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We present a new computational framework for the Galerkin-collocation method for double domain in
the context of ADM 3þ 1 approach in numerical relativity. This work enables us to perform high
resolution calculations for initial sets of two arbitrary black holes. We use the Bowen-York method for
binary systems and the puncture method to solve the Hamiltonian constraint. The nonlinear numerical code
solves the set of equations for the spectral modes using the standard Newton-Raphson method, LU
decomposition and Gaussian quadratures. We show convergence of our code for the conformal factor and
the ADM mass. Thus, we display features of the conformal factor for different masses, spins and linear
momenta.
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I. INTRODUCTION

The recent direct observation of gravitational waves by
the LIGO-Virgo consortium [1–4] represents an enormous
breakthrough the researchers have pursued for decades.
The observed wave template was generated by a binary
black hole (BBH) system as predicted by the numerical
simulations. In fact, numerical general relativity was crucial
after a long effort of theoretical developments towards the
obtention of a stable full dynamics of a BBH [5–7]. In this
context, it is necessary a precise determination of the initial
spatial hypersurface which contains the desired astrophysi-
cal configuration.
We report here a new domain decomposition algorithm

(DD) based on the Galerkin-collocation (GC) method [8] to
obtain general initial data for a BBH system. In the present
version, we are going to restrict ourselves to the Bowen-
York initial data [9] with the puncture [10] wormhole
foliations representing the black holes, but it can be
extended to the case of puncture trumpet representation
[11,12]. Albeit the existence of other spectral DD codes due
to Grandclement et al. [13], Pfeiffer [14,15], Ansorg
[16,17] and Ossokine et al. [18], we believe that the
present approach is a viable and valid alternative to the

established codes. In the sequence, we present unique
aspects of the GC-DD method that makes it structurally
simple and at the same time accurate.
The present GC-DD algorithm is a direct extension of the

single domain scheme [19] we have developed recently to
describe the initial data for single and binary black holes
punctures in the wormhole or trumpet representations.
We highlight some of the distinct aspects of the GC
domain decomposition algorithm. The basis functions
are established such that each component satisfies the
boundary conditions in each subdomain. We have intro-
duced two subdomains covered by the standard spherical
coordinates (r, θ, ϕ) designated by D1∶ 0 < r ≤ r0 and
D2∶ r0 ≤ r < ∞. In this scheme, the angular coordinates
of the collocation points are common to both subdomains,
although we can to chose different numbers of collocation
points in each domain. We have selected the spherical
harmonics as the angular basis functions. Another distinct
feature of the algorithm is the particular way we have
compactified the spatial domain (cf. Fig. 1).
We have organized the paper as follows. In Sec. II, we

have briefly described the main aspects of the initial data
construction of spinning-boosted binaries of black holes.
Section III deals with the essential features of the GC-DD
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method to solve the Hamiltonian constraint. The numerical
implementation of the code is described in Sec. IV. We have
presented in Sec. V the validation of the algorithmwith three
examples of binary systems. The first and the second are
equalmasses boosted binary black holes in the axisymmetric
and three-dimensional configurations, respectively.Whereas
in the last example we have treated a more general binary of
spinning-boosted black holes of different puncture masses.
In all cases, we have exhibited the convergence tests. We
summarize to conclude, and we discuss of possible appli-
cations of the algorithm considered here.

II. BASIC EQUATIONS

In general relativity the initial data problem deals with
the characterization of the gravitational and matter fields in
a given initial spatial hypersurface. Equivalently, this task
entails the establishment of an initial hypersurface con-
taining plausible astrophysical systems such as binary
black holes, binary of neutron stars or a binary formed
by a neutron star and a black hole. According to the 3þ 1
formulation of the general relativity [20,21], the spacetime
is foliated by a family of spatial slices Σ. Assuming the
absence of matter fields, we have to solve the Hamiltonian
and momentum constraint equations for γij, Kij—the
3-metric and the extrinsic curvature associated with the
initial slice, respectively—after providing their correspond-
ing freely specifiable components.
The Hamiltonian and momentum constraints have the

following forms that encompass the above requirements [22]

8∇̄2Ψ −ΨR̄ −
2

3
Ψ5K2 þ Ψ−7ĀijĀij ¼ 0; ð1Þ

∇̄jĀij −
2

3
Ψ6γ̄ij∇jK ¼ 0; ð2Þ

where γ̄ij is the known spatial background metric that is
related to γij through the conformal transformation

