of gravity relevant to the cosmic accelerating
expansion [27]. One of the other model-independent tests is
to check the existence of GW polarization modes predicted
in GR and to search for additional polarizations [28]. In
GR, a GW has two polarizations, while there could be at
most four additional polarizations in alternative theories
of gravity. For example, in scalar-tensor theory and fðRÞ
gravity theory, additional scalar polarizations appear
[29–32]. In bimetric gravity theory and massive gravity
theory, there appear at most six and five polarization
modes, respectively, including scalar and vector modes
[31,33]. With multiple detectors, it is possible to detect the
additional modes by separating them [34,35] or construct-
ing a null signal [36]. Recently, the triple detector network
of aLIGO and VIRGO has explored the existence of an
additional polarization merely by showing the consistency
of the detector response functions for GR polarizations*anishi@kmi.nagoya-u.ac.jp
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when fitting to the data [5,37], though this is not a complete
analysis based on the separation technique.
Another approach is to look for anomalous deviations

from GR in the amplitude and phase of a GW waveform.
Some theoretical frameworks [38–40] parametrize the
deviations from a GR waveform from a compact binary,
and the others parametrize the deviations from a GR
waveform from a black-hole ringdown [41–43]. The
constraints on the deviation from a GR waveform of a
BH binary have been obtained in the generalized inspiral-
merger-ringdown Phenom (gIMR) framework [3,44,45]
and in the parametrized post-Einsteinian (ppE) framework
[24]. These constraints aim at testing GW generation, that
is, the strong regime of gravity, and are different from those
aiming at GW propagation mentioned above. However, the
problem of these parametrizations is that they cannot be
applied to different types of GW sources such as super-
novae, pulsars, stochastic background, etc. In addition, if
one naively parametrizes the deviations from a GR wave-
form without linking to physical effects, it is difficult to
interpret the physical meanings of the deviations from
observations.
To treat tests of gravity with GW more exhaustively, it is

necessary to have a universally parametrized framework
based on interpretable physical effects, irrespective of the
models of gravity theories, GW sources, and background
spacetimes. In this paper, we propose a new universal
framework for testing gravity, based on the propagation
equation of a GW in an effective field theory for dark
energy [16,17], which describes modification of gravity at
cosmological scales, where a linear perturbation theory
holds well. Then, we perform a parameter estimation study,
showing how well the future observation of GW can
constrain the model parameters in generalized models of
GW propagation. There are five advantages to focus on in
GW propagation:

(i) The propagation equation is formulated independ-
ently of a type of GW sources (BH, NS, supernova,
pulsar, stochastic background, etc.) and background
spacetimes [Schwarzshild, Kerr, Friedmann-
Lemaître-Robertson-Walker (FLRW), etc.], in con-
trast to GW generation. The equation just describes
the properties of GW propagation, independent of
where the GW propagates.

(ii) If one considers a different theory of gravity, the
propagation properties of a GW may change. How-
ever, this deviation from GR can be easily para-
metrized in the propagation equation by introducing
arbitrary functions that control propagation speed,
amplitude damping (vacuum friction), graviton
mass, and a source term (additional energy injection
or escape to extra dimensions), for which physical
interpretations are transparent.

(iii) GW propagation allows us to test gravity in a
dynamical regime at cosmological distance, at which

gravity has not yet been tested precisely. The
propagation of a GW itself is dynamical, and the
background spacetime is also dynamical due to
the cosmic expansion. This regime of gravity is
relevant to the origin of cosmic acceleration of the
present Universe and may be related to a possible
modification of GR.

(iv) Even if modification on gravity is a tiny effect,
propagation from a distant source can accumulate
the effect and amplify a signal observed at a detector.

(v) It is possible by definition to combine with the
constraints from cosmological observations such as
cosmic expansion, the large-scale structure of the
Universe, the cosmic microwave background, etc.,
because some of the modification functions in the
propagation equation are common to those appearing
in the cosmological observables, e.g., Refs. [46–49].

This paper is organized as follows. In Sec. II, to develop
a universal parametrized framework for testing gravity with
GW propagation, we analytically solve the GW propaga-
tion equation in an effective field theory for dark energy
[16,17] and obtain a Wentzel-Kramers-Brillouin (WKB)
solution. This GW waveform is quite general because it
includes arbitrary functions of time that describe modified
amplitude damping, modified propagation speed, nonzero
graviton mass, and a possible source term for a GW. We
also show the specific expressions of these arbitrary
functions of gravity modifications in various alternative
theories of gravity. In Sec. III, we compare our framework
for generalized GW propagation with the preexisting
frameworks for testing gravity with GW, though those
are relevant to GW generation. In Sec. IV, we perform a
parameter estimation study with a Fisher information
matrix on two simple models of GW propagation, the
parameters of which are assumed to be constant, and clarify
which parameters are correlated to each other and how well
they are determined from realistic observational data. In
Sec. V, we discuss the current constraints on the model
parameters and forecast the future constraints that can be
obtained by the aLIGO-like detector network at design
sensitivity. Finally, Sec. VI is devoted to the conclusion.
Throughout the paper, we adopt units c ¼ G ¼ 1.

II. PARAMETRIZED FRAMEWORK
FOR GW PROPAGATION

A. GW propagation equation

Following the general formulation of GW propagation in
an effective field theory [15], tensor perturbations obey the
equation of motion

h00ij þ ð2þ νÞHh0ij þ ðc2Tk2 þ a2μ2Þhij ¼ a2Γγij; ð1Þ

where the prime is a derivative with respect to conformal
time, a is the scale factor, H≡ a0=a is the Hubble
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parameter in conformal time, ν ¼ H−1ðd lnM2�=dtÞ is the
Planck mass run rate, cT is the GW propagation speed,
and μ is the graviton mass. The source term Γγij arises
from anisotropic stress. In the limit of cT ¼ 1 and
ν ¼ μ ¼ Γ ¼ 0, the propagation equation (1) is reduced
to the standard one in GR. If gravity is modified from GR,
the modification functions in general depend on time and
wave number, ν ¼ νðτ; kÞ, cT ¼ cTðτ; kÞ, and μ ¼ μðτ; kÞ.
For example, if the screening mechanism works at small
scales, ν can be scale dependent. Even graviton mass can be
position dependent when an additional scalar degree of
freedom is introduced, e.g., Ref. [50]. Although the
separation of cTðτ; kÞ and μ ¼ μðτ; kÞ is not unique, we
define μ separately because we know the k dependence
exactly when μ is constant.
The assumption here is that the weak equivalence

principle holds for matter and therefore that all matter
species external to the scalar-tensor system are coupled
minimally and universally. At a linear level or large scales
in the FLRW background, the modification functions are
simply functions of time [15] (later, this is extended to
allow a wave number dependence in some modified models
of GW propagation). The effects of this generalized
propagation of GWs on the cosmic microwave background
(CMB) spectrum have already been investigated numeri-
cally in Refs. [51–54], though the CMB is sensitive only to
modifications of gravity in the early Universe, which is
irrelevant to the cosmic accelerating expansion at present.
Here, we focus on modifications of gravity as an

explanation for the cosmic accelerating expansion and
on GW observations by the second-generation detectors
such as aLIGO. In other words, all the modification
functions in Eq. (1) are slowly varying functions with a
cosmological time scale, while the GW wavelength ∼k−1 is
much smaller than the cosmological horizon scale. Thus,
we can obtain a WKB solution for Eq. (1). In the next
subsection, we derive such WKB solutions in the presence
and absence of the source term Γγij.

