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In this work we present the first calculation of the gravitational self-force on generic bound geodesics in
Kerr spacetime to first order in the mass ratio. That is, the local correction to equations of motion for a
compact object orbiting a larger rotating black hole due to its own impact on the gravitational field. This
includes both dissipative and conservative effects. Our method builds on and extends earlier methods for
calculating the gravitational self-force on equatorial orbits. In particular we reconstruct the local metric
perturbation in the outgoing radiation gauge from the Weyl scalar ψ4, which in turn is obtained by solving
the Teukolsky equation using semianalytical frequency domain methods. The gravitational self-force is
subsequently obtained using (spherical) l-mode regularization. We test our implementation by comparing
the large l-behavior against the analytically known regularization parameters. In addition we validate our
results by comparing the long-term average changes to the energy, angular momentum, and Carter constant
to changes to these constants of motion inferred from the gravitational wave flux to infinity and down the
horizon.
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I. INTRODUCTION

For the interpretation of gravitational wave observations,
accurate theoretical models of their sources are essential. For
the comparable mass binaries observed by LIGO and Virgo
[1–5] this modeling is provided by the results of post-
Newtonian (PN) theory and numerical relativity (NR),
typically repackaged in an effective one-body (EOB) model
or a phenomenological surrogatemodel.However, PN theory
works well only in the (relative) weak field regime, whereas
NR simulations are limited to systems with fairly homo-
geneous intrinsic length scales, practically limiting its appli-
cability to systems with small mass ratios (η ≔ m2=m1≳
1=10). Consequently, current methods are insufficient to
accurately model the final strong field stages of the inspirals
of small mass-ratio binaries.
Nonetheless, the current generation of ground-based

detectors is in principle sensitive to binaries with mass
ratios as low as 10−2, which currently cannot be accurately
modeled. The occurrence of such small mass-ratio inspirals
is dependent on the existence of a sufficiently large
population of heavy ∼100M☉ black holes, which is not
guaranteed to exist. Hence LIGO/Virgo observation of such
small mass-ratio events is not a given.
ESA’s planned space-based gravitational wave observa-

tory, LISA, will however be sensitive to so-called extreme
mass-ratio binaries (EMRIs), compact binaries consisting
of a ∼106M☉ supermassive black hole and a stellar mass

compact object. The rate at which EMRIs occur is
uncertain, but studies show we should expect between 1
and 4000 detectable LISA events per year with signal to
noise ratios up to a few hundred [6].
Unlike the comparable mass binaries detectable by

ground-based detectors, EMRIs are expected to exhibit
significant eccentricity (e≲ 0.2 at merger) and inclination
of the orbital plane compared to the total angular momen-
tum. Moreover, the small mass ratio implies that evolution
of these systems is very slow, producing ∼η−1 ≃ 105

gravitational wave cycles in the strong field regime. As
a consequence, EMRIs produce an information-rich gravi-
tational wave (GW) signal, allowing highly accurate
determination of the source properties. The component
masses, primary spin, eccentricity, and inclination can be
determined at a relative accuracy of 10−5, while luminosity
distance can be determined to 5–10%, and sky position can
be localized to a few square degrees [6]. Alternatively, the
detailed signal can be used to test the general relativity
prediction that the supermassive primary should be
described by the Kerr metric, by measuring its mass
quadrupole to a relative accuracy of 10−4 [6].
However, any such measurement will rely on the avail-

ability of accurate waveform models for EMRIs including
the effects of spin, eccentricity, and inclination. One
approach is to use the smallness of the mass ratio η to
our advantage, and treat dynamics of EMRIs in a system-
atic perturbative expansion in η. At zeroth order in η, the
secondary object acts as a test particle in the Kerr geometry
generated by the primary. It follows a geodesic, which can*mmeent@aei.mpg.de
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be obtained analytically [7–10]. At the next order, the
corrections to the equations of motion due to the gravita-
tional field generated by the secondary can be collected into
an effective force term perturbing the geodesic equation,
the gravitational self-force (GSF). Since this force is small
the evolutionary timescale [tinsp ¼ Oðη−1Þ] of an EMRI is
much larger than the orbital timescale [torb ¼ Oð1Þ]. This
hierarchy of timescales can be exploited to simplify the
evolution of EMRIs by using a two timescale expansion. A
systematic analysis by Hinderer and Flanagan [11] has
shown that in order to obtain the phase evolution of an
EMRI with an error of OðηÞ we need the first order GSF
sourced by individual geodesics and the long term average
of the dissipative part of the second order GSF. In this paper
we will provide the first calculation of the first order GSF
on fully generic bound geodesics featuring both eccentric-
ity and inclination in Kerr spacetime.
The formalism for calculating the GSF was first intro-

duced by Mino, Sasaki, and Tanaka [12] and Quinn and
Wald [13] in the mid 1990s. In the two decades since, the
formalism has been further refined, improving both math-
ematical rigour and conceptual clarity (see [14,15] for
reviews and references).
Numerical calculations of the GSF have made steady

progress over these last two decades. The first numerical
calculations appeared in 2002 for direct radial plunges into
a Schwarzschild black hole [16]. The calculation of the
GSF on circular orbits followed in 2007 [17], and com-
pletely generic bound eccentric orbits in 2009 [18]. By
now, first order GSF calculations in Schwarzschild space-
times are routine, using a wide variety of numerical
methods, regularization techniques, and gauges [19–31].
The results of these calculations have been used to evolve
EMRIs around a Schwarzschild black hole [32,33]
For a long time, calculating the GSF on a Kerr back-