γij ¼ Ψ4γ̄ij: ð3Þ

Then, all barred quantities are related to the background
metric and

Aij ¼ Ψ−2Āij ð4Þ
is the traceless part of the extrinsic curvature related to its
counterpart of the background metric.
The simplest choice for the background spatial metric is

γ̄ij ¼ ηij and together with the maximal slicing condition,
K ¼ 0, provide the decoupling of Eqs. (1) and (2). As a
consequence, the momentum constraint becomes a linear
equation allowing to obtain the exact solutions for the
components of Āij corresponding to spinning and boosted
black holes. This scheme characterizes the well known
Bowen-York initial data [9].
To describe binary black holes, we have considered the

puncture method [10] in which the singularities present in
the conformal factor are described analytically by repre-
senting each black hole in the wormhole or trumpet slices.
In the first case, the ansatz for the conformal factor is

Ψ ¼ 1þ 1

2

�
m1

rC1

þ m1

rC2

�
þ u; ð5Þ

where m1 and m2 are the puncture masses, rCi
¼ jr −Cij

denotes the coordinate distance to the center of the black
hole located at r ¼ Ci and u is a regular function
determined after solving the Hamiltonian constraint.
In the single domain Galerkin-collocation algorithm

[19], we have adopted spherical coordinates (r, θ, ϕ) to
cover the whole spatial domain. In the present two domain
approach, we have used the same spherical coordinates in
both domains instead of alternative coordinate systems
as in Refs. [14–17]. In this case, the regular function
u ¼ uðr; θ;ϕÞ satisfies the Robin boundary condition

uðr; θ;ϕÞ ¼ Oðr−1Þ; ð6Þ

for a large distance from the binary.
After substituting the conformal factor given by Eq. (5)

into the Hamiltonian constraint, we obtain

1

r2
∂
∂r

�
r2
∂u
∂r

�
þ 1

r2 sin θ
∂
∂θ

�
sin θ

∂u
∂θ

�
þ 1

r2sin2θ
∂2u
∂ϕ2

þ ĀijĀij

8
h
1þ 1

2

�
m1

rC1
þ m2

rC2

�
þ u

i
7
¼ 0: ð7Þ

The first three terms correspond to the Laplacian of the
function u in spherical coordinates, and ĀijĀij depends
upon the black holes have linear and angular momenta. Due
to the linearity of the momentum constraint equation, the
total background extrinsic curvature corresponding to an
arbitrary binary black hole is

FIG. 1. Scheme showing the computational subdomains
spanned by the coordinates xðAÞ, A ¼ 1, 2 and the corresponding
maps that define them.
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Āij ¼ Āij
C1P1

þ Āij
C1S1

þ Āij
C2P2

þ Āij
C2S2

; ð8Þ

where Āij
CkPk

and Āij
CkSk

correspond, respectively, to the
background extrinsic curvature of the puncture located at
r ¼ Ck, k ¼ 1, 2, carrying linear momentum Pk and spin
Sk. For the sake of completeness, we have [9,23]

Āij
CkPk

¼ 3

2rCk

½2Pði
ðkÞn

jÞ
ðkÞ − ðηij − niðkÞn

j
ðkÞÞn:P� ð9Þ

Āij
CkSk

¼ 6

r3Ck

nðiðkÞϵ
jÞ
mpSmðkÞn

p
ðkÞ; ð10Þ

where k ¼ 1, 2 indicate each black hole and
nk ¼ ðr −CkÞ=rCk

is the normal vector to rCk
.

To complete this section we introduce the ADMmass for
the arbitrary binary black holes [23]

MADM ¼ −
1

2π

Z
∂Σ∞

dS̄i∇̄iψ ; ð11Þ

where ∂Σ∞ is a surface at infinity on the spacelike foliation
Σ; dS̄i is an outward surface element. By assuming
spherical coordinates and the conformal factor given by
Eq. (5), we obtain

MADM ¼ m1 þm2 −
1

2π

Z
Ω
lim
r→∞

�
r2
∂u
∂r

�
dΩ; ð12Þ

where dΩ ¼ sin θdθdϕ.