B. General case with Γ= 0

Setting the solution in the form hij ¼ heij ¼ AeiBeij
with the polarization tensor eij and assuming Γ ¼ 0, Eq. (1)
is reduced to the two equations:

c2Tk
2 þ a2μ2 þ ð2þ νÞHA0

A
− ðB0Þ2 þ A00

A
¼ 0; ð2Þ

ð2þ νÞHþ 2
A0

A
þ B00

B0 ¼ 0: ð3Þ

Since the case we are interested in is when modifications to
gravity are slowly varying functions with a cosmological
time scale, we neglect the terms A0=A and A00=A in the first
equation. This is justified because c2Tk

2 and ðB0Þ2 are

quantities in the GW phase and change with the time scale
of the GW period, while A0=A and A00=A are of the order
of H2, which is much smaller than k2. In addition, we
know from GW observations [44] that the graviton mass
is smaller than 1.2 × 10−22 eV. Then, the condition
a2μ2=k2 ≪ c2T ∼ 1 is always satisfied for GW detectors
in the late-time cosmology and guarantees a wavy solution.
From the first equation, the phase part is

B ¼ �k
Z

τ
c̃Tdτ0; ð4Þ

where c̃2T ≡ c2T þ a2μ2=k2 is an effective GW speed and the
τ integral runs from GW emission time at a source to
detection time at the Earth. Substituting this for the second
equation, we have the WKB solution

h ∝
qffiffiffiffiffi
c̃T

p exp

�
�ik

Z
τ
c̃Tdτ0

�
; ð5Þ

q≡ exp

�
−
Z

τ
�
1þ ν

2

�
Hdτ0

�
: ð6Þ

To separate the correction due to gravity modification,
we define cT ≡ 1 − δg. For simplification, we replace c̃T
with cT in the amplitude of Eq. (5) because δg and aμ=k can
be tightly constrained from the phase correction. Indeed,
aμ=k has already been limited to be much smaller than
unity from LIGO observations [44]. Then, the WKB
solution is

h ∝ exp

�
−
1

2

Z
τ
νHdτ0

�
exp

�
∓ ik

Z
τ
�
δg −

a2μ2

2k2

�
dτ0

�

× exp

�
−
Z

τ
Hdτ0

�
exp

�
�ik

Z
τ
dτ0

�
: ð7Þ

Since the last two exponential factors appear in GR, the
WKB solution can be written in a more transparent way
by factorizing out a GR waveform, assuming GW gen-
eration is the same as in GR. The sign of the phase is
defined by the GR waveform phase in Eq. (A7), and we
must choose the upper sign in Eq. (7). Finally, the
waveform is expressed as

h ¼ CMGhGR; ð8Þ

CMG ≡ e−De−ikΔT; ð9Þ

with

D≡ 1

2

Z
τ
νHdτ0 ¼ 1

2

Z
z

0

ν

1þ z0
dz0; ð10Þ
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ΔT ≡
Z

τ
�
δg −

a2μ2

2k2

�
dτ0

¼
Z

z

0

1

H

�
δg

1þ z0
−

μ2

2k2ð1þ z0Þ3
�
dz0; ð11Þ

where D is the damping factor and ΔT is the time delay
due to the effective GW speed different from the speed of
light. We call this solution the generalized GW propa-
gation (gGP) framework to test gravity. It is quite general
and can be applied to many theories of modified gravity
such as Horndeski theory, including fðRÞ gravity as a
special case, and Einstein-aether theory. Following the
classification in Ref. [15], concrete expressions for each
modification function are listed in Table I.
Particularly, when all arbitrary functions ν, cT, and μ are

assumed to be constant and Γ ¼ 0, the WKB solution in
Eq. (8) is significantly simplified as

h ¼ ð1þ zÞ−ν=2e−ikΔThGR; ð12Þ

ΔT ¼ δgdL
1þ z

−
μ2

2k2

Z
z

0

dz0

ð1þ z0Þ3H ; ð13Þ

where

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

ð1þ z0ÞH : ð14Þ

Examples of a modified GWwaveform are shown in Fig. 1.

C. General case with Γ ≠ 0

If the propagation equation in Eq. (1) is inhomogeneous
(Γ ≠ 0), a solution becomes much more complicated
but can be formally obtained. Denoting homogeneous
solutions by

u1ðτÞ≡ qðτÞffiffiffiffiffiffiffiffiffiffiffi
c̃TðτÞ

p cos

�
k
Z

τ
c̃Tdτ0

�
; ð15Þ

u2ðτÞ≡ qðτÞffiffiffiffiffiffiffiffiffiffiffi
c̃TðτÞ

p sin

�
k
Z

τ
c̃Tdτ0

�
ð16Þ

and using the relations

u1ðτ0Þu2ðτÞ−u1ðτÞu2ðτ0Þ¼
qðτÞqðτ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̃TðτÞc̃Tðτ0Þ

p sin

�
k
Z

τ

τ0
c̃Tdτ00

�
;

ð17Þ

u1ðτ0Þu02ðτ0Þ − u01ðτ0Þu2ðτ0Þ ¼ kq2ðτ0Þ; ð18Þ

an inhomogeneous solution is

TABLE I. Modification functions, ν, cT, μ, and Γ, in specific modified-gravity theories. In the phenomenology of
a modified dispersion relation, a special case with nmdr ¼ 0 gives nonzero graviton mass.

