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Gravitational wave measurements of binary neutron star coalescences offer information about the
properties of the extreme matter that comprises the stars. Despite our expectation that all neutron stars in the
Universe obey the same equation of state, i.e. the properties of the matter that forms them are universal,
current tidal inference analyses treat the two bodies as independent. We present a method to measure the
effect of tidal interactions in the gravitational wave signal—and hence constrain the equation of state—that
assumes that the two binary components obey the same equation of state. Our method makes use of a
relation between the tidal deformabilities of the two stars given the ratio of their masses, a relation that has
been shown to only have a weak dependence on the equation of state. We use this to link the tidal
deformabilities of the two stars in a realistic parameter inference study while simultaneously marginalizing
over the error in the relation. This approach incorporates more physical information into our analysis, thus
leading to a better measurement of tidal effects in gravitational wave signals. Through simulated signals we
estimate that uncertainties in the measured tidal parameters are reduced by a factor of at least 2—and in
some cases up to 10—depending on the equation of state and mass ratio of the system.
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I. INTRODUCTION

The recent detection of a binary neutron star (BNS)
coalescence with gravitational waves (GWs) [1] by the
Advanced LIGO [2] and Advanced Virgo [3] detectors
offers a new way to study the properties of dense matter
[4,5]. The equation of state (EoS) of the supranuclear, cold
matter that forms NSs leaves its imprint on the GW signal
during the late stages of the inspiral [6] when the
two bodies are tidally distorted and during the merger
and postmerger phases, e.g. [7–10] and Refs. [11–13] for
reviews.
The initial tidal distortion, before the eventual disruption

of coalescing NSs by strong tidal fields caused by their
companion, can be quantified through the “tidal deform-
ability” [9,14–16]. To leading multipolar order, this param-
eter is defined through Qij ¼ −λEij, where Qij is the
induced mass quadrupole moment on a star that is subject
to an electric tidal field Eij, and λ is the tidal deformability.1

With these, ten intrinsic physical parameters characterize
the binary: the masses mi, the spin angular momenta Si,
and the dimensionless tidal deformabilities Λi ≡ λim5

i of
the two NSs, where i ∈ f1; 2g and i ¼ 1 always corre-
sponds to the more massive object. A number of studies
have exploited the fact that the tidal deformability depends
on the NS EoS to conclude that it is possible to put

constraints on the NS radius and EoS through GW
measurements [10,17–28] or by combining electromag-
netic and GW information [29–32].
However, unlike the masses and the spins of the two

binary components, their tidal deformabilities are not
independent. For a given EoS, the dimensionless tidal
deformability is a function of the mass of the NS, and this
function has certain properties. For example, all viable,
realistic EoS models proposed to date predict dimension-
less tidal deformabilties that are a decreasing function of
the NS mass for stable NS configurations. In the context of
a BNS, this means that for a given EoS the most massive
component will have the smallest Λi.
This additional “physical modeling” of the system,

however, has traditionally not been straightforward to
incorporate in a realistic parameter inference analysis, as
it would require an efficient parametrization of the ΛðmÞ
relation that is applicable to a large range of possible EoSs.
Such a parametrization was recently put forward by Yagi
and Yunes [33], who proposed a relation between the
symmetric combination Λs ≡ ðΛ2 þ Λ1Þ=2, the antisym-
metric combination Λa ≡ ðΛ2 − Λ1Þ=2, and the mass ratio
of the system q≡m2=m1 ≤ 1 that depends only weakly on
the EoS. The resulting relation ΛaðΛs; q; b⃗Þ was shown to
reproduce realistic EoSs with a relative error of ≲10%. The
quantities b⃗ are parameters whose values and errors are
determined by fitting to a range of EoSs [33].
In this study, we use the EoS-independent parametriza-

tion of Ref. [33] to study how well we can measure the tidal
1Throughout this work, we use geometric units where