III. THE GALERKIN-COLLOCATION
DECOMPOSITION METHOD

We present here the GC domain decomposition algo-
rithm to obtain initial data representing binary black holes.
As the first step, we have divided the spatial domain
into two subdomains denoted by D1∶ 0 < r ≤ r0 and
D2∶ r0 ≤ r < ∞, where r0 indicates the interface of these
two non-overlapping subdomains. As a consequence, both
subdomains share the same spherical angular coordinates
(θ, ϕ) which simplifies the implementation of the algorithm
considerably.
The centerpiece of the algorithm is the spectral approx-

imations of the regular functions uðAÞðr; θ;ϕÞ given by

uðAÞ ¼
XNðAÞ
x ;Ny

k;l¼0

Xl

m¼−l
cðAÞklmχ

ðAÞ
k ðrÞYlmðθ;ϕÞ: ð13Þ

where A ¼ 1, 2 denotes the subdomains D1, D2, cðAÞklm

represents the unknown coefficients or modes, NðAÞ
x and Ny

are, respectively, the radial and angular truncation orders

that limit the number of terms in the above expansion. The
angular patch has the spherical harmonics, Ylmðθ;ϕÞ, as
the basis functions that are common to both domains. The
choice of spherical coordinates together with the adoption
of spherical harmonics basis functions are quite natural,
and as we are going to show, are computationally very

efficient and accurate. The radial basis functions χðAÞk ðrÞ are
defined following the prescription of the Galerkin method
[24,25], in the sense of each function must satisfy the
boundary conditions. Usually, they are obtained by taking
suitable linear combinations of the Chebyshev polynomials
as we are going to describe.
Before defining the radial basis functions, it is necessary

to introduce the computational subdomains. We have
considered this feature an innovative part in constructing
the algorithm. The Fig. 1 illustrates the mapping we have
adopted. First, the entire radial domain 0 ≤ r < ∞ is
mapped onto the interval −1 ≤ x < 1 through the algebraic
map [25]

r ¼ L0

ð1þ xÞ
1 − x

; ð14Þ

where L0 is the map parameter. The subdomainsD1 andD2

are now characterized by −1 ≤ x ≤ x0 and x0 ≤ x < 1,
respectively; x0 is related to the interface radial coordinate
r0 by r0 ¼ L0ð1þ x0Þ=ð1 − x0Þ. And second, we further
define linear transformations xðAÞ ¼ xðAÞðxÞ, A ¼ 1, 2 for
the new computational domains for D1 and D2, respec-
tively, such that −1 ≤ xðAÞ ≤ 1 (cf. Fig. 1). The collocation

points are designated by xðAÞk and mapped back to rk in the
radial physical domain.
We are now in conditions to define the radial basis

functions in each subdomain. With respect toD1, we define

χð1Þk ðrÞ by

χð1Þk ðrÞ ¼ Tk

�
xð1Þ ¼ rþ 2L0r=r0 − L0

rþ L0

�
; ð15Þ

where TkðxÞ is the Chebyshev polynomial of kth order, and
0 ≤ r ≤ r0 corresponds to −1 ≤ xð1Þ ≤ 1. For the second
domain D2, we have

χð2Þk ðrÞ ¼ 1

2
ðTLkþ1ðrÞ − TLkðrÞÞ; ð16Þ

where TLkðrÞ is the redefined Chebyshev polynomial of
kth order according to

TLkðrÞ ¼ Tk

�
xð2Þ ¼ r − 2r0 þ L0

rþ L0

�
: ð17Þ

In this case the interval r0 ≤ r < ∞ is mapped out to
−1 ≤ xð2Þ < 1. With the definition (15) it can be shown that
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each basis function behaves asymptotically as χð2Þk ðrÞ ¼
Oðr−1Þ. Therefore, we obtain the following asymptotic
expression in the second domain

uð2Þðr; θ;ϕÞ ¼ δmðθ;ϕÞ
r

þO
�
1

r2

�
; ð18Þ

where the function δmðθ;ϕÞ embodies the contribution to
the ADM mass due to presence of angular and linear
momenta. We can determine δmðθ;ϕÞ from