Gravity theory ν c2T − 1 μ Γ References

General relativity 0 0 0 0 � � �
Extra-dimensional theory ðD − 4Þð1þ 1þz

HdL
Þ 0 0 0 Sec. II E

Horndeski theory αM αT 0 0 [15]
f(R) gravity F0=HF 0 0 0 [55]
Einstein-aether theory 0 cσ=ð1þ cσÞ 0 0 [15]
Modified dispersion relation 0 ðnmdr − 1ÞAEnmdr−2 when nmdr ¼ 0 0 [24]
Bimetric massive gravity theory 0 0 m2f1 m2f1 [15,56]

FIG. 1. Modified GW waveforms in the Einstein-de Sitter universe (Ωm ¼ 1) with ν ¼ 1 (left), δg ¼ 0.03 (middle), and μ=k ¼ 0.3
(right). In each panel, only one parameter is changed. The curves are a GR waveform (red, solid), a numerical modified waveform
(green, solid), and a WKB modified waveform (blue, dashed). The wave number is fixed to k̃≡ kτ0 ¼ 200, and the initial condition is
set so that h ¼ 1 and h0 ¼ 0 at z ¼ 1 just for illustration.
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hijðτÞ ¼ fC1u1ðτÞ þ C2u2ðτÞgeij þ
Z

τ
a2ðτ0ÞΓðτ0Þγijðτ0Þ

u1ðτ0Þu2ðτÞ − u1ðτÞu2ðτ0Þ
u1ðτ0Þu02ðτ0Þ − u01ðτ0Þu2ðτ0Þ

dτ0

¼ fC1u1ðτÞ þ C2u2ðτÞgeij þ
qðτÞ

k
ffiffiffiffiffiffiffiffiffiffiffi
c̃TðτÞ

p
Z

τ a2ðτ0ÞΓðτ0Þγijðτ0Þ
qðτ0Þ ffiffiffiffiffiffiffiffiffiffiffiffi

c̃Tðτ0Þ
p sin

�
k
Z

τ

τ0
c̃Tdτ00

�
dτ0; ð19Þ

where C1 and C2 are arbitrary coefficients.
The existence of nonzero Γ modifies the GW amplitude

as Γ behaves as a source term for a GW. The simplest
case is GW propagation in the standard cosmology with
anisotropic stress πij, but without modifying gravity [57].
Setting the model parameters to cT ¼ 1, ν ¼ 0, μ ¼ 0, and
Γγij ¼ 16ππij and replacing the integrals with

Z
τ

τ0
dτ00 ¼

Z
z

z0

dz00

Hðz00Þ ;

the inhomogeneous solution is expressed as

hij ¼ fC1u1ðτÞ þ C2u2ðτÞgeij
þ 1

1þ z

Z
z

0

Γðz0Þγijðz0Þ
ð1þ z0ÞHðz0Þk sin

�
k
Z

z

z0

dz00

Hðz00Þ
�
dz0;

ð20Þ

where HðzÞ ¼ ð1þ zÞHðzÞ. Since the phase of the sine
function is kðτ − τ0Þ ≫ 1 when one considers GW fre-
quency relevant to GW detectors, the integrand is rapidly
oscillating, changing its sign. However, the magnitude of
correction to GW amplitude is of the order of Γγij=Hk and
is roughly proportional to propagation distance.
In the bimetric gravity theory, the model parameters are

cT ¼ 1, ν ¼ 0, μ ¼ m2f1, and Γγij ¼ m2f1γij. In addition
to the source term, the graviton mass has a nonzero value
with the same dependence as Γ. Although the correction
term is more complicated, the modification of GW ampli-
tude is similar to that in the simple case with anisotropic
stress.

D. Modified dispersion relation

In phenomenological models of quantum gravity, quan-
tum fluctuations of spacetime can modify the dispersion
relation of a massless particle at a low-energy limit
E ≪ EQG [22],

E2 ¼ p2

�
1þ ξ

�
E

EQG

�
nQG−2

�
: ð21Þ

In addition, similar modification of dispersion relation can be
introduced by Lorentz-invariance violation, nonzero grav-
iton mass, and extra dimensions [58–60]. Consequently, GW
speed depends on graviton energy or GW frequency. Here,
we extend the gGP framework by allowing a wave number

dependence for GW propagation speed. The GW propaga-
tion speed (phase velocity) is derived from Eq. (21):

cTðEÞ≡ E
p
≈ 1þ ξ

2

�
E

Emdr

�
nmdr−2

: ð22Þ

Here. we denote nQG and EQG by nmdr and Emdr, taking into
account modifications of the dispersion relation other than
the quantum gravity effect, while the graviton speed (group
velocity) is

vgðEÞ≡ dE
dp

≈ 1þ ξ

2
ðnmdr − 1Þ

�
E

Emdr

�
nmdr−2

: ð23Þ

Defining A≡ ξE2−nmdr
mdr , modifications on group velocity are

summarized in the form [24,61]

vgðEÞ ¼ 1þ ðnmdr − 1Þ
2

AEnmdr−2: ð24Þ

Note that A1=ð2−nmdrÞ is roughly equivalent to the character-
istic energy scale of a theory Emdr, at which a quantum
gravity effect is switched on or a graviton starts to be
sensitive to extra dimensions. The amplitude A and the
power index nmdr in specific gravity theories are listed in
Table II.
In terms of our formulation, other properties of a GWare

not modified by the modification of the dispersion relation,
that is, ν ¼ 0, μ ¼ 0 (except for nmdr ¼ 0), and Γ ¼ 0.
Using δg, Eq. (22) is expressed as

δg ≈ −
1

2
AEnmdr−2 ¼ −

ð2πÞnmdr−2

2
Afnmdr−2 ð25Þ

TABLE II. Modified dispersion relations in specific modified-
gravity theories. SME stands for standard model extensions.

Gravity theory A nmdr References

General relativity 0 � � � � � �
Massive graviton ðμc2Þ2 0 [59]
Doubly special relativity ηdsrt 3 [62]
Extra-dimensional theories −αedt 4 [60]
Horava-Lifshitz gravity k4hlμ

2
hl=16 4 [63,64]

Gravitational SME (even d ≥ 4) −2k
∘ ðdÞ
ðVÞ d-2 [58]

Gravitational SME (odd d ≥ 5) �2k
∘ ðdÞ
ðVÞ d-2 [58]
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and is related to vg by

δg ¼
1 − vg
nmdr − 1

ðnmdr ≠ 1Þ: ð26Þ

Note that this relation is valid only when the form of the
modified dispersion relation in Eq. (21) is assumed.
We add a caveat on the violation of the weak equivalence

principle and GW propagation speed. If the weak equiv-
alence principle is violated, gravitons with different energy
or frequency trace different null geodesics, responding
differently to the gravitational potential along the line of
sight. Then, these gravitons arrive at the Earth at different
times even if they are emitted simultaneously at a source
and propagate with the speed of light (cT ¼ 1). In the gGP
framework here, we assume that the weak equivalence
principle holds for matter and the propagation speed is
exactly cT ¼ 1 when other modifications on gravity are
absent. The constraints on the violation of the weak
equivalence principle have been obtained from GW obser-
vations in Refs. [65,66].

E. Extra-dimensional theory

In a universal extra-dimensional theory, a GW damps

with h ∝ d−ðD−2Þ=2
L due to leakage to extra dimensions [67].

Namely, in a higher-dimensional spacetime with D > 4, a
GW damps faster than in D ¼ 4 spacetime. If there exists a
crossover distance scale Rc beyond which the spacetime
dimension behaves differently, the GW amplitude scales
with

h ∝
�
dL

�
1þ

�
dL
Rc

�
nc=2

�ðD−4Þ=nc�−1
; ð27Þ

where the power index nc represents transition steepness,
as proposed in Ref. [68]. Then, the correspondence to our
formulation when dL ≫ Rc is

e−D ¼ exp

�
−
1

2

Z
z

zc

ν

1þ z0
dz0

�
¼

�
dL
Rc

�
−ðD−4Þ=2

; ð28Þ

where zc is the redshift corresponding to Rc. Again, this
is the same damping as the universal extra-dimensional

theory, h ∝ d−ðD−2Þ=2
L .