ground remained a challenge. The core obstacle was that
the linearized Einstein equation on a Kerr background
cannot be separated by introducing some set of harmonics.
This has led Dolan and Barack to pursue 2þ 1 dimensional
techniques for calculating the GSF [25,34,35]. However,
these methods suffer from numerical instabilities that have
been overcome to produce the GSF on circular equatorial
orbits [36] but thus far have prevented their application to
more general orbits.
Another approach that had been considered, is to utilize

the fact that the Weyl scalars ψ0 and ψ4 satisfy the
(separable) Teukolsky equation [37,38], while containing
most of the gauge invariant information about the full metric
perturbation [39]. In the 1970s, Chrzanowski, Cohen, and
Kegeles (CCK) [40–42] developed amethod for reconstruct-
ing vacuum metric perturbations in a radiation gauge from
vacuum solutions of ψ0 or ψ4. However, as noted by Ori
[43], when this procedure is applied to a field sourced by a
point particle the resulting metric perturbation is highly
singular. Not only does the resulting metric perturbation

feature a singularity at the location of the particle, but in
addition a stringlike gauge singularity extends from the
particle to black hole horizon and/or infinity. It was unclear
whether the established GSF formalism would extend to
such singular gauges. Only in 2013 did Pound, Merlin, and
Barack [44] show that the GSF can be extracted from
radiation gauge metric perturbations.
A second issue was that while ψ0 or ψ4 contain most

information about themetric perturbation, they are oblivious
to perturbations within the Kerr family of metric solutions
[39]. These “mass” and “angular momentum” perturbations
need to be recovered through other means. Merlin et al. [45]
recovered these pieces for fields sourced by a particle on an
equatorial orbit by imposing continuity of certain gauge
invariant fields constructed from the metric. The result is
remarkably simple; in the region “outside” the particle orbit
the mass and angular momentum perturbations are given
simply by the energy and orbital angular momentum of the
orbit, while both perturbations vanish “inside” the orbit. By
directly analyzing the form of metric perturbations resulting
from theCCKprocedure, it was shown in [46] that this result
must in fact hold for any source with compact support in the
radial direction.
Pending resolution of both issues, implementation of the

radiation gauge approach to calculating the GSF was
pioneered by the group of Friedman [21,47,48], culminat-
ing in the calculation of the Detweiler redshift invariant on
circular equatorial orbits in Kerr spacetime [49]. In pre-
vious papers [30,50], the author expanded on their tech-
niques to obtain the first order GSF and redshift on
eccentric equatorial orbits. In this paper, we will tackle
the case of generic bound orbits in Kerr spacetime,
featuring both eccentricity and inclination.
The plan of this paper is as follows. In Sec. II we review

the preliminaries necessary for our calculation. Section III
then reviews our method for calculation of the GSF in
radiation gauge using a metric reconstructed from ψ4. In
this section, the focus will be on aspects of the method that
change for generic Kerr geodesics. A selection of results is
presented in Sec. IV, going through various consistency
checks and plots of the final results. We conclude with a
discussion of ways these calculations can be used to
explore new physics.

A. Conventions

This paper uses an overall metric signature of ð−þþþÞ;
for further sign conventions regarding the definitions of
other quantities such as the Weyl curvature scalars we use
conventions consistent with Appendix A of [50]. We further
work in geometrized units such that (c ¼ G ¼ M ¼ 1).

II. REVIEW OF PRELIMINARIES

In this section, we review some of the preliminaries
needed for the calculations. Along the way we establish
some of the notations and conventions used.
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A. Generic geodesics in Kerr spacetime

Like in previous papers [30,50], we consider the Kerr
metric in modified Boyer-Lindquist coordinates, where the
polar angle θ has been replaced by z ≔ cos θ. In these
coordinates the Kerr metric generated by a black hole with
mass M ¼ 1 and spin a is given by

ds2 ¼ −
�
1 −

2r
Σ

�
dt2 þ Σ

Δ
dr2 þ Σ

1 − z2
dz2

þ 1 − z2

Σ
ð2a2rð1 − z2Þ þ ða2 þ r2ÞΣÞdϕ2

−
4arð1 − z2Þ

Σ
dt dϕ; ð1Þ

with

Δ ¼ rðr − 2Þ þ a2; ð2Þ

Σ ¼ r2 þ a2z2: ð3Þ

At zeroth order an object with massm ≪ M ¼ 1 follows
a geodesic in the Kerr background,

m
dpμ

dτ
þ Γμ

αβp
αpβ ¼ 0; ð4Þ

where pμ ≔ muμ ¼ mdxμ
dτ is the four-momentum, τ is

proper time, and Γμ
αβ are the Christoffel symbols of the

Kerr metric.
Solving the geodesic equation in Kerr spacetime is

greatly helped by the existence of a complete set of
constants of motion. The first is the invariant mass
−m2 ¼ pμpμ. Furthermore, the Kerr metric (1) has two
explicit symmetries expressed by the Killing vectors ð ∂∂tÞμ
and ð ∂

∂ϕÞμ, which give rise to two further constants of

motion; the specific energy E ≔ −uμð ∂∂tÞμ, and the specific
(orbital) angular momentum L ≔ uμð ∂

∂ϕÞμ. Finally, Carter
showed [51] that the Kerr metric has a third hidden
symmetry expressed by a Killing tensor,

Kμν ≔ 2ΣlðμnνÞ þ r2gμν; ð5Þ

where are lμ and nν are the principal null vectors of the Kerr
metric,

lμ ≔
�
r2 þ a2

Δ
; 1; 0;

a
Δ

�
; and ð6Þ

nμ ≔
�
r2 þ a2

2Σ
;−

Δ
2Σ

; 0;
a
2Σ

�
: ð7Þ

This Killing tensor defines a fourth constant of motion, the
Carter constant,

Q ≔ uμKμνuν − ðL − aEÞ2: ð8Þ

Using this complete set of constants of motion, the
equations of motion for a geodesic can be rewritten,