G ¼ c ¼ 1.
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deformability of NSs and put constraints on their EoS. We
simulate GW signals as observed by the LIGO and Virgo
detectors and employ realistic parameter estimation to infer
the parameters of the system by imposing the ΛaðΛs; q; b⃗Þ
relation, while marginalizing over its intrinsic error. In
Fig. 1, we show the ratio of the areas of the 90% credible
regions for the measurement of Λ1 − Λ2 when we employ
the EoS-independent relation and when we assume that the
individual tidal deformabilities are independent. We present
results for three representative EoSs (H4, WFF1, MS1),
two values for the signal-to-noise ratio (SNR) of the
system, and as a function of the mass ratio of the system.
In all cases, use of the EoS-independent relation to link Λ1

and Λ2 leads to a reduction in the credible region by factors
of 2 to 10.
As a result of the increased measurement accuracy, the

relation presented here can result in an improved EoS
determination from GW data. Figure 2 shows the two-
dimensional posterior density for mi − Λi for a signal
created with the H4 EoS. In orange, we show 90% contours
from an analysis that assumes that the individual tidal
deformabilities are independent, while in green we show
the result of imposing the EoS-independent relation, while
marginalizing over its error. Contours on the left side of the
plot correspond to the lighter binary component, while
contours on the right side refer to the heavier star. For
reference we overplot the prediction from the three EoSs
studied here and show that only the true EoS is consistent
with the data at the 90% level once the EoS-independent
relation is invoked. Given its physical applicability and
improved efficiency in themeasurement of tides, we propose
that this method be used for the analysis of BNS signals.
The rest of the paper provides the details of this study.

In Sec. II, we describe the EoS-independent relation we

employ, as well as the simulated GW signals we use to
study it. In Sec. III, we present and discuss the results
of performing parameter estimation on these signals.
In Sec. IV, we conclude.

II. ANALYSIS

All stable NSs are expected to obey the same EoS
describing the properties of their dense, cold matter. In this
section, we describe a proposed relation between the tidal
deformabilities of two stars in a binary that depends only
weakly on the EoS. We also provide details about the
simulated BNS signals which we use to study the relation,
as well as the parameter estimation techniques we employ.

A. EoS-independent relations

Many NS properties, such as the radius, the moment of
inertia, or the maximum mass are determined by the EoS
and are thus uncertain. However, it has been discovered that
certain properties are related to each other in ways that are
not strongly dependent on the specific EoS, giving rise to
EoS-independent relations (see Ref. [34] for a review and
references). Among them, of particular interest in the
context of GW signals from BNSs is a relation between
the dimensionless tidal deformabilities of the two NSs and
their mass ratio. The relation can be expressed as [33]

ΛaðΛs; q; b⃗Þ ¼ FnðqÞΛs

1þP
3
i¼1

P
2
j¼1 bijq

jΛ−i=5
s

1þP
3
i¼1

P
2
j¼1 cijq

jΛ−i=5
s

; ð1Þ

FIG. 1. Ratio of the areas of the 90% credible intervals of the
Λ1 − Λ2 two-dimensional posterior probability density when the
EoS-independent relation is imposed in the analysis and when
the individual tidal deformabilities are presumed to be indepen-
dent for different EoSs, mass ratios, and an SNR of 30 (black) and
15 (red). The method proposed here leads to a reduction in the
measurement error for Λ1 − Λ2 by a factor between 2 and 10.

FIG. 2. The 90% contours of the marginalized posterior
probability density for Λi and mi for each NS when using the
EoS-independent relation (green contours) and when the com-
ponents’ tidal deformabilties are independent (orange contours)
for a signal created with the H4 EoS, an SNR of 30 and a mass
ratio of 1. Overplotted is the dimensionless tidal deformability as
a function of the mass for the 3 EoS models studied here. All
EoSs are consistent with the posteriors derived under independent
tidal deformabilties at the 90% level, but only H4 (the correct
EoS) is consistent with the data if we use the EoS-independent
relation.
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FnðqÞ ¼
1 − q10=ð3−nÞ

1þ q10=ð3−nÞ
; ð2Þ

where the parameters b⃗ ¼ fbij; cijg are determined through
fitting to realistic EoSs and n ¼ 0.743 is the average
polytropic index for these EoSs. The values of b⃗ ¼
fbij; cijg are given in Table I.
This relation has been shown to reproduce the dimen-

sionless tidal deformabilties predicted by realistic EoSs to a
relative error of ≲10%. Figure 3 offers a graphical
representation of the relation. The top panel shows