Here, we connect the effect of extra dimensions to ν.
Of course, in general, the contribution to ν is not only from
extra dimensions but from the modification of gravity
strength itself. To distinguish them, we additionally define
νext, which is solely due to the extra-dimensional effect.
After some algebra with Eq. (14), we have

νext ¼ ðD − 4Þ
�
1þ 1þ z

HdL

�
: ð29Þ

When D ¼ 4, there is no extra amplitude damping, and the
standard damping, ν ¼ 0, is recovered. At a large distance,
it approaches ν ¼ D − 4.

F. Extra polarizations

In the generalized propagation framework above, we
concentrated only on the tensor mode of a GW. However, if
a GW is produced via parity-violating process and has
chirality, the GW may have the properties different from
GR for plus and cross-polarizations, e.g., a polarization-
dependent propagation speed or anomalous amplitude
ratio. As a result, the GW has linear or circular polar-
izations, while in some modified theories of gravity, there
may exist additional polarizations corresponding to new
degrees of freedom in the theories, e.g., scalar and vector
modes [28,69]. In all these cases, if each polarization mode
decouples, one can write down propagation equations
similar to Eq. (1) for each polarization mode and introduce
other families of modified-gravity parameters in each GW
waveform.

III. RELATIONS TO OTHER PARAMETRIZED
FRAMEWORKS

There has been no parametrized framework aiming at
GW propagation. However, several parametrized frame-
works for compact binary coalescence in a strong gravity
regime have been proposed and enable us to compare GW
propagation effects with GW-generation effects. Of course,
observational data include the effects of both GW gen-
eration and propagation. However, comparing both effects
gives some insights into how generation and propagation
effects of GW are distinguished in observational data. In
this section, we compare our gGP framework with two
other frameworks for GW generation: the ppE model and
the gIMR model. Then, we derive relations between model
parameters in different frameworks and show that the
propagation effects can be distinguished from the gener-
ation effects.

A. Parametrized post-Einsteinian framework

In the ppE framework [40], a GW waveform is para-
metrized by

hðfÞ ¼
�
1þ

X
j

αjuj
�
ei
P

k
βkukhGRðfÞ; ð30Þ

where u≡ ðπMfÞ1=3. GR is recovered at the limit of
αj → 0 and βk → 0. Compared with the gGP framework in
Eq. (8), the following relations hold:

X
j

αjuj ¼ −
1

2

Z
z

0

ν

1þ z0
dz0; ð31Þ
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X
k

βkuk ¼ −k
Z

z

0

�
δg

1þ z0
−

μ2

2k2ð1þ z0Þ3
�
dz0

H
: ð32Þ

Since u gives a specific frequency dependence, the above
relations are simplified only if δg and ν do not depend on k
(μ is independent of k by definition),

α0 ¼ −
1

2

Z
z

0

ν

1þ z0
dz0; ð33Þ

β3 ¼ −
2

M

Z
z

0

δg
ð1þ z0ÞH dz0; ð34Þ

β−3 ¼
M
2

Z
z

0

μ2

ð1þ z0Þ3H dz0: ð35Þ

In terms of parametrized post-Newtonian formalism, the ν
correction is Newtonian order in amplitude, the δg correc-
tion is 4 post-Newtonian (PN) order in phase, and the μ
correction is 1 PN order in phase. This does not necessarily
mean that higher PN effects are small, because these effects
are accumulated during propagation and are amplified,
proportional to propagation distance. In other words, these
higher PN terms for propagation in principle could exceed
the standard PN terms at the lower orders for wave
generation. We note that the PN order for wave propagation
has nothing to do with the PN expansion but merely refers
to frequency dependence.
If ν and δg have a specific dependence on wave number

or frequency, the corresponding PN terms change.
Extending ν and δg in powers of k with a characteristic
scale k0,

νðkÞ ¼ νð0Þ þ νð1Þ
�
k
k0

�
þ νð2Þ

�
k
k0

�
2

þ � � � ; ð36Þ

δgðkÞ ¼ δð0Þg þ δð1Þg

�
k
k0

�
þ δð2Þg

�
k
k0

�
2

þ � � � ; ð37Þ

we have the relations

α3j ¼ −
1

2

�
2

Mk0

�
j
Z

z

0

νðjÞ

1þ z0
dz0; ð38Þ

β3ðjþ1Þ ¼ −
2

M

�
2

Mk0

�
j
Z

z

0

δðjÞg

ð1þ z0ÞH dz0; ð39Þ

where j ¼ 0; 1; 2; � � �. Note that negative powers of k are
not allowed to guarantee the well-behaved low-energy
limit. The coefficients α3j and β3ðjþ1Þ correspond to 1.5j
PN order in amplitude and ð4þ 1.5jÞ PN order in phase,
respectively.

B. GIMR Phenom framework

The gIMR framework [39] is a subclass of the ppE
framework, which was used recently by the LIGO Scientific
Collaboration to test gravity in a strong field regime
[3,44,45]. This model includes deviations from GR only
in the GW phase and is parametrized as

hðfÞ ¼ eiδΦgIMRhGRðfÞ; ð40Þ

where

δΦgIMR ¼ 3

128η

X7
i¼0

ϕiδχiðπMfÞði−5Þ=3 ð41Þ

and M is the total mass, η ¼ m1m2=ðm1 þm2Þ2 is the
symmetric mass ratio, and ϕi is the ith-order PN phase in
GR [70]. The relation to the gGP framework is

3

128η

X7
i¼0

ϕiδχiðπMfÞði−5Þ=3

¼ −k
Z

z

0

�
δg

1þ z0
−

μ2

2k2ð1þ z0Þ3
�
dz0

H
: ð42Þ

Here, ν is irrelevant to the gIMR model because no
amplitude correction is considered.
If δg does not depend on k (μ is independent of k by

definition), there are simple relations:

δχ8 ¼ −
256η

3Mϕ8

Z
z

0

δg
1þ z0

dz0; ð43Þ

δχ2 ¼
32Mη

3ϕ2

Z
z

0

μ2

ð1þ z0Þ3H dz0: ð44Þ

However, the 4 PN phase in GR, ϕ8, is not completely
known yet. Therefore, we cannot connect δg to the gIMR
model exactly. In addition, ν correction is out of this gIMR
framework because amplitude modification is not consid-
ered by definition.