�
Σ
dr
dτ

�
2

¼ ðEðr2 þ a2Þ− aLÞ2 −Δðr2 þ ðL− aEÞ2 þQÞ;

ð9aÞ
�
Σ
dz
dτ

�
2

¼ a2ð1− E2Þz4 − ðQþ a2ð1− E2Þ þL2Þz2 þQ;

ð9bÞ

Σ
dϕ
dτ

¼ a
Δ
ðEðr2 þ a2Þ − aLÞ þ L

1 − z2
; ð9cÞ

Σ
dt
dτ

¼ r2þa2

Δ
ðEðr2þa2Þ−aLÞ−a2Eð1−z2Þ: ð9dÞ

By introducing the Mino time parameter λ defined by

dτ
dλ

¼ Σ; ð10Þ

the radial and polar motions can be completely decoupled.
Geodesic motion around a Kerr black hole can therefore be
viewed as two completely independent motions (radial and
polar). This inspires us to introduce two periodic phase
coordinates qr and qz, which specify where along each of
the cycles the particle is. We further specify that both
phases evolve linearly with Mino time

dqr
dλ

¼ ϒr; and ð11Þ

dqz
dλ

¼ ϒz; ð12Þ

where ϒr and ϒz are the frequencies with respect to Mino
time of the radial and polar motions, explicit expressions
for which can be found in [7]. We further adopt the
convention that qr ¼ 0 corresponds to the apapsis of the
radial motion, meaning that qr ¼ π will correspond to
periapsis. Similarly, we choose qz ¼ 0 to coincide with the
polar motion reaching its maximum, which results in the
minimum being reached at qz ¼ π while the equator z ¼ 0
is crossed at qz ¼ π=2 and qz ¼ 3π=2.
With these phases, the solutions to the Eqs. (9) take the

following form; r is a periodic function of just qr, z is a
periodic function of just qz, t and ϕ become

t ¼ ϒtλþ trðqrÞ þ tzðqzÞ; and ð13Þ

ϕ ¼ ϒϕλþ ϕrðqrÞ þ ϕzðqzÞ; ð14Þ
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where tr and ϕr are purely oscillatory functions of qr and tz,
and ϕz are purely oscillatory functions of qz.
Together with the spin a the set of constants of motion

ðE;L; QÞ uniquely identifies a bound Kerr geodesic.
However, these tend to be hard to work with. In practice,
it is easier to work with a more geometric set of parameters.
One such set is given by the turning points of the radial
motion rmin and rmax and the turn point of the polar motion
�zmax. Here instead of rmin and rmax we use the semilatus
rectum p and eccentricity e defined by

rmax ¼
p

1 − e
; and ð15Þ

rmin ¼
p

1þ e
: ð16Þ

Kerr geodesics are thus identified by a 4-tuple ða; p; e; zÞ.

B. Gravitational self-force

The main idea behind the self-force formalism is to
systematically expand the equations of motion for a
compact binary in powers of the small mass ratio
η ¼ m=M. At linear order in η to set-up is to split the
metric generated by the binary as

gμν þ ηhμν; ð17Þ

where gμν is the background Kerr metric generated by the
primary object, and hμν is a correction due to the presence
of the secondary object. The motion of the secondary object
is to be described by some worldline xμ0ðτÞ in the back-
ground spacetime. This worldline is expected to satisfy a
forced geodesic equation,

m

�
d2xμ0
dτ2

þ Γμ
αβ

dxα0
dτ

dxβ0
dτ

�
¼ η2Fμ½h�; ð18Þ

where Fμ½h� is called the gravitational self-force or GSF.
The most rigorous approach to obtaining the key

ingredients (x0, h, and F) is a multiscale expansion (see
[14,15] for reviews). The general idea is to split the
spacetime into a “near zone” where h dominates the metric
and a “far zone” dominated by g. In each zone, the effects of
the other component can be treated perturbatively. A global
solution is then obtained by matching both expansions in
the region where both zones overlap and both perturbative
expansions hold.
The upshot of the analysis is as follows. The worldline xμ0

is determined by the center-of-mass motion of the secon-
dary (as measured asymptotically in the near zone). The
metric perturbation hμν is obtained by solving the linearized
Einstein equation on the background gμν sourced by a point
particle with mass m following xμ0 and retarded boundary
conditions. Finally, (if we ignore any effects from the spin

of the secondary) the GSF is given by the MiSaTaQiWa
[12,13] equation,

FμðτÞ ¼ Pμαβγ∇αhRβγðx0ðτÞÞ; ð19Þ

with

Pμαβγ ≡ 1

2
ðgμαuβuγ − 2gμβuαuγ − uμuαuβuγÞ; ð20Þ

and hRμν is a regular part of the metric perturbation hμν
obtained by subtracting off the Detweiler-Whiting singular
field [52].