ΛaðΛsÞ for various values of the mass ratio while the
bottom panel shows ΛaðqÞ for various values of Λs. The
scatter is a depiction of the error in the EoS-independent
relation. When the binary components have equal masses
(q ¼ 1) the two NSs also have the same tidal deform-
abilities, leading to Λ1 ¼ Λ2 and Λa ¼ 0. Despite the
accuracy of the relation, its residual error can cause biased
parameter inference if not properly taken into account [35].
In the context of parameter estimation for BNS GW signals,
we use this relation to link the dimensionless tidal deform-
abilities of the two bodies, while we marginalize over the
residual error in the relation with a procedure that we
describe in Sec. II B.
Use of this EoS-independent relation not only enables us

to include physically motivated constraints in our inference,
but also allows for better measurement of the individual
tidal deformabilities. It is well known that, similar to the
chirp mass M≡ ðm1m2Þ3=5=ðm1 þm2Þ1=5, there is a
single tidal parameter measured most accurately with
GWs [25]

Λ̃≡ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
: ð3Þ

This parameter enters the waveform phase at 5PN [9] order2

and has the largest EoS-related effect on the signal. An
independent tidal parameter enters the phase at 6PN order
[16] but its effect is subdominant [25]. Similarly the spin-
induced quadrupole moment also depends on the EoS and
enters at 2PN [36] but it has a small effect on the waveform
despite its low PN order due to its small magnitude and
correlation with the spins.
Despite being the best measured tidal parameter, Λ̃ has

limited astrophysical interest and it is the Λi of the two
binary components that have the potential to reveal the NS
EoS. However, it is hard to place constraints on the
individual tidal deformabilities of the two stars if we have
only measured one tidal parameter in the form of Λ̃. The
EoS-independent relation employed here offers a way to
extract the tidal deformabilities of both binary components
since they are linked to each other through the mass ratio of
the system.

B. Error marginalization

Despite its high degree of accuracy, any residual error in
the EoS-independent relation Λa ¼ ΛaðΛs; q; b⃗Þ can jeop-
ardize inference about the correct EoS. In our analysis, we
marginalize over intrinsic error in the relation by studying
its residuals. We compute Λtrue

a predicted by various
realistic EoSs for different mass ratios and compare them
to the prediction by the EoS-independent relation Λrelation

a

TABLE I. Fitting parameters b⃗ for Eq. (1). The numerical
values for the parameters are different than the ones given in
Ref. [33] since we have factored out their parameter a. We have
verified that the resulting EoS-independent relation is the same.

b11 −27.7408 c11 −25.5593
b12 8.42358 c12 5.58527
b21 122.686 c21 92.0337
b22 −19.7551 c22 26.8586
b31 −175.496 c31 −70.247
b32 133.708 c32 −56.3076

FIG. 3. EoS-independent relation between the antisymmetric
and the symmetric combination of the tidal deformabilities (top
panel) for different mass ratios, and the mass ratio for different
values of the symmetric tidal deformability (bottom panel). The
scatter around the EoS-independent relation represents its ≲10%
relative error.

2An N-PN order term is proportional to ðu=cÞ2N relative to the
leading order term, where c is the speed of light and u some
characteristic velocity of the system.
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for the same mass ratios and values of Λs. We conserva-
tively assume that the residuals Λrelation

a − Λtrue
a obey a

Gaussian distribution with a mean μðΛs; qÞ and standard
deviation σðΛs; qÞ and fit for the mean and standard
deviation to obtain