C. Generation effect vs propagation effect

In the above, we naively connected the gGP framework
to other frameworks and derived their correspondences.
However, from the observational point of view, data from
detectors include both generation and propagation effects,
and we need to distinguish them. There are three reasons
why we assume that a generation effect is ignored in the
gGP framework. First, a degeneracy between generation
and propagation effects is problematic only when they are
at the same PN order (with the same frequency depend-
ence). Although various theories that could alter GW
generation are listed in Refs. [24,71], all effects in gravity
modification come in at the order lower than 2 PN in phase.
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On the other hand, propagation effects come in at higher
PN order than 4 PN except for graviton mass at 1 PN.
Second, as discussed in Ref. [24], a generation effect is in
general much smaller because a propagation effect is
accumulated, proportional to the propagation distance.
Third, and most importantly, a propagation effect increases
proportionally to the source distance and can in principle be
distinguished by analyzing multiple sources. The last point
has been demonstrated in Ref. [26], distinguishing the
modification effect of GW propagation speed from intrinsic
emission time delay at a source. The above reason also
indicates that tighter constraints can be obtained once
generation and propagation tests of gravity are combined.

IV. PARAMETER ESTIMATION FROM
GW OBSERVATIONS

In this section, we investigate a simple model in Eq. (12),
in which arbitrary functions ν, cT, and μ are assumed to be
constant and Γ ¼ 0. Using this waveform, we demonstrate
with a Fisher information matrix how precisely we can
measure the model parameters from realistic observations
of GW.

A. GW waveform

For the GR waveform, hGR, we will use the phenom-
enological waveform (PhenomD) [70], which is an up-to-
date version of inspiral-merger-ringdown (IMR) waveform
for aligned-spinning (nonprecessing) BH–BH binaries with
mass ratio up to 1∶18, while for BH–NS and NS–NS
binaries, we will use the inspiral waveform up to 3.5 PN
order in phase, which is an early inspiral part of the
PhenomD waveform. This is because tidal deformation and
disruption of a NS prevent us from analytically modeling
the merger phase for a NS binary and from observing a
clean ringdown signal after the merger.
The PhenomD waveform is composed of three parts:

inspiral, intermediate, and merger-ringdown phases. The
explicit expressions are given in the Appendix, but the
overall structure is given as follows:

hGR ¼ GIAIMReiϕIMR ; ð45Þ

AIMR ¼
8<
:

Ains f ≤ fa1
Aint fa1 < f ≤ fa2
AMR fa2 < f

; ð46Þ

ϕIMR ¼
8<
:

ϕins;E þ ϕins;L f ≤ fp1
ϕint fp1 < f ≤ fp2
ϕMR fp2 < f

: ð47Þ

Here, GI is the geometrical factor for the Ith detector
defined by

GI ≡
�
1þ cos2ι

2
Fþ;IðθS;ϕS;ψÞ þ i cos ιF×;IðθS;ϕS;ψÞ

�

× e−iϕD;IðθS;ϕSÞ; ð48Þ

where ϕD;I is the Doppler phase for the Ith detector and
Fþ;I and F×;I are the Ith detector’s response functions to
each polarization mode, respectively, e.g., Ref. [72]. Note
that the transition frequencies do not coincide exactly for
amplitude and phase. The waveform of a simple model in
Eq. (12) has in total 14 parameters: the redshifted chirp
mass, M; the symmetric mass ratio, η; time and phase at
coalescence, tc and ϕc; redshift, z; symmetric and asym-
metric spins, χs and χa; the angle of orbital angular
momentum measured from the line of sight, ι; sky direction
angles of a source, θS and ϕS; polarization angle, ψ ; and
gravitational modification parameters, δg, ν, and μ. In a
simple model, modified-gravity parameters are δg, ν, and μ
and are assumed to be constant. In addition, for simplicity,
we will assume a flat Lambda cold dark matter (ΛCDM)
model and fix cosmological parameters to those determined
by the Planck satellite [73]. This is justified because we
are interested in the models that explain the accelerating
expansion of the Universe at low redshifts (z≲ 1), while we
recover the ΛCDM universe at higher redshifts (z ≫ 1) to
be consistent with the standard cosmology. The cosmo-
logical parameters,Ωm andH0, are determined by the CMB
observation at higher redshifts. Then, the luminosity dis-
tance dL is mapped into redshift z by

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ
HðzÞ ¼ H0fΩmð1þ zÞ3 þ ð1 −ΩmÞg1=2; ð49Þ

and z is directly determined from GW observations.
In what follows, we classify modified-gravity waveform

in Eq. (12) into two subclasses, the νμmodel with a redshift
prior Δz ¼ 10−3 and the δgμ model with a timing prior
Δtc ¼ 1 s, and consider them separately. This is because
there are parameter degeneracies between z and ν in the νμ
model and between tc and δg in the δgμ model. Since all
dimensional quantities in the GWwaveform, that is, masses
and frequencies, are redshifted in the same way and
degenerate with redshift, the redshift must be determined
from a combination of

ð1þ zÞ−ν=2 M
5=6

dLðzÞ
: ð50Þ

The chirp mass is determined from the GW phase, but z
and ν are completely degenerated. Therefore, we need
source redshift information by identifying a host galaxy or
detecting an electromagnetic transient counterpart. Redshift
information would be available even for BH binaries only if
they are located at low redshift, z < 0.1, and have high
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signal-to-noise ratio (SNR) or good angular resolution
so that a unique host galaxy is identified [74,75]. On the
other hand, from Eqs. (12), (45), and (A7), the quantity
constrained from an observation in the δgμ model is a
combination of

tc þ δg
dLðzÞ
1þ z

: ð51Þ

To break the degeneracy and measure δg separately, we
need to determine tc from other observational means
(z is determined from GW amplitude). If a GW event is
accompanied by an electromagnetic counterpart, tc is
estimated from the difference of arrival times between a
GW and an electromagnetic signal. Then, δg is constrained
in a certain range, depending on an uncertainty in tc [25].
To have an electromagnetic counterpart and obtain

information about tc, we need NS–NS and NS–BH binary
mergers, which are expected to accompany some electro-
magnetic emissions [76,77]. For them, since we cannot
apply the PhenomD waveform, we will use the inspiral
waveform up to 3.5 PN order in phase by limiting the
PhenomD waveform to

hGR ¼ GIA0eiϕins;E f ≤ fISCO; ð52Þ

with A0 in Eq. (A3) and fISCO ¼ ð63=2πÞ−1fM ≈ 0.0217fM,
where fM ≡M−1. Note that fISCO is twice the innermost
stable circular orbit frequency for a point mass in
Schwarzschild spacetime.