δmðθ;ϕÞ ¼ − lim
r→∞

r2
∂uð2Þ
∂r ; ð19Þ

and the calculation of the ADM mass using Eq. (12)
becomes straightforward.
The spherical harmonics are complex functions implying

that the coefficients cðAÞklm must be complex. Since the
conformal factor is a real function, the real and imaginary

parts of cðAÞklm satisfy the following symmetry relations

cðAÞ�kl−m ¼ ð−1Þ−mcðAÞklm ð20Þ

due to Y�
l−mðθ;ϕÞ ¼ ð−1Þ−mYlmðθ;ϕÞ. Consequently, the

number of independent coefficients in each domain is

ðNðAÞ
x þ 1ÞðNy þ 1Þ2.
We have to guarantee that the spectral approximations of

uð1Þðr; θ;ϕÞ and uð2Þðr; θ;ϕÞ given by expression (13)
represent the same function at the match point of the
domain. This is done by imposing the continuity at the
interface r ¼ r0 that separates both subdomains through
the following matching conditions

uð1Þðr0; θ;ϕÞ ¼ uð2Þðr0; θ;ϕÞ�∂uð1Þ
∂r

�
r¼r0

¼
�∂uð2Þ

∂r
�

r¼r0

: ð21Þ

We now establish the residual equation associated with
the Hamiltonian constraint in each domain by substituting
the spectral approximations represented by Eq. (13) into the
Hamiltonian constraint (7). In addition, we have taken into
account the differential equation for the spherical harmon-
ics to get rid of the derivatives with respect to θ and ϕ. We
have arrived to the following expression

ResðAÞðr; θ;ϕÞ ¼
X
k;n;p

cðAÞknp

�
1

r2
∂
∂r

�
r2
∂χðAÞk

∂r
�
−
nðnþ 1Þ

r2
χðAÞk

�
Ynpðθ;ϕÞ þ

ðĀijĀijÞðAÞ
8
h
uðAÞðr; θ;ϕÞ þ 1

2

�
m1

rC1
þ m2

rC2

�i
7

ð22Þ

with A ¼ 1, 2 corresponding to the domains D1 and D2,
respectively.
The next and final step is to describe the procedure to

obtain de coefficients cðAÞklm. We have followed the imple-
mentation of one domain [19] straightforwardly. From the
method of weighted residuals [26], these coefficients are
evaluated with the condition of forcing the residual equa-
tion to be zero in an average sense. It means that

hResðAÞ; RðAÞ
j ðrÞSlmðθ;ϕÞi

≡
Z
DðAÞ

ResðAÞRðAÞ�
j ðrÞS�ðθ;ϕÞlmwðAÞ

r wθwϕr2drdΩ ¼ 0;

ð23Þ

where the functions RðAÞ
j ðrÞ and Slmðθ;ϕÞ are called the test

functions while wðAÞ
r , wθ and wϕ are the corresponding

weights. In both domains we choose the radial test function
as prescribed by the Collocation method [25,27]:

RðAÞ
j ðrÞ ¼ δðr − rðAÞj Þ; ð24Þ

which is the delta of Dirac function, rðAÞj , A ¼ 1, 2,
represents the collocation points defined in each domain

and wðAÞ
r ¼ 1. Following the Galerkin method we identify

the angular test function Slmðθ;ϕÞ as the spherical har-
monics and as a consequence wθ ¼ wϕ ¼ 1. Therefore
Eq. (23) becomes

hResðAÞðr; θ;ϕÞ; Ylmðθ;ϕÞir¼rðAÞj
¼ 0; ð25Þ

where A ¼ 1, 2, l ¼ 0; 1; ::; Ny and m ¼ 0; 1; ::; l. As we
are going to show, the number of radial collocation points
defined in each domain provides the correct number of
equations for the modes.
Before going further, we need to consider the matching

conditions in respect to the approximation adopted above.
The corresponding residuals Res1ðθ;ϕÞ ¼ uð1Þðr0; θ;ϕÞ −
uð2Þðr0; θ;ϕÞ and Res2ðθ;ϕÞ ¼ ð∂uð1Þ=∂r − ∂uð2Þ=∂rÞr¼r0
are approximated as

hRes1;Ylmi¼
XNð1Þ

x

k¼0

cð1Þklmχ
ð1Þ
k ðr0Þ−

XNð2Þ
x

k¼0

cð2Þklmχ
ð2Þ
k ðr0Þ¼ 0

hRes2;Ylmi¼
XNð1Þ

x

k¼0

cð1Þklm

�
dχð1Þk

dr

�
r0

−
XNð2Þ

x

k¼0

cð2Þklm

�
dχð1Þk

dr

�
r0

¼ 0;