1. Gauge dependence

The split of the metric in Eq. (17) is not unambiguous. A
small change of the coordinates xμ → x̃μ ¼ xμ þ ηξμ leads
to a new background metric

g̃μν ¼ gμν þ η∇ðμξνÞ: ð21Þ

The small change can be interpreted as a part of hμν, leading
to a gauge freedom in its definition. This gauge dependence
is inherited by the GSF, which transforms under a gauge
transformation as,

F̃μ − Fμ ¼ −ðgμα þ uμuαÞ∇2
uξα − Rμ

αβγuαξβuγ: ð22Þ

For any practical calculation of the GSF, we must therefore
choose a gauge to work in. A common choice in the self-
force literature is the Lorenz gauge defined by

∇α

�
hαμ −

1

2
gαμgβγhβγ

�
¼ 0: ð23Þ

However, in this work, we work predominantly in the
outgoing radiation gauge, or ORG, which is defined by the
conditions

nμhμν ¼ 0; ð24Þ

gμνhμν ¼ 0: ð25Þ

These conditions can be met for vacuum perturbations.
However, if a perturbation is sourced by some matter
distribution, the ORG conditions cannot be met globally
[43]. Trying to impose the ORG condition globally on the
perturbation produced by a point particle results in a
stringlike (gauge) singularity extending from the particle
to the horizon of the background geometry and/or infinity.
This leads to various realization possibilities for the
ORG [44]:

(i) The half-string gauges feature a half string extend-
ing from the particle to either the background
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horizon or infinity. Elsewhere they are perfectly
regular

(ii) The full-string gauge has a sting extending from the
background horizon to infinity through the particle.

(iii) The no-string gauge is discontinuous along a hyper-
surface that includes the particle worldline and that
separates the background horizon from infinity. On
each side of this hypersurface the metric perturba-
tion is realized as the regular half of one of the half-
string gauges.

C. l-mode regularization

A key step in calculating the GSF is obtaining the regular
metric perturbation through the subtraction

hRμν ¼ hRetμν − hSμν; ð26Þ

(the derivatives of) which then need(s) to be evaluated on
the particle worldline. This introduces a problem for any
practical calculation since both hRetμν and hSμν are singular on
the worldline (while their difference is not). We therefore
need to introduce a regulator to allow for a systematic
evaluation of the subtraction. In this work, we employ the
l-mode regularization introduced by Barack andOri [53–55].
For any field fðxÞ on the background spacetime, the

method defines its l-modes as,

flðxÞ≡
Xl

m¼−l

�Z
S2
dΩfȲlm

�
Ylmðz;ϕÞ; ð27Þ

where the integral is performed over a sphere of constant t
and r. The key property is that even if the field f has a pole
on some worldline, the l-modes remain finite (although
possibly discontinuous).
The idea is then to evaluate (19) independently on hRetμν

and hSμν, and calculate the l-modes of each. The subtraction
can then be done at the level of the l-modes, and the sum of
the resulting differences should produce a finite result
for the GSF. However, as written, Eq. (19) is only defined
on the worldline and does not define the GSF as a field. In
order to calculate the l-modes, we therefore need to
promote (19) to a field equation for F μ½h�, or equivalently
we need to extend the projector Pμαβγ in Eq. (20) to a field
off the worldline. This involves a (somewhat arbitrary)
choice. Many of the details of the calculation (but not its
final result) depend sensitively on this choice of extension.
In this work, following [56], we employ a “rigid”

extension of Pμαβγ , where it takes constant values on slices
of constant t.
With this choice of extension and adopting the Lorenz

gauge it is possible to obtain a local Laurent expansion of
F μ½hS�, and subsequently the large l behavior of its l-modes
[55–57],

Fμ;�
S;l ≡ lim

x→x�
0

F μ
S;l¼�LAμ

LorþBμ
Lorþ

Cμ
Lor

L
þOðL−2Þ; ð28Þ

with L ≔ lþ 1=2, and the � sign depends on the radial
direction from which x0 is approached. Furthermore, one
can show that,

Dμ
Lor ≡

X
l

Fμ;�
l;S ∓ LAμ

Lor − Bμ
Lor −

Cμ
Lor

L
¼ 0: ð29Þ

Consequently, if one can obtain the l-modes Fμ
l;Lor of the

retarded field with same choice of gauge and extension,
then one can obtain the Lorenz gauge GSF using the mode-
sum formula,

Fμ
Lor ¼

�X
l

Fμ;�
l;Lor ∓ LAμ

Lor − Bμ
Lor −

Cμ
Lor

L

�
−Dμ

Lor: ð30Þ

The quantities Aμ
Lor, B

μ
Lor, C

μ
Lor, and Dμ

Lor are collectively
known as regularization parameters.
However, in this work we obtain the retarded metric

perturbations not in the Lorenz gauge, but in the outgoing
radiation gauge. Calculation of the GSF in radiation gauges
was studied by Pound, Merlin, and Barack in [44]. They
concluded that one can calculate the GSF in the “half-
string” gauges using the mode-sum formula, provided that
the limit towards the particle is taken from the regular side.
In this case, the A, B, and C parameter are identical to the
Lorenz gauge ones, provided one uses the same extension.
The D parameter, however, acquires a nonzero correction
which is hard to calculate in practice. It is also possible to
calculate the GSF in the no-string radiation gauge. In this
case it is necessary to take the limit towards the particle
from both sides and average the result. It turns out that with
that prescription all regularization parameters (includingD)
take their Lorenz gauge values. The no-string radiation
gauge mode-sum formula is thus given by

Fμ
Rad ¼

�X
l

Fμ;þ
l;Rad þ Fμ;−

l;Rad

2
− Bμ

Lor −
Cμ
Lor

L

�
−Dμ

Lor: ð31Þ

D. Radiation gauge metric reconstruction

In this work, we avoid the difficulties of directly solving
the linearized Einstein equation on a Kerr background, by
trying to recover the metric perturbation from the Weyl
scalar ψ4, which can be obtained for particles on generic
bound orbits in Kerr spacetime by solving the spin-(−2)
Teukolsky equation in the frequency domain [58,59]. That
this should be possible was first hinted at by Wald [39],
who showed that ψ4 contains all information about the
metric perturbation, modulo a perturbation within the Kerr
family of solutions and gauge information.
The first steps towards this goal were set by Chrzanowski,