B. Numerical setup

In the following analysis, we will set fiducial parameters
to tc ¼ ϕc ¼ χs ¼ χa ¼ ν ¼ μ ¼ δg ¼ 0 and randomly
generate sky locations (θS, ϕS) and other angle parameters
(ι, ψ) for compact binaries with fixed masses and redshift.
As for GW detectors, we consider a detector network
composed of aLIGO at Hanford and Livingston and
aVIRGO, assuming they have the same noise curve as
aLIGO [78]. The SNR ρ of each source is computed from

ρ2 ¼ 4
X
I

Z
fmax

fmin

jh̃IðfÞj2
ShðfÞ

df; ð53Þ

where h̃I is the Fourier amplitude of a GW signal in Ith
detector and Sh is the noise power spectral density of a
detector. In the procedure of the source generation, we set
the SNR threshold for detection and keep only sources with
network SNR ρ > 8.
The Fisher information matrix is given by [72,79]

Γab ¼ 4
X
I

Re
Z

fmax

fmin

∂ah̃
�
I ðfÞ∂bh̃IðfÞ
ShðfÞ

df; ð54Þ

where ∂a denotes a derivative with respect to a parameter
θa. To implement a Gaussian prior on z and tc in the Fisher
matrix formalism, we add 1=ðΔ log zÞ2 and 1=ðΔtcÞ2 to the
ðlog z; log zÞ and ðtc; tcÞ components of the Fisher matrix,
respectively. This is equivalent to multiplying a likelihood
function by a prior probability distribution. We take a
standard deviation of z in the νμ model as Δz ¼ 0.001 and
tc in the δgμmodel asΔtc ¼ 1 s. The choice of the z prior is
motivated by the possible identification of a host galaxy
with a spectroscopic observation (for NS–NS and NS–BH
binary mergers, an electromagnetic transient counterpart is
also expected), while the choice of the tc prior is motivated
by the possible association of NS–NS and NS–BH binary
mergers with short gamma-ray bursts and the estimation of
the arrival time difference between a GW and gamma-ray
photons from consideration of the various emission mech-
anisms [80]. The parameter estimation errors are computed
from the inverse Fisher matrix. We define the sky locali-
zation error as

ΔΩS ≡ 2πj sin θSj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔθSÞ2ðΔϕSÞ2 − hδθSδϕSi2

q
; ð55Þ

where h� � �i stands for the ensemble average and ΔθS ≡
hðδθSÞ2i1=2 and ΔϕS ≡ hðδϕSÞ2i1=2.

C. Results for νμ model

We generated 500 sources for each class of compact
binaries: 30 M⊙BH─30 M⊙BH, 10 M⊙BH─10 M⊙BH,
10 M⊙BH─1.4 M⊙NS, and 1.4 M⊙NS─1.4 M⊙NS, at
z ¼ 0.05. As mentioned in the previous subsection, we
add a redshift prior Δz ¼ 10−3 to break the parameter
degeneracy between z and ν. The results are shown in
Fig. 2. The larger the chirp mass is, the larger the SNR is.
However, Δ logM is almost the same except for a
30 M⊙─30 M⊙ BH binary becauseM is highly correlated
with z and the error in z is constrained by a prior
Δz ¼ 10−3. Only a 30 M⊙─30 M⊙ BH binary can deter-
mineM well below the prior width. On the other hand, the
tc error is smaller for lighter binaries because their higher
merger frequencies allow us to observe them longer and to
determine phase parameters better. Other parameters, ΩS,
cos ι, η, χs, ν, and μ, basically trace the standard scaling,
∝ 1=SNR, though binaries with a large mass ratio are less
sensitive to symmetric parameters with respect to compo-
nent masses. The ν error distribution is similar to those of
ΩS and cos ι as they are correlated with ν though the GW
amplitude at Newtonian order. In other words, once the z
prior is imposed, these parameters scale with the standard
SNR scaling and heavier binaries give smaller errors in ν.
While the μ error distribution is similar to log η and χs
because μ comes in the phase term at 1 PN order and is
correlated with log η and χs in the leading terms in phase
at 1 PN and 1.5 PN orders, respectively. Since the range of
η is limited to ≤ 0.25, log η error has an upper limit.
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Consequently, the μ error of the 1.4 M⊙─1.4 M⊙ NS
binary cannot be so large.
Figure 3 shows redshift dependence of ν and μ errors by

generating 500 equal-mass BH binaries with 10 M⊙ at
z ¼ 0.05, 0.1, and 0.2. A remarkable feature is that the error
distributions of ν and μ hardly depend on redshift. This is
explained as follows. At low redshifts, the SNR is inversely

proportional to redshift, and the parameter estimation errors
become worse at far distance. On the other hand, the
modified-gravity effects are accumulated during propaga-
tion and become larger as the distance increases. Then,
these scalings compensate each other and lead to the
scaling almost independent of the source redshift. This
indicates that sources at higher redshifts are likely to be

FIG. 2. Parameter estimation errors in the νμ model with a redshift prior, Δz ¼ 10−3, showing mass dependence: 30 M⊙─30 M⊙
(red), 10 M⊙─10 M⊙ (green), 10 M⊙─1.4 M⊙ (blue), and 1.4 M⊙─1.4 M⊙ (magenta). The redshift is fixed to z ¼ 0.05.

FIG. 3. Parameter estimation errors νμ with a redshift prior,Δz ¼ 10−3, showing redshift dependence: z ¼ 0.05 (red), z ¼ 0.1 (green),
and z ¼ 0.2 (blue). The masses are fixed to 10 M⊙─10 M⊙.

TABLE III. Median and top 10% errors of parameter estimation in the νμ model when the redshift is fixed to
z ¼ 0.05.

m1ðM⊙Þ m2ðM⊙Þ Δν (median) Δν (top 10%) ΔμðeVÞ (median) ΔμðeVÞ (top 10%)

30 30 3.21 1.33 5.85 × 10−23 4.74 × 10−23

10 10 6.37 2.46 2.03 × 10−22 1.82 × 10−22

10 1.4 16.1 6.54 4.89 × 10−22 3.87 × 10−22

1.4 1.4 35.9 9.92 4.09 × 10−22 3.71 × 10−22
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used for constraining modified-gravity parameters merely
because they are more likely to be detected due to the large
comoving volume.
In Table III, the errors in ν and μ are summarized. In

conclusion, with the help of the z prior, we can achieve the
measurement of ν up to at a level of Δν ≈ 1.3 by observing
a single source.

D. Results for δgμ model

We generated 500 sources for each class of compact
binaries: 30 M⊙BH─1.4 M⊙NS, 10 M⊙BH─1.4 M⊙NS,
and 1.4 M⊙NS─1.4 M⊙NS, at z ¼ 0.05. As we mentioned
in Sec. IVA, tc and δg are completely degenerated. To break
the degeneracy, we impose the tc prior, Δtc ¼ 1 s, assum-
ing an electromagnetic counterpart. The results are shown
in Fig. 4. The dependences of the parameter estimation
errors are much more complicated in the δgμ model than in
the νμmodel because of different mass ratios. The SNRs of
30 M⊙─1.4 M⊙ and 10 M⊙─1.4 M⊙ binaries are almost
same, but the mass ratio is different by three times, leading
to different durations of an inspiral phase. That is why the
10 M⊙─1.4 M⊙ binary can better determine the mass
parameters, M and η, and graviton mass μ. The error of

δg is exactly the same for all binaries because this is
constrained merely by the tc prior.
We also studied the redshift dependence of the δg error

by generating 500 10 M⊙BH─1.4 M⊙NS binaries at
z ¼ 0.05, 0.1, and 0.2. The interesting feature is that δg
is well determined at high redshifts, in contrast to ν and μ
errors. This is because in Eq. (51) the quantity constrained
by the tc prior is

δg
dLðzÞ
1þ z

: ð56Þ

Since this term is roughly proportional to δgz at low
redshifts and is constrained to be ≲1 s, then δg is better
constrained at higher redshifts, irrespective of the SNR.
Indeed, as shown in Table IV, for 10 M⊙ BH─1.4 M⊙ NS
binaries at z ¼ 0.05, 0.1, and 0.2, the δg error scales as
4.5 × 10−17, 2.3 × 10−17, and 1.2 × 10−18 as the redshift
increases, though their median SNRs are 20.5, 11.9, and
9.1, respectively. Therefore, in the δgμ model, the tc prior
plays an essential role in determining the parameter
estimation precision of δg, while the μ error weakly
depends on a source redshift.