μðΛs; qÞ ¼
μΛs

ðΛsÞ þ μqðqÞ
2

; ð4Þ

σ2ðΛs; qÞ ¼ σ2Λs
ðΛsÞ þ σ2qðqÞ; ð5Þ

where

μΛs
ðxÞ ¼ μ1

x2
þ μ2

x
þ μ3; ð6Þ

μqðxÞ ¼ μ4x2 þ μ5xþ μ6; ð7Þ

σΛs
ðxÞ ¼ σ1x

ffiffiffi
x

p þ σ2xþ σ3
ffiffiffi
x

p þ σ4; ð8Þ

σqðxÞ ¼ σ5x2 þ σ6xþ σ7: ð9Þ

The fitting coefficients μi and σi are provided in Table II.
In practice, we select a value of q andΛs in the parameter

estimation sampling algorithm and then we compute Λa
though

Λa ¼ ΛaðΛs; q; b⃗Þ þN ðμðΛs; qÞ; σðΛs; qÞÞ; ð10Þ

where N ðμ; σÞ is a normal distribution with mean μ and
standard deviation σ. We note that this error marginalization
procedure ensures the recovery of unbiased posterior even for
extremely loud signals. In these cases, the statistical meas-
urement uncertainty of tidal parameters is negligible and the
overall uncertainty budget is dominated by the systematic
uncertainty due to the EoS-independent relation. In other
words, use of the EoS-independent relation limits the
measurement uncertainty of the tidal parameters to be above
∼10% regardless of the signal strength.
In Sec. III, we use the procedure described above to

marginalize over the intrinsic error in the EoS-independent
relation and show that we retrieve unbiased measurements
of the tidal deformabilities.

C. Simulated signals

To quantify the improvement in the measurement of the
tidal deformability due to EoS-independent relations we
study simulated GW signals emitted from BNS coalescen-
ces. We assume that the signals are detected by a network of
two LIGOs and Virgo at design sensitivity [37] with no
calibration uncertainties or added Gaussian noise. For
simplicity we study nonspinning systems with a detector
frame chirp mass of 1.17M⊙ and 4 different values of the
mass ratio q ∈ f1; 0.85; 0.65; 0.5g. We choose the systems’
orientation such that the orbital angular momentum points
towards the detectors and the systems are located directly
overhead of the LIGO–Livingston detector. We scale the
distance to the source such that we achieve an SNR of
either 15 or 30 and present our results in terms of the SNR.
We select the waveform model IMRPhenomD_

NRTidal both for the generation and for the analysis
of the signals. IMRPhenomD_NRTidal is based on
the phenomenological inspiral-merger-ringdown model
IMRPhenomD originally constructed for BBH systems

TABLE II. Fitting coefficients of Eqs. (6)–(9) for the relative
error in the EoS-independent relation.

μ1 137.1252739 σ1 −0.0000739
μ2 −32.8026613 σ2 0.0103778
μ3 0.5168637 σ3 0.4581717
μ4 −11.2765281 σ4 −0.8341913
μ5 14.9499544 σ5 −201.4323962
μ6 −4.6638851 σ6 273.9268276

σ7 −71.2342246

FIG. 4. Prior probability density distributions for the various
dimensionless tidal deformability parameters. The top panel
shows the prior densities when employing the EoS-independent
relation. The Λs prior is chosen to be uniform between 0 and
5000, while the prior of the other tidal parameters is informed by
the Λa ¼ ΛaðΛs; q; b⃗Þ relation. The prior on the mass ratio is the
result of flat priors on the individual masses. The bottom panel
shows the prior densities for the analyses without the EoS-
independent relation included. Here the Λ1 and Λ2 priors are
chosen to be uniform between 0 and 10 000, which in turn defines
the remaining tidal parameters.
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and assuming that the objects’ spins remain aligned with
the orbital angular momentum [38,39].3 Tidal effects are
then included on top of the BBH waveform [44], calibrated
through BNS numerical relativity simulations [45]. The
resulting model [40] has been used for the analysis of
GW170817 [1].
We then use the Bayesian Inference code