Cohen, Kegeles, and Wald [40–42,60], who showed that
given a solution of the vacuum spin-(�2) Teukolsky
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equation one can obtain a vacuum solution of the linearized
Einstein equation. The operators that achieve this are
essentially the adjoint of the operators that construct the
sources for ψ0 and ψ4 from the energy-momentum tensor
[60]. However, if one calculates ψ4 from the metric
perturbation obtained from a vacuum solution spin-(−2)
Teukolsky equation, one does not recover the same vacuum
solution of the spin-(−2) Teukolsky equation. The vacuum
solutions of the Teukolsky equation are therefore not the
Weyl scalars ψ0 and ψ4. Instead they are different fields
known as Hertz potentials.
The problem of obtaining the Hertz potential corre-

sponding to a certain vacuum solution of ψ0 and ψ4

involves inverting a fourth-order differential equation
[61]. This was first tackled by Ori [43], who showed
how to obtain the spin-(þ2) Hertz potential corresponding
to a ψ0 by inverting the differential equation mode-by-
mode in the frequency domain. A similar procedure was
employed by Keidl et al. [48] to obtain the spin-(−2) Hertz
potential from ψ0. In a previous paper [30] the author
showed how to obtain the spin-(þ2) Hertz potential from
ψ4. We will use this last procedure which results in a metric
perturbation in the ORG.
As explained in previous papers [30,50], the metric

perturbation produced by a point particle on an eccentric
orbit, for which the frequency domain source will have
support over a finite range in the radial direction, can be
obtained by solving the Teukolsky equation for ψ4,
executing the inversion and metric reconstruction in the
vacuum regions away from the source, and analytically
extending those vacuum metric perturbations back to the
particle worldline. This “extended homogeneous solutions”
procedure naturally produces a metric in the “no-string”
outgoing radiation gauge, and works without alteration for
inclined orbits.
The final step is to complete the metric by finding the

missing perturbations within the Kerr family. Since, the no-
string solution is discontinuous we need to find separate
perturbations in each half. In [46], it was shown how these
can be recovered for general sources. In particular, for a
point particle on a generic orbit the Kerr perturbations
vanish on the inner half of the solution, while on the outer
half they are given by

hcomp;þ
μν ¼ E

∂gμν
∂M

����
J
þ L

∂gμν
∂J

����
M
; ð32Þ

where J ¼ Ma is the angular momentum of the Kerr
metric.

III. METHOD

Our method for calculating the GSF on generic Kerr
geodesics is in many respects identical to the methods used
for calculating the regular metric and GSF on equatorial
eccentric orbits described in [30,50]. In this section we will

therefore give only a brief outline of these methods and
focus on the details that are different in the generic case.

A. Weyl scalar ψ4 and Hertz potential

As before in [30,50], we use the formalism of Mano,
Suzuki, and Takasugi (MST) [62,63] to solve the (homo-
geneous) Teukolsky equation, largely following the
numerical implementation of Fujita and Tagoshi [59,64].
The method of variation of parameters can then be used to
find the ψ4 generated by a particle of a generic Kerr
geodesic, as first demonstrated by Drasco and Hughes [58].
Details of our arbitrary precision numerical implementation
are forthcoming [65].
Once ψ4 is known, we can use the procedure described in

[30] to obtain the corresponding spin-(þ2) Hertz potential
Ψ�

þ2 in the asymptotic vacuum regions toward infinity
(“þ”) and towards the horizon (“−”). These are then
analytically extended towards the particle. The result has
the form,

Ψ�
þ2 ¼

1ffiffiffiffiffiffi
2π

p
X
lmω

Ψ�
lmω2R

�
lmωðrÞ2SlmωðzÞeimϕ−iωt; ð33Þ

where Ψ�
lmω are the mode amplitudes obtained through

solving the inhomogeneous Teukolsky equation and the
inversion procedure. The 2R

�
lmωðrÞ are homogeneous sol-

utions of the spin-(þ2) Teukolsky equation with outgoing
boundary conditions at either infinity or the horizon. The

2SlmωðzÞ are spin-weighted spheroidal harmonics with spin
weight þ2. Finally, the discrete ω-sum is over the set
fmΩϕ þ kΩz þ nΩrjm; k; n ∈ Zg, where the Ωi are the
Boyer-Lindquist coordinate time frequencies.

B. GSF coefficients

The expression in (33) can be used in the procedure
described in [50] to obtain the GSF. The steps are:
(1) Apply the ORG metric reconstruction operator.
(2) Apply Pμαβγ∇α to obtain F μ;�

Rad, the field extended
form of the GSF.

(3) Use

sSlmωðzÞ ¼
X
l

ðsbmωÞll sYlmðzÞ; ð34Þ

where the ðsbmωÞll are obtained through the method
of [66] for expanding spin-weighted spheroidal
harmonics in spin-weighted spherical harmonics.