FIG. 4. Parameter estimation errors in the δgμ model with the tc prior, Δtc ¼ 1 s, showing mass dependence: 30 M⊙─1.4 M⊙ (red),
10 M⊙─1.4 M⊙ (green), and 1.4 M⊙─1.4 M⊙ (blue). The redshift is fixed to z ¼ 0.05. In the δg plot, the green line is completely
overlapped with the blue line.

TABLE IV. Median and top 10% errors of parameter estimation in the δgμ model.

m1ðM⊙Þ m2ðM⊙Þ z Δδg (median) Δδg (top 10%) ΔμðeVÞ (median) ΔμðeVÞ (top 10%)

30 1.4 0.05 4.46 × 10−17 4.46 × 10−17 8.53 × 10−22 6.58 × 10−22

10 1.4 0.05 4.46 × 10−17 4.46 × 10−17 4.95 × 10−22 3.86 × 10−22

1.4 1.4 0.05 4.46 × 10−17 4.46 × 10−17 4.43 × 10−22 4.00 × 10−22

10 1.4 0.1 2.26 × 10−17 2.26 × 10−17 4.77 × 10−22 3.94 × 10−22

10 1.4 0.2 1.16 × 10−17 1.16 × 10−17 4.19 × 10−22 3.89 × 10−22
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V. CURRENT CONSTRAINTS AND
FUTURE PROSPECT

A. Graviton mass μ

Currently graviton mass has been constrained by several
observations of the galaxy, the Solar System, and binary
pulsars (for a summary, see Ref. [81] and references
therein). However, the constraints from the galaxies and
the Solar System have been obtained from the observations
in static gravitational fields and cannot be applied directly
to GWs. The only mass limit from dynamical gravitational
fields had been that from binary pulsars for a long time:
mg < 7.6 × 10−20 eV [82]. Recently, aLIGO has detected
gravitational waves from BH binaries and updated the
dynamical mass bound, combining three GWevents: mg <
7.7 × 10−23 eV [3]. This is close to our best forecast for the
constraint on the graviton mass in the case of a
30 M⊙─30 M⊙ BH binary at z ¼ 0.05 in the νμ model
(mg < 4.7 × 10−23 eV). Therefore, there is no room for
significant improvement of the mass constraint in the
aLIGO era.
As expected from Eq. (11), the graviton mass bound can

be tighter at lower frequencies. There have been proposals
for the possible constraints on the graviton mass from the
future observation of a compact binary with a space-based
GW detector such as LISA [83] in the millihertz band and
DECIGO [84] in the decihertz band. By observing the
107 M⊙─106 M⊙ BH binary at 3 Gpc with LISA, one can
impose a limit mg < 4.0 × 10−26 eV [85], while observing
106 M⊙─105 M⊙ BH binary at 3 Gpc with DECIGO gives
a limit mg < 3.7 × 10−25 eV [86]. These constraints are
about 102–103 times stronger than the aLIGO bound.

B. Propagation speed cT
GW propagation speed has been constrained indirectly

from ultrahigh-energy cosmic rays. Assuming the cosmic
rays originate in our Galaxy (conservatively assuming a
short propagation distance), the absence of gravitational
Cherenkov radiation and the consequent observation of
such cosmic rays on the Earth lead to the limit on GW
speed, δg < 2 × 10−15 [87]. However, this constraint on
GW propagation speed (phase velocity) can be applied only
to a subluminal case at very high energy ∼1010 GeV or
very high frequency ∼1033 Hz. While from the observa-
tional data of the orbital decay of a binary pulsar, the
constraint on GW speed has been obtained, limiting
superluminal propagation: jδgj≲ 10−2 [88]. On the other
hand, the first three detections of GW from BH binaries
allow us for the first time to directly measure GW speed on
the Earth, based on the arrival time difference between
detectors. Cornish et al. [89] have given a new constraint on
GW group velocity, −0.42 < 1 − vg < 0.45, by combining
the first three GW events in a Bayesian analysis with a
linear prior on vg. Assuming vg is constant, one can convert

the constraint on vg into −0.42 < δg < 0.45. This con-
straint is rather weak, but robust and reliable. More
importantly, this is obtained in the high-density and
relatively strong-gravity environment on the Earth, where
the screening effect of modified gravity such as the
chameleon mechanism [90] and the Vainshtein mechanism
[91] may work.
Recently, a coincidence event between GWs from a NS

binary merger and a short gamma-ray burst, GW170817/
GRB170817A, was detected [6]. Assuming the emission of
the gamma ray is not delayed more than 10 s from that of
GW and using the observed difference of the arrival times
1.7 s and the conservative distance to the source dL ¼
26 Mpc [7], the constant propagation speed of GW is
constrained tightly so that −7 × 10−16 < δg < 3 × 10−15.
This is consistent with our best forecast for the bound on
GW speed jδgj < 1.2 × 10−17 because we assume a tc prior
Δtc ¼ 1 s and a GW source at z ¼ 0.2 (∼1 Gpc), which are
a slightly better prior and much larger distance. From the
theoretical point of view in modified-gravity theories, the
GW propagation speed is not always constant but is likely
to evolve with time. The constraints in time-dependent
cases are discussed in detail in the subsequent paper of this
series [92].