ð26Þ
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where l ¼ 0; 1; ::; Ny and m ¼ 0; ::; l. Notice that these
expressions result from exact integrations on the angular
domain [cf. Eq. (23)] due to the orthogonality of the
spherical harmonics. Thus, we ended up with 2ðNy þ 1Þ2
linear relations of the coefficients of both domains.
At this point we present the radial collocation points at

each domain. By taking into account the matching con-
ditions, we have ðNð1Þ

x þ Nð2Þ
x ÞðNy þ 1Þ2 unknown coef-

ficients in both domains, therefore it is necessary the same
number of equations resulting from Eq. (25). Thus, we need

NðAÞ
x radial collocation points in each computational sub-

domain given by

xj ¼ cos

�ð2jþ 1Þπ
2NðAÞ

x

�
; j ¼ 0; 1; ::; NðAÞ

x − 1; ð27Þ

and the corresponding radial points in the corresponding
physical subdomain are

rð1Þj ¼ L0ð1þ xjÞ
2L0=r0 þ 1 − xj

; domainD1 ð28Þ

rð2Þj ¼ 2r0 þ L0ð1þ xjÞ
1 − xj

; domainD2 ð29Þ

with j ¼ 0; 2.:; NðAÞ
x − 1. We remark that the point at infinity

is excluded since the residual equation is automaticaly
satisfied asymptotically due to the choice of the radial basis
function (16).Noticed that the origin is also excluded. For the
sake of illustration, we show in Fig. 2 the organization of the
radial collocation points in both subdomains.

We are in conditions to present a more detailed form of
the set of equations represented by Eq. (22), after using the
orthogonality of the spherical harmonics in the first two
terms of the residual equation (25):

hResðAÞ; Ylmðθ;ϕÞirj ¼
X
k

cðAÞklm

r2j

� ∂
∂r

�
r2
∂χðAÞk

∂r
�
− lðlþ 1ÞχðAÞk

�
rj

þ
� ðĀijĀijÞðAÞ
8½uðAÞðr; θ;ϕÞ þ 1

2
ðm1

rC1
þ m2

rC2
Þ�7 ; Ylmðθ;ϕÞ

	
rj

¼ 0;

ð30Þ

where l ¼ 0; 1; ::; Ny, m ¼ 0; 1; ::; l and j ¼ 0; 1; ::; NðAÞ
x .

Therefore, we have obtained a total ðNð1Þ
x þ Nð2Þ

x ÞðNy þ 1Þ2
nonlinear algebraic equations, that together with the
2ðNy þ 1Þ2 equations from the matching conditions (26),
constitute the set of equations to be solved for the modes

cðAÞklm. As a final piece of information, we have calculated the
last term of the above equation using quadrature formulae
as indicated below

hð::Þ; Ylmðθ;ϕÞirj ¼
XN1;N2

k;n¼0

ð::ÞY�
lmðθk;ϕnÞvθkvϕn ; ð31Þ

where (θk, ϕn), k ¼ 0; 1; ::; N1, n ¼ 0; 1; ::; N2 are the
quadrature collocation points, and vθkv

ϕ
n are the correspond-

ing weights [27]. For better accuracy we have set
N1 ¼ N2 ¼ 2Ny þ 1, but this is not mandatory since it
is possible to use simply N1 ¼ N2 ¼ Ny.
In closing this section, it is useful to comment on the

possibility of damaging the exponential convergence of the
numerical solution to the Hamiltonian constraint due to
the singularities of the punctures. The first is to choose
another form of the conformal factor with the requirement
of being regular everywhere as established by the moving
puncture method and applied to the initial data problem in
connection with trumped black holes [28,29]. Alternatively,

FIG. 2. Illustration of the collocation points in both domains
projected into the plane yz. The black circles located along the
axis z represents the punctures and blue semicircle, r0 ¼ a, is the
interface of both domains.
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it is possible to set suitable coordinates in which the
puncture are located at the edge of the computational
domain, or as adopted in Refs. [16,17] in placing the
punctures at the domain interface. We have followed the
latter approach (cf. Fig. 2) avoiding to coincide any
collocation point coinciding with the loci of the punctures.
As we are going to show in the next section, the exponential
convergence in all examples.