(4) Use

ð̄s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p �
∂z þ

i
1 − z2

∂ϕ −
sz

1 − z2

�
ð35Þ

to eliminate any z derivatives in favor of spin-
lowering operators.
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(5) Reexpand the resulting variety of spin-weighted
spherical harmonics to regular spherical harmonics,
using

2
Yl1mðzÞ ¼

X
l2

m
2A

l1
l2
Yl2mðzÞ

1 − z2
; ð36Þ

1
Yl1mðzÞ ¼

X
l2

m
1A

l1
l2
Yl2mðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 − 1Þðl1 þ 2Þp ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p ; ð37Þ

0
Yl1mðzÞ ¼

X
l2

m
0A

l1
l2
Yl2mðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 − 1Þl1ðl1 þ 1Þðl1 þ 2Þp ; ð38Þ

−1Yl1m
ðzÞ ¼

X
l2

m−1A
l1
l2
Yl2mðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 − 2Þ!p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 þ 2Þ!l1ðl1 þ 1Þp ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p ; ð39Þ

where the m
sA

l1
l2
are defined in [50].

The result is an expression of the form,

F μ;�
Rad ¼

X
mωsi
l1l2l

Cμmωsiðr; zÞΨ�
lmω2R

�;ðiÞ
lmω ðrÞð2bmωÞll1

× m
sA

l1
l2
Yl2mðzÞeimϕ−iωt þ c:c:; ð40Þ

where the Cμmωsiðr; zÞ are coefficient functions determined
through the procedure above. At this point the procedure
starts to diverge from the equatorial case. In the equatorial
case we could use the up/down symmetry of the source to
resolve the “þc:c:” terms in a simple form. This symmetry
is no longer available for generic orbits (which only satisfy
up/down symmetry on average). As a result, we will just
leave the “þc:c:” terms as they are.
The form of (40) is almost that of an expansion in

l-modes as needed for our mode-sum regularization.
However, as it stands the Cμmωsiðr; zÞ still depend on the
field coordinate z. To remedy this situation we replace
Cμmωsiðr; zÞ by its Taylor expansion around the polar
position of the particle z0. Truncating this expansion
amounts to changing the field extension of the self-force.
As mentioned in Sec. II C, the values of the regularization
parameters depend on the extension. In order to ensure that
the values are unchanged we need that the extension agrees
on the first three terms of the Taylor expansion. Hence we
keep the first three terms of the Taylor expansion of
Cμmωsiðr; zÞ.
Expanding the result we can eliminate terms of the form

znYl2mðzÞ using the reexpansion

znYl1mðzÞ ¼
X
l2

n
mB

l1
l2
Yl2mðzÞ; ð41Þ

where

1
mB

l1
l2
¼ ð−1Þmþl1þ1ðl1 − l2Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 þ l2 þ 1

2

r �
1 l1 l2
0 m −m

�
; ð42Þ

and

nþ1
m Bl1

l2
¼

X
l

1
mB

l1
l
n
mBl

l2
: ð43Þ

From the resulting expression we obtain the l-modes
of GSF,

Fμ;�
Rad;l ¼

X
mω sin
l1l2l

Cμmω sinðr0; z0ÞΨ�
lmω2R

�;ðiÞ
lmω ðr0Þ

× ð2bmωÞll1msA
l1
l2
n
mB

l2
l e

imϕ0−iωt0 þ c:c:; ð44Þ

where the Cμmω sinðr0; z0Þ are a new set of coefficients that
now only depend on the particle orbit. Although the formal
expression given here is not much different than the one
in [50], the full explicit expression is significantly

FIG. 1. The l-modes of the various components of the GSF on a
geodesic with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.1Þ, shown at the
point along the orbit identified by ðqr; qzÞ ¼ ðπ=3; π=6Þ. This
point is indicative of the generic behavior (certain special points
such as periapsis and apapsis will show better convergence
behavior). The gray lines are reference lines of L ¼ lþ 1=2.
As expected the� parts of the t and r components diverge with L.
The parameters Az and Aϕ vanish [56,69]. Consequently, we see
� parts of the r and ϕ l-modes converge to a constant, just like all
the two-side average parts.
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more complicated. This can be expressed in terms of the
leaf count of the MATHEMATICA representations of the
Cμmω sinðr0; z0Þ. For equatorial orbits the leaf count of these
expressions was less than 200,000. For the new expressions
for generic orbits the leaf count is nearly 6 million.

In printed form they would fill close to 2000 pages.
Needless to say, we will not reproduce them here.
However, they are included as supplemental material [67].
As a final remark in this section we note that using (13),

(14), and ω ¼ mΩϕ þ kΩz þ nΩr, we can rewrite

eimϕ0−iωt0 ¼ eiðmϕz−kqz−ωtzÞeiðmϕt−nqr−ωtrÞ: ð45Þ
Consequently, the l-modes of the GSF can be expressed as
functions of ða; p; e; zmaxÞ and ðqr; qzÞ. As expected, we
can express the orbital variation of the GSF purely in terms
of the ðqr; qzÞ-torus.

C. Mode sum and completion

Once we have obtained the l-modes we can subtract the
regularization parameters calculated in [55,56] and calcu-
late the mode sum (31) to obtain (the reconstructed) piece
of the GSF. We follow the procedure outlined in [30] to
numerically fit the large l-tail of the sum to accelerate
convergence of the sum. This procedure is performed
separately for each ðqr; qzÞ point along the orbit. To obtain
the full GSF we need to add the piece coming from the
Kerr-type perturbations of the background. As shown in
[46], this piece is given by Eq. (32). The contribution to the
GSF is found by simply applying (19).
The GSF obtained in this manner contains all gauge

invariant information contained in the GSF. However, many
quantities that we like to calculate and compare between
different calculations, such as the Detweiler redshift [20] or
the periapsis precession [31], are only invariant under the
restricted class of gauge transformations that remain small
over the inspiral timescale ∼η−1. To calculate such quasi-
invariants one would need to fix the remaining gauge
freedom, adding a gauge correction to the completion

FIG. 2. The same l-modes as in Fig. 1 after subtracting the
Lorenz gauge regularization parameters. At large l, all compo-
nents of the GSF conform with L−2 behavior indicated by the
gray reference lines. This is a stringent check on the validity of
our method and numerical implementation.