LALInference [46] to sample the joint posterior distri-
bution of the system parameters.We assume flat priors on the
component masses. For the dimensionless spin components
along the orbital angular momentum, χz;i ¼ Sz;i=m2

i , we use

a prior distribution which results from assuming spins
uniform inmagnitudewithin the range (0,0.05) and isotropic
in direction; projecting these spins onto the orbital angular
momentum gives a prior for χz;i peaked around zero. The
priors for the dimensionless tidal deformabilities differ
according to the assumptions we make about them. When
we do not assume any relation between the components’
dimensionless tidal deformabilities we choose flat, and
independent, priors for each Λi in (0,10 000). When, on
the other hand, we employ the Λa ¼ ΛaðΛs; q; b⃗Þ EoS-
independent relation, we use a prior uniform in Λs, now in
(0,5000) with the additional constraints of 0 ≤ Λ1 ≤ Λ2. In
Fig. 4, we show the priors for the various tidal deformability
parameters.
We study three EoSs with different predictions for the

radii of NSs: (i) WFF1 [47] is a soft EoS resulting in NS
with a radius of about 10 km; (ii) H4 [48] is a stiffer
EoS resulting in NS with a radius of about 14 km. It is

FIG. 5. Two-dimensional and one-dimensional marginalized posterior density function for the dimensionless tidal deformabilities of
the two stars for signals of SNR 30, the H4 (top row), MS1 (middle row), and WFF1 (bottom row) EoSs and q ¼ 1 (first column),
q ¼ 0.85 (second column), q ¼ 0.65 (third column), and q ¼ 0.5 (fourth column). The black dot and black dashed lines indicate the
injected values in each plot. Each signal is analyzed with (green lines) and without (orange lines) the EoS-independent relation between
Λa and Λs and the contours shown represent the 50% and 90% credible regions. In all cases, the EoS-independent relation leads to better
measurement of the tidal parameters.

3At the outset of this study, no waveform model included both
the effects of spin-precession and tidal effects calibrated to
numerical relativity results. Such a model has recently become
available [40], and we expect that its use in future work will
improve the measurement of the masses and the spins of the
stars [41–43].
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marginally consistent with GW170817 at the 90% level [1];
(iii) MS1 [49,50] is a stiff EoS resulting in NS with a radius
of about 14.5 km and it is inconsistent with GW170817.
Even though MS1 it has been ruled out observationally and
WFF1 has been suggested to be inconsistent with nuclear
calculations [51], we use them as extreme examples of stiff
and soft EoSs. The dimensionless tidal deformability as a
function of the NS mass for these three EoSs is presented
in Fig. 2.

III. RESULTS

Each simulated signal is analyzed with and without the
EoS-independent relation between the tidal deformabilities
of the two stars. In this section, we present our results and
demonstrate that the use of the EoS-independent relation
improves the measurement of tides.

A. Measurement of tidal deformabilities

Figure 5 shows the marginalized posterior density
function for the tidal deformabilities of the two NSs for
signals created with each EoSs, an SNR of 30, and various
mass ratios. In orange, we show the resulting posterior from

an analysis that assumes that the tidal deformabilities and
the EoSs of the two coalescing NSs are independent, while
the results in green stem from the analysis that incorporates
the EoS-independent relation Λa ¼ ΛaðΛs; q; b⃗Þ, while
marginalizing over the error in said relation.
In all cases, the injected, true values (black dots for

the two-dimensional plots, dashed lines for the one-
dimensional posterior) fall within the posteriors calculated
under the EoS-independent relation. This suggests that the
error marginalization described in Sec. II B is effective in
removing any systematic biases in the results. Note that the
true values usually do not fall exactly on the peak of their
marginalized posterior due to parameter correlations, espe-
cially in the cases where the injected value is at the edge of
the prior range (q ¼ 1 cases).
Unlike the orange contours, the green posteriors do not

extend into the unphysical Λ1 > Λ2 region. Moreover, the
green contours are less extended than the orange ones
even in the Λ2 > Λ1 region, overall resulting in a tighter
measurement of the individual tidal deformabilities. For
example, in the q ¼ 1 case with H4 (top left panel) the use
of the EoS-independent relation between Λa and Λs
reduces the measurement uncertainty of Λ1 and Λ2 by

FIG. 6. Similar to Fig. 5 but for simulated signals with SNR 15.
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about a half. As the mass ratio of the system decreases, this
improvement becomes more dramatic, reaching an order-
of-magnitude improvement in the measurement accuracy
for a mass ratio of 0.5 (top right panel).
Besides better measurement of the tidal parameters, the