IV. NUMERICAL IMPLEMENTATION

The computational framework was implemented initially
in MAPLE. The MAPLE quasinumerical script was used as a
reference to develop a serial code in FORTRAN. Although
algorithmically different, both programs produced the same
output for monitored variables. This constituted an excel-
lent validation of the FORTRAN code. In this work, we had
used only the numerical code in FORTRAN when the
memory and the velocity were a real limit for simulations.
In turn, the FORTRAN solver allowed us to identify the stage
that needed more computational resources. Thus, we have
implemented a parallelization to proceed with the deter-
mination of the desired solution.
Our numerical problem has ðNð1Þ

x þ Nð2Þ
x ÞðNy þ 1Þ2

nonlinear equations from the Hamiltonian constraint (30)
and 2ðNy þ 1Þ2 linear equations from the matching
conditions (26). These three sets of equations are deployed
in one vector HnðuÞ ¼ 0, with n ¼ 1.::Nz, and Nz ¼
ðNð1Þ

x þ Nð2Þ
x þ 2ÞðNy þ 1Þ2. The system of equations Hn

has zn solutions; each solution zn corresponds to one and

only one real (or imaginary) part of the coefficient cðAÞjkl .
To solve the system of equations, we use the standard

Newton-Raphson method [30]

Jδzn ¼ −Hn; ð32Þ
where J ¼ ð∂Hn=∂zmÞ is the Jacobian matrix and δz is the
variation of the solution zn between the iteration Ni and
Ni−1, up to some specified tolerance for the convergence.
We stress here the fact that the Jacobian is calculated
numerically using forward finite differences with excellent
results. To get the set of solutions at each iteration, we
use an LU or QR decomposition [30]. We observe the
best performance for the LU decomposition. All the
special functions and its derivatives are calculated using
the standard generating formulas from the Numerical
Recipes library of subroutines.

V. NUMERICAL RESULTS

We have considered three examples of initial data of
binary black holes to show the fast convergence of the
domain decomposition Galerkin-collocation algorithm.
We have started with an axisymmetric configuration of
boosted black holes and in the sequence, two distinct

three-dimensional binary systems formed with black holes
with angular and linear momenta.
The first example consists of two boosted black holes

represented by punctures of equal masses m1 ¼ m2 ¼
0.5m and m ¼ m1 þm2 ¼ 1.0. The punctures are placed
on the axis z at r1 ¼ ð0; 0;−aÞ and r1 ¼ ð0; 0; aÞ, respec-
tively, where 2a is the coordinate separation between
the punctures. The corresponding linear momenta are
P1 ¼ ð0; 0; P1Þ and P2 ¼ ð0; 0; P2Þ which yields the fol-
lowing expression for source-term of the Hamiltonian:

ĀijĀij¼ 9P2
1

2r61
½ð1þ2cos2θÞr2þ6arcosθþ3a2�

þ9P2
2

2r62
½ð1þ2cos2θÞr2−6arcosθþ3a2�þ9P1P2

2r51r
5
2

× ½ð1þ2cos2θÞr6þð2cos4θ−14cos2θþ3Þa2r4
þð8cos2θþ1Þa4r2−3a6�; ð33Þ

where r1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2ar cos θ þ a2

p
. Notice that since

ĀijĀij does not depend on the angle ϕ; we have an
axisymmetric configuration. In this case, the Legendre
polynomials replace the spherical harmonics as the angular
basis functions in the spectral approximation of Eq. (13).
Alternatively, we can translate the axisymmetry in the

spectral representation by cðAÞjkl ¼ 0 for all l ≠ 0.
For the numerical convergence tests, we have chosen

P1 ¼ −P2 ¼ P0 ¼ 0.2m, a ¼ 3.0m and fix Ny ¼ 16,

Nð1Þ
x ¼ 15. Then, we have proceeded by varying the radial

truncation order of the second domain as Nð2Þ
x ¼

5; 10; 15;… and solved the system of Eqs. (26) and (30)

for each Nð2Þ
x . With the modes cðAÞjkl determined, the ADM

mass is calculated according to Eqs. (12) and (19). In
the sequence, we have evaluated the difference between
the ADM masses corresponding to successive solutions

through δMðNð2Þ
x Þ ¼ jMADMðNð2Þ

x þ 5Þ − MADMðNð2Þ
x Þj.