TABLE I. Numerical test of the balance law for a selection of strong field orbits. In each entry the first row gives η−1ðhdCþfluxdτ i þ hdC−fluxdτ iÞ
(with C either E, L, or Q) calculated from the asymptotic values of ψ4. The second row gives −η−1hdCGSFdt i. These independently
calculated quantities agree up to the estimated error level, providing a strong consistency check of the radiation self-force formalism, our
numerical implementation, and error estimates. The brackets (.) at the end of values indicate the estimated uncertainty on the last digit(s)
[e.g., 1.234ð5Þ × 10−6 indicates 1.234 × 10−6 � 5 × 10−9].

a p e z η−1hdEdτi η−1hdLdτi η−1hdQdτ i
0.9 10 0.1 0.1 −6.06082909932ð12Þ × 10−5 −1.922697948770ð32Þ × 10−3 −1.25834727896ð52Þ × 10−4

−6.060823ð6Þ × 10−5 −1.922694ð2Þ × 10−3 −1.258348ð1Þ × 10−4

0.9 10 0.1 0.3 −6.0940549476ð48Þ × 10−5 −1.86084947343ð96Þ × 10−3 −1.1433881349ð42Þ × 10−3

−6.094073ð6Þ × 10−5 −1.860854ð2Þ × 10−3 −1.143378ð1Þ × 10−3

0.9 10 0.1 0.5 −6.16961426ð18Þ × 10−5 −1.726403385ð41Þ × 10−3 −3.24433301ð17Þ × 10−3

−6.16962ð6Þ × 10−5 −1.72640ð2Þ × 10−3 −3.24429ð3Þ × 10−3

0.9 10 0.1 0.7 −6.3149587ð13Þ × 10−5 −1.48663121ð23Þ × 10−3 −6.6139045ð19Þ × 10−3

−6.31488ð6Þ × 10−5 −1.48661ð2Þ × 10−3 −6.6137ð3Þ × 10−3

0.9 10 0.1 0.9 −6.63479732ð11Þ × 10−5 −1.015120160ð27Þ × 10−3 −1.185295472ð21Þ × 10−2

−6.6341ð7Þ × 10−5 −1.01517ð4Þ × 10−3 −1.18535ð8Þ × 10−2
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inside the orbit [68]. Presumably, such a correction is also
needed to evolve inspirals. However, in this work we do not
add such corrections as they are not needed here.

IV. RESULTS

We have implemented the above method for calculating
the GSF on generic Kerr orbits in our arbitrary precision
MATHEMATICA code. This implementation is considerably
more computation intensive than the implementation for
eccentric orbits. There are three main contributing factors:
(1) As mentioned above, the various expressions for for-

ming the GSF are considerably more complex, taking
more time to evaluate and consuming more memory.

(2) For generic orbits we now have a 2-dimensional
spectrum of frequency modes for each ðl; mÞ-mode.
As a result we need to compute many more modes
for a single orbit.

(3) Orbits are now parametrized by two independent
phases. Consequently, we need to sample the orbits
at many more points.

As a result where moderately eccentric equatorial orbits
would require at most tens of CPU hours to calculate the
GSF, to calculate the GSF on a single inclined Kerr
geodesic with modest eccentricity requires up to 104

CPU hours. Luckily the large number of modes, means
that the code is embarrassingly parallelizable, easily run-
ning on 400+ cores at an usage efficiency upwards of 90%.
Therefore, for this work we have chosen to limit

ourselves to a limited number of 5 orbits with fixed spin
(a ¼ 0.9), semilatus rectum (p ¼ 10), and eccentricity
(e ¼ 0.1), while varying the inclination from zmax ¼ 0.1
to zmax ¼ 0.9. In the following sections we first present
some consistency checks on our results. We then provide
some graphical representation of the GSF results.

FIG. 3. Time series data of the GSF on an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.5Þ. Because of the biperiodic nature of the GSF
none of the modulation patterns ever repeat.
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A. Consistency checks

1. Regularization parameters

A key consistency check for any self-force calculation is
comparison of the large l behavior of the l-modes with the
analytically calculated regularization parameters. After
subtracting the regularization parameters from the l-modes,
the remainder should decay with ðL ¼ lþ 1=2Þ−2 for
large l. This requires a large degree of cancellation between
the two calculations. As a result, it is virtually impossible to
make a mistake in either calculation without creating
disagreement between the results.
We start by plotting in Fig. 1 the l-modes of the GSF on a

Kerr geodesic with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.1Þ
evaluated at the point ðqr; qzÞ ¼ ðπ=3; π=6Þ. This point
has been chosen as suitably representative of a generic

point along the orbit. For certain special points along the
orbit such as the turn points, the l-modes will decay without
the need for regularization. We will avoid these points for
this test. As can be seen in Fig. 1, the l-modes of the
“outside” (þ) and “inside” (−) values of the t and ϕ
components of the GSF grow linearly with L, as is expected
since these components have nonzero A parameters. The
parameters Az and Aϕ vanish [69], and indeed we see that
the “outside” (þ) and “inside” (−) values of the corre-
sponding l-modes converge to a constant for large l.
Similarly, as required by Eq. (31), the l-modes of the
two-sided averages of all components also converge to a
constant.
Fig. 2 shows the same modes as in Fig. 1 after

subtracting the analytical regularization parameters from
[56]. As we should expect, all l-modes exhibit a L−2 decay

FIG. 4. GSF as a function on the torus for an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.1Þ. The horizontal axis displays changing qr,
while the vertical axis displays qz.
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at large l. As mentioned above this provides an extremely
stringent test on the validity of our methods and imple-
mentation. In addition it provides independent confirmation
of the results of [44] showing that the Lorenz gauge A, B,
and C regularization parameters can be used to regularize
the GSF obtained in half-string or no-string realizations of
the radiation gauge. Finally, this provides the first numeri-
cal verification of the analytical calculation of the regu-
larization parameters for generic Kerr geodesics [55,56].