EoS-independent relation can be used to place better upper
bounds in the case where tidal effects are too small to
measure. The bottom row of Fig. 5 shows results for the
soft EoS WFF1. Despite not leading to an unambiguous
measurement of tidal effects for all mass ratios
(Λ1 ¼ Λ2 ¼ 0 is consistent with this signal at the 90%
credible level), the EoS-independent relation leads to a
tighter upper bound on the tidal deformabilities and, as a
result, on the NS radius.
We arrive at qualitatively similar conclusions from our

set of injections with an SNR 15, as also shown in Fig. 6. In
all cases, the EoS-independent relation leads to a better
measurement of the tidal parameters, though the absolute
magnitude of the credible regions and credible intervals is
larger owing to the reduced signal strength.

B. Distinguishing between BNSs and NSBHs

The middle row of Fig. 5 shows results for the MS1 EoS,
a stiff EoS that was shown to be inconsistent with
GW170817 [1]. In the context of this study, therefore,
we use it only for demonstration and find that the larger the
NS radius, the easier it is to detect tidal effects in the
observed GW. Examining the results for MS1, it is apparent
that despite the large SNR of the signal and the large tidal
effects present in the waveform, the orange contours are
consistent with an NSBH system, i.e. at least one of the two
binary components is consistent with Λi ¼ 0 at the 50%
level. This means that it will be hard to distinguish between
BNS and NSBH systems with GWs alone if we assume that
Λ1 and Λ2 are independent [52].
The use of the EoS-independent relation offers an

opportunity to separate BNS and NSBH systems on the
basis of tidal measurements alone. In the context of
Bayesian Inference, selection between competing models
for the data—in this case the BNS and the NSBHmodels—
amounts to comparing the probability that each model is
correct given common data. Assuming equal prior odds for
each model, the ratio of the probabilities is the ratio of the
evidence for each model, termed the “Bayes factor.”While
we do not studyNSBH systems here, we have computed the
evidenceZ for theBNSmodel assuming either independent
tides, Zind, or by imposing the EoS-independent relation,
Zrel. In all cases, we found Zrel=Zind ∼Oð10Þ. This
suggests that our analysis will lead to larger Bayes
Factors in favor of the BNS interpretation of these signals,
making it easier to distinguishing them from NSBHs.
We leave a detailed study of the Bayes Factors in favor
of BNSorNSBH systems for different systems andEoSs for
future work.

C. Measurement of Λ̃ and the mass ratio

In Fig. 7, we show the marginalized posterior density for
Λ̃, the best measured tidal parameter. We present results for
signals produced by equal-mass NSs, the three EoS studied
here at SNR 15 (top panel) and 30 (bottom panel). Despite
Λ̃ being the best measured tidal parameter, the SNR 15
posteriors are mildly affected by the use of the EoS-
independent relation. However, for larger SNR signals
the Λ̃ posterior is only very mildly affected by the EoS-
independent relation, as expected from a parameter whose
measurement is strongly informed by the data.
As discussed in Sec. II C, part of the difference between

the posteriors obtained with the different methods can be
attributed to the fact that the two analysis assume different
priors for the tidal parameters. As expected from the shape
of the tidal priors in Fig. 4, the Λ̃ posterior shifts towards
lower values when we use the Λa ¼ ΛaðΛs; q; b⃗Þ relation
and assume a BNS system. However the effect of the prior
is smaller in the case of the well measured parameter Λ̃ than
the individual tidal parameters in Fig. 5.

FIG. 7. Marginalized posterior for Λ̃ for various EoSs and SNR
15 (top panel) and 30 (bottom panel), and a mass ratio of 1 when
assuming that the individual tidal deformabilities are independent
(dashed lines), and when we employ the EoS-independent
relation (solid lines). For low SNR there are apparent differences
between the Λ̃ posteriors obtained under there two approaches. At
higher SNR both posteriors are very similar, as expected from the
fact that Λ̃ is a well-measured parameter.
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Besides the tidal parameters, the mass ratio of the system
appears in the EoS-independent relation as well. Despite
that, its measurability is not expected to be significantly
affected by the use of the relation, since it first enters at 1PN
order in the waveform phase, a total of 4PN orders before
the tidal parameters. Therefore our ability to measure it
should not rely on the tidal measurement.
Figure 8 explores this by showing the posterior for the

mass ratio for signals created with the H4 EoS and different
SNRs and injected mass ratios. The top panel shows results
for an SNR of 15, suggesting that the mass ratio is only
mildly affected by the use of the EoS-independent relation
(difference between solid and dashed lines of the same
color). Once the SNR of the signal is increased to 30
(bottom panel) the mass ratio posteriors are very similar.
This indeed shows that the mass ratio is measured from a
lower PN order in the GW phase than the tidal parameters.