Figure 3 shows the exponential decay of δM indicating
the rapid convergence of the numerical solution. Note that

for Nð2Þ
x ≥ 60 the saturation due to round-off error is

achieved in about 10−14. In these numerical experiments,
we have chosen r0 ¼ L0 ¼ a for the interface and the map
parameter. The ADM mass of the axisymmetric binary of
boosted black hole is MADM ≈ 1.06612795.
Another convergence test is provided by the decay of the

L2-error between two successive solutions of the regular
function uð2Þðr; θÞ obtained previously. We have calculated
the L2-error using the following expression

L2ðδuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8π

Z
2π

0

Z
1

−1

Z
1

−1
ðδuÞ2dϕdȳdxð2Þ

s
; ð34Þ
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where δu ¼ uð2Þ
Nð2Þ

x þ5
− uð2Þ

Nð2Þ
x
and ȳ ¼ cos θ. From Fig. 3, the

exponential convergence is achieved similarly to the con-
vergence of the ADM M mass.
The second example is the three-dimensional boosted

binary of black holes studied by Ansorg et al. [31]. The
punctures have the same masses m1 ¼ m2 ¼ 0.5m with
m ¼ m1 þm2 ¼ 1.0, and lie on the axis x at r1 ¼
ð−a; 0; 0Þ and r2 ¼ ða; 0; 0Þ. The linear momenta of the
punctures are P1 ¼ ð0; P1; 0Þ and P2 ¼ ð0; P2; 0Þ and the
corresponding source-term ĀijĀij becomes

ĀijĀij¼ 9P2
2

2r62
ða2þ r2þ2arsinθcosϕþ2r2sin2θsin2ϕÞ

þ9P2
2

2r62
ða2þ r2−2arsinθcosϕþ2r2sin2θsin2ϕÞ

þ9P1P2

2r31r
3
2

�
r2−a2þ2r2sin2θsin2ϕ

r21r
2
2

ðr4−a2r2−a4

þa2r2sin2θcos2ϕÞ
�
; ð35Þ

where r1;2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�2arsinθcosϕþa2

p
. With P2 ¼ −P1 ¼

0.2m, we ended up with a particular expression that induces

additional symmetries for the coefficients cðAÞjkl , meaning

that some of the ðNð1Þ
x þ Nð2Þ

x ÞðNy þ 1Þ2 coefficients van-
ishes. In this case, we have found that all imaginary parts of

the coefficients vanish, ImðcðAÞjkl Þ ¼ 0, and some of the real

coefficients according to ReðcðAÞjkl Þ ¼ 0 if k − l is an odd
number. We have performed the convergence tests of the
ADM mass and the L2ðδuÞ error associated with the
difference between two successive solutions in the second
domain. The results depicted in Fig. 4 present similar
exponential decay suggesting we can select one of the tests
to verify the convergence of the code. In the numerical
experiments, we have set as before r0 ¼ L0 ¼ a0, and the
ADMmass of the three-dimensional boosted binary system
is MADM ≃ 1.065895065. Ansorg et al. [31] have used a
grid of 98 × 98 × 50 ¼ 480, 200 points, whereas we
have used a total of 920 coefficients in the highest

resolution of Ny ¼ 6, Nð1Þ
x ¼ 15, Nð2Þ

x ¼ 75. Note that with
these values the total number of coefficients would be

ðNð1Þ
x þ Nð2Þ

x þ 2ÞðNy þ 1Þ2 ¼ 4, 508, but the additional
symmetries have reduced it drastically, moreover we have

required a total of ðNð1Þ
x þ Nð2Þ

x þ 2Þð2Ny þ 2Þ2 ¼ 18, 032
grid points [here N1 ¼ N2 ¼ 2Ny þ 1 for the quadrature
formulas (31)].
The last example is a general three-dimensional initial

data of a binary of spinning-boosted black holes. This
initial configuration is taken from Brügmann [32] in which
the puncture masses are m1 ¼ 1.5, m2 ¼ 1.0, located
at r1 ¼ ð0; 0;−1.5Þ and r2 ¼ ð0; 0; 1.5Þ, respectively.
The linear and angular momenta of each puncture are

FIG. 3. Convergence of the ADM mass (top panel) and of the
L2-error LðδuÞ (bottom panel) for the example of axisymmetric
binary black holes. In both cases, the exponential convergence is
achieved.