C. Amplitude damping rate ν

The amplitude damping rate ν has not yet been con-
strained well. Our best forecast for the constraint on ν is
obtained from a 30 M⊙─30 M⊙ BH binary at z ¼ 0.05 to
be jνj < 1.3, only if the source redshift is obtained by the
identification and spectroscopic observation of a host
galaxy. However, it is not easy to identify a host galaxy
with an aLIGO-like detector network because of poor
angular resolution. However, the very small number of
GW events with redshift information would be obtained
with aLIGO-like detector network at design sensitivity
[74,75]. Using multiple BH–BH binaries in a few-year
observation, ν would be able to be measured at the order of
Oð0.1Þ. On the other hand, the constraints from BH–NS or
NS–NS binaries are much weaker than those from BH–BH
binaries. Indeed, the recent detection of GW170817 was
accompanied with electromagnetic emissions in the broad
range of frequencies, and the redshift of the host galaxy was
identified successfully. However, the constraint from
GW170817 is too weak to test realistic models of modified
gravity (Δν ≈ 80) [92]. The rate of such an event is
still largely uncertain, but if a number of GW events with
source redshifts is available, the constraint can be improved
statistically by using multiple sources. Then, the bound can
be comparable to that from a single 30 M⊙─30 M⊙ BH–
BH binary if 30 BH–NS binaries or 60 NS–NS binaries are
detected with any electromagnetic counterparts.
One of the other methods proposed so far to measure

GWamplitude damping is the number count of GW sources
[93]. Once it is assumed that a binary merger rate is
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constant, the power index of GW amplitude damping, d−γL ,
is determined from a source number distribution in dis-
tance. According to Ref. [93], γ is measured at 15%
precision with 100 sources observed by aLIGO under
the assumption that binary parameters are completely
known. Since the assumptions on the merger rate and
the binary parameters are too strong in practice, it is
difficult to compare with our result. But, since Δν ∼ Δγ
at the leading order, the naive correspondence leads to the
measurement of ν with an error of 0.15. Further study is
necessary to conclude which method is better in realistic
conditions.

VI. CONCLUSION

To treat tests of gravity with GW more exhaustively and
intuitively, irrespective of the models of gravity theories,
GW sources, and background spacetimes, we have pro-
posed a new universal framework for testing gravity, based
on the propagation equation of a GW in an effective field
theory. By analytically solving the GW propagation equa-
tion, we obtained a WKB solution with arbitrary functions
of time that describe modified amplitude damping, modi-
fied propagation speed, nonzero graviton mass, and a
possible source term for a GW. Then, we have performed
a parameter estimation study with the Fisher information
matrix, showing how well the future observation of GW
can constrain the model parameters in generalized models
of GW propagation. One of the advantages to consider GW
propagation is that, even if modification on gravity is a tiny
effect, propagation from a distant source can accumulate
the effect and amplify a signal observed at a detector.
For the constant νμ model, since ν and z are completely

degenerated, we need to impose a prior on redshift. Once
the redshift information is obtained from the spectroscopic
observation of a host galaxy or an electromagnetic tran-
sient, ν can be determined at a precision of Δν ∼ 1.3 by
observing a 30 M⊙─30 M⊙ BH binary at z ¼ 0.05, while
our best forecast for the constraint on graviton mass is
mg < 4.7 × 10−23 eV with the 30 M⊙─30 M⊙ BH binary
at z ¼ 0.05. This is already close to the graviton mass
bound from aLIGO, mg < 7.7 × 10−23 eV [3], and we
cannot expect the significant improvement of the graviton
mass bound in the aLIGO era. For the constant δgμ model,
since δg and tc are completely degenerated, we need to
impose a prior on tc, which would be obtained from the
observation of an electromagnetic transient counterpart to
a GW event. Once tc information is obtained, δg can be
determined at a precision of δg ∼ 1.2 × 10−17, independent
of masses of a GW source.
We already had a GW event with its source redshift from

an electromagnetic transient counterpart and an identified
host galaxy, GW170817/GRB170817A. This event enabled
us to constrain the GW speed so tightly. In a couple of years,
such events are expected to be detected more frequently by

the GW detector network. Therefore, our universal frame-
work for generalized GW propagation will be a useful tool to
constrain gravity theories beyond GR.
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APPENDIX: PHENOMD WAVEFORM

The PhenomD waveform [70] is composed of three
parts (inspiral, intermediate, and merger-ringdown phases)
and is given by

hGR ¼ GIAIMReiϕIMR ;

with

AIMR ¼
8<
:

Ains f ≤ fa1
Aint fa1 < f ≤ fa2
AMR fa2 < f

; ðA1Þ

ϕIMR ¼
8<
:

ϕins;E þ ϕins;L f ≤ fp1
ϕint fp1 < f ≤ fp2
ϕMR fp2 < f

ðA2Þ

and GI the geometrical factor including detector response
functions and the relative orientations of Ith detector and a
GW source. Each part is described by

A0 ¼
1ffiffiffi

6
p

π2=3dL
M5=6f−7=6; ðA3Þ

Ains ¼ A0

�X6
i¼0

AiðπfÞi=3 þ
X3
i¼1

ρifðiþ6Þ=3
�
; ðA4Þ

Aint ¼ A0

X4
i¼0

δifi; ðA5Þ

AMR ¼ A0γ1
γ3fdamp

ðf − fRDÞ2 þ γ23f
2
damp

e
− γ2ðf−fRDÞ

γ3fdamp ; ðA6Þ

ϕins;E ¼ 2πftc − ϕc − π=4

þ 3

128
ðπMfÞ−5=3

X7
i¼0

φiðπMfÞi=3; ðA7Þ

ϕins;L ¼ 1

η

�
σ0 þ

X
i¼1

3

iþ 2
σifðiþ2Þ=3

�
; ðA8Þ
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ϕint ¼
1

η

�
β0 þ β1f þ β2 log f −

β3
3
f−3

�
; ðA9Þ

ϕMR ¼ 1

η

�
α0 þ α1f − α2f−1 þ

4

3
α3f3=4

þ α4tan−1
�
f − α5fRD

fdamp

��
; ðA10Þ

whereM is the total mass and is related to the chirp mass as
M ¼ Mη−3=5 and dL is luminosity distance. The explicit
expressions of the coefficients φi, αi, βi, γi, δi, σi, ρi,
and Ai are given in Ref. [70], and some of them are fixed
from matching conditions between different parts of the
waveform. The transition frequencies of the waveform
are fa1 ¼ 0.014fM and fa2 ¼ fpeak for the amplitude
and fp1 ¼ 0.018fM and fp2 ¼ 0.5fRD for the phase, where

fM ¼ M−1 ≈ 440 Hz

�
10 M⊙

M

�
; ðA11Þ

fpeak ¼
				fRD þ fdampγ3ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ22

p
− 1Þ

γ2

				; ðA12Þ

fRD ¼ fM
2π

f1.5251 − 1.1568ð1 − aefff Þ0.1292g; ðA13Þ

fdamp ¼
fRD
2Q

; ðA14Þ

Q ¼ 0.7000þ 1.4187ð1 − aefff Þ−0.4990; ðA15Þ

aefff ¼ Sþ 2
ffiffiffi
3

p
η − 4.399η2 þ 9.397η3 − 13.181η4

þ ð−0.085Sþ 0.101S2 − 1.355S3 − 0.868S4Þη
þ ð−5.837S − 2.097S2 þ 4.109S3 þ 2.064S4Þη2;

ðA16Þ

S≡ S1 þ S2
M2

¼ ð1 − 2ηÞχs þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
χa: ðA17Þ

Here, aefff and S are from Ref. [94], and fdamp, fRD, and Q
are from Ref. [95].
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