IV. CONCLUSIONS

We have presented and studied a method to improve the
measurement of tidal effects from GW signals. Our
approach utilizes an EoS-independent relation between

the tidal deformabilities of the two binary components
given the ratio of their masses. The residual error in this
relation is marginalized over so as to avoid any systematic
biases in tidal inference. We have tested this method on
simulated BNS signals for various EoSs and mass ratios,
finding an improvement in the measurement of the indi-
vidual tidal parameters by up to an order of magnitude,
depending on the EoS and the mass ratio. Simultaneously,
we find an increased evidence for the BNS model using the
EoS-independent relation, suggesting that it facilitates
distinguishing between BNS and NSBH systems.
Besides the systematic bias due to the use of the EoS-

independent relation, parameter estimation of a real signal
could potentially suffer from additional systematic effects
due to any mismatch between our waveform models and the
signals. In the case of simulated signals, such as the ones
studied here, this is avoided by the fact that we use
the same waveform model both for the creation and for
the analysis of said signals. The waveform model we use,
IMRPhenomD_NRTidal, has been shown to reliably
reproduce results from numerical simulations of BNS merg-
ers [40], however it still neglects a number of physical effects,
such as spin-precession and the monopole-quadrupole inter-
action [36]. In the case of a real signal, a way to assess the
effect of model inaccuracies is to perform analysis with a
number of waveform models, as for example in Ref. [1].
The monopole-quadrupole term, in particular, arises due

to the interaction between the monopole of one NS and the
spin-induced quadrupole moment of the other NS. Despite
entering at a lower PN order than the tidal deformability
(2PN) it is proportional to the spin squared, which is in
general a small quantity given that NSs in binaries are
expected to be spinning slowly. If this expectation is
violated, then omitting this term could induce considerable
biases [53], which is why in this study we employ the
small-spin prior of Ref. [1]. We note that the effect of
the monopole-quadrupole term could be seamlessly incor-
porated in our analysis through use of another EoS-
independent relation, this time between the quadrupole
moment and the tidal deformability of a NS [54,55], as has
already been done in a number of studies [24,28].
Besides the EoS-independent relation between the indi-

vidual tidal parameters and the mass ratio studied here, a
number of other such universal relations have been pro-
posed. One example is the relation between the tidal
deformability and the quadrupole moment described above.
A second example consists of a relation between the tidal
deformability of a star and its compactness C≡m=R,
where R is the NS radius [56,57]. Use of this relation would
enable us to translate our results for the measurement of
the tidal parameters to a direct measurement of the two-
dimensional mass-radius posterior. In this study, we choose
to incorporate only the relation between the individual
tides, as we are interested in studying its implications
without additional assumptions. Incorporation of additional

FIG. 8. Marginalized posterior density for the mass ratio for
H4, SNR 15 (top) and SNR 30 (bottom) when assuming that the
individual tidal deformabilities are independent (dashed lines),
and when we employ the EoS-independent relation (solid lines).
The vertical black lines denote the injected values for the mass
ratios (the q ¼ 1 line is not discernible).
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universal relations (and marginalization of their intrinsic
errors) is left for future study.
As a final remark, we note that the study presented here

makes use of simulated GW signals, without any provision
for realistic GW detector noise. In reality, the detector noise
can violate the assumptions of stationarity and Gaussianity
making inference less efficient. Indeed, this was the case
for GW170817, whose signal coincided with an nonas-
trophysical transient, known as a glitch. The study pre-
sented here assumes that such obstacles can be efficiently

dealt with in a realistic detection scenario similarly to
GW170817 [1,58].
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