2. Flux balance law

A second important verification test of our results, is
checking whether the “flux balance law” is satisfied. The
“flux balance law” [70–73,73] says that the orbit-averaged
changes to the constants of motion E, L, and Q due to the

local GSF should match the change to these constants of
motion inferred from the gravitational wave flux at infinity
and the background horizon.
The local changes to the constants of motion can be

calculated as follows

�
dEGSF

dτ

�
¼ −

ηhdλdτi
ð2πÞ2

Z
π

−π

Z
π

−π
Ftdqrdqz; ð46Þ

�
dLGSF

dτ

�
¼ ηhdλdτi

ð2πÞ2
Z

π

−π

Z
π

−π
Fϕdqrdqz; and ð47Þ

�
dQGSF

dτ

�
¼ ηhdλdτi

ð2πÞ2
Z

π

−π

Z
π

−π
2uαKαβFβ

− 2ðL − aEÞðFϕ þ aFtÞdqrdqz: ð48Þ

FIG. 5. GSF as a function on the torus for an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.3Þ. The horizontal axis displays changing qr,
while the vertical axis displays qz.

GRAVITATIONAL SELF-FORCE ON GENERIC BOUND … PHYS. REV. D 97, 104033 (2018)

104033-11



Teukolsky and Press [38,74] already showed how the
average fluxes of E and L can be extracted from the
behavior of ψ4 at the horizon and infinity. A similar result
for Q was obtained in 2005 by Sago et al. [73,75].
In Table I we compare the results of the flux calculations

to the local averages obtained from the GSF on our five test
orbits. The results agree to all available digits. This provides
another verification of our implementation and methods. At
the same time, it provides the first direct numerical test of the
formula derived by Sago et al. [73,75] for obtaining the
average change of the Carter constant from the flux.

B. Sample results

1. Time series

In Fig. 3 we plot the components of the GSF on a
geodesic with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.5Þ as a

function of coordinate time. These time series display
the biperiodic nature of the GSF on a generic Kerr geodesic,
showing imprints of components of the radial frequency
Ωr ¼ 0.02325 and of the polar frequency Ωz ¼ 0.0291866.
Since these frequencies are incommensurate the oscillation
patterns never really repeat. Most of the modes are
dominated by oscillations compatible with the Ωr and
Ωz frequencies. The notable exception is the ϕ components
which oscillates on a shorter timescale; we will come back
to the cause of this in the next section.

2. Torus plots and spectra

Although intuitive to read, the time series plots are not
very informative about the features of the generic Kerr
geodesic self-forces. In this section, we take a more integral
approach to plotting the GSF on generic geodesics. As
noted at the end of Sec. III B, the GSF on generic geodesic

FIG. 6. GSF as a function on the torus for an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.5Þ. The horizontal axis displays changing qr,
while the vertical axis displays qz.
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reduces to a pure function of the orbital phases. This is, of
course, a natural consequence of the axisymmetry and
stationarity of the background. Consequently, it makes
sense to plot the components of the GSF as a function of the
torus coordinates ðqr; qzÞ. We do so in Figs. 4–8.
These figures are bit less intuitive to read but do contain

all available information about the GSF on a generic orbit.
To help read the plots, note that the horizontal axis plots qr.
Consequently, the vertical lines at qr ¼ 0 and qr ¼ 2π
correspond to apapsis passages of the radial motion, and the
vertical line at qr ¼ π corresponds to periapsis passages.
Similarly, since the vertical axis plots qz, the horizontal
lines at qz ¼ 0 and qz ¼ 2π correspond to passages through
the turning point at zmax, while the horizontal line at qz ¼ π
indicates the turning point at −zmax. Finally, at the
horizontal lines at qz ¼ π=2 and qz ¼ 3π=2 the orbit passes
through the equator.

These plots are complemented by their Fourier spectra in
Figs. 9–13, i.e., we decompose each component of the GSF
F as a function on the ðqr; qzÞ-torus in its Fourier
components

Fðqr; qzÞ ¼
X
n;k

F n;keiðnqrþkqzÞ: ð49Þ

The Figs. 9–13 plot log10 jF n;kj for each component as a
function on n and k.
The first thing we see from the plots is that the

components of the GSF are indeed described by smooth
biperiodic functions on the ðqr; qzÞ-torus. We can verify
this visually from the Figs. 4–8, but more importantly it is
confirmed by the exponential drop-off of the spectra in
Figs. 9–13.

FIG. 7. GSF as a function on the torus for an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.7Þ. The horizontal axis displays changing qr,
while the vertical axis displays qz.
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A striking feature of the plots in Figs. 4–8 is that for the t,
r, and ϕ components the GSF appears to be π periodic in qz
(rather than 2π-periodic as one would naively expect). This
feature is confirmed by the spectra in Figs. 9–13, which
show that for the t, r, and ϕ components the Fourier modes
with odd k vanish. A similar feature appears in the Fourier
spectrum of the z component of the GSF, which features
zero amplitudes in the Fourier modes with even k. Both of
these features trace back to the original up/down symmetry
of the Kerr background. In future iterations of