FIG. 4. Convergence of the ADM mass (top panel) and of the
L2-error LðδuÞ (bottom panel) for the second example of a non-
axisymmetric binary black hole. In both cases, the exponential
convergence is achieved.
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P1 ¼ ðP0; 0; 0Þ, P2 ¼ ð−P0; 0; 0Þ, S1 ¼ ð−S0; S0; 0Þ and
S2 ¼ ð0; 2S0; 2S0Þ, where P0 ¼ 2.0 and S0 ¼ 0.5.
We have omitted writing here the long expression of the

source-term ĀijĀij, but contrary to the previous examples
there are no additional symmetries reduce the number of

independent coefficients cðAÞjkl other than expressed by
Eq. (20). Further, we have restricted to verify the con-
vergence of the ADM mass evaluating the quantity δM as
already established, remarking that we have set Ny ¼ 6 and

Nð1Þ
x ¼ 10. Fig. 5 shows a clear exponential decay of δM

until Nð2Þ
x ¼ 45. To complete all the pertinent information

for the numerical experiments, we have set r0 ¼ L0 ¼ a as
in the other two examples, and the calculated ADMmass is
MADM ≃ 3.07765268. It seems that these choices for the
location of the interface as well the map parameter in
the present code is general for any binary black hole
system. This system was solved using the BAM code [33]
with a grid of 653 ¼ 21, 125 points, while in the
present algorithm we have required the maximum of

ðNð1Þ
x þ Nð2Þ

x þ 2ÞðNy þ 1Þ2 ¼ 2, 793 coefficients in both

domains for Ny ¼ 6, Nð1Þ
x ¼ 10, Nð2Þ

x ¼ 45. For the sake of
illustration, after expressing the regular function in terms of
the cartesian coordinates, i.e., uðAÞ ¼ uðAÞðx̂; ŷ; ẑÞ, we have
projected uðAÞ − 1 into the plane x̂ ¼ 0 as shown in Fig. 6.
Notice the asymmetry due to the distinct spins of both
black holes.

VI. CONCLUDING REMARKS AND OUTLOOK
OF FUTURE WORK

We have presented a new DD code base on the GC
method for the Bowen-York initial data representing
arbitrary binary black hole systems. It is worth of mention-
ing some of the leading aspects of the algorithm that makes
it simpler and distinct from other numerical procedures.
In the present algorithm, we have covered the whole

spatial domain with the spherical coordinates no matter
which binary system is under consideration. We have split
the spatial domain into two subdomains defined by
D1∶ 0 ≤ r ≤ r0 andD2∶ r0 ≤ r < ∞, such that the angular
coordinates of the collocation points are the same for both
subdomains as indicated by Fig. 2. As the central piece of
the code, we have provided the spectral approximation of
the regular component of the conformal factor in each
subdomain, uðAÞðr; θ;ϕÞ; A ¼ 1, 2, with the spherical
harmonics as the angular basis functions. The radial basis
functions are defined in each subdomain to satisfy the
boundary conditions.
We have solved the Hamiltonian constraint (7) for three

distinct BBH represented by punctures located on the z
axes. The first is an axisymmetric boosted binary; the
second example is a three-dimensional binary boosted
taken from Ansorg et al. [31]. In both cases the puncture
masses are equal. The third example is an arbitrary

FIG. 5. Convergence of the ADM mass for the binary of
boosted-spinning black holes of the third example.

FIG. 6. (Top panel) Three-dimensional plot of uðx¼ 0;y;zÞ−1
where (x, y, z) are the cartesian coordinates. The punctures
are located along the z-axis at z ¼ �a ¼ �0.6m, with m ¼
m1 þm2 ¼ 2.5. The assymetry is due to the distinct spin
component of each black hole.(Bottom panel) Projections of
uðy; zÞ − 1 into the planes z ¼ constant, u ¼ constant and y ¼
constant.
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spinning-boosted binary of distinct puncture masses drawn
from Ref. [32]. The tests we have employed to validate the
code was the convergence of the ADMmass and the regular
function uð2Þðr; θ;ϕÞ. As expected the convergence is
exponential as shown by the figures.
The details of the code performance and its paralle-

lization for massive computations will be addressed
elsewhere. Meanwhile, we only mention here that the
first two binary systems were solved using one thread
for computations. In the last example, however, we
required multithreading to deal with the Hamiltonian
constraint.
The present algorithm can be applied to some problems.

The most relevant is the obtention of high-resolution initial
data for a binary system of neutron stars. For the BBH

system, we can straightforwardly consider trumpets instead
wormholes representations. Moreover, we could use the
conformal thin sandwich approach for the initial data.
These are just some possible directions and venues for our
coming work, including evolutions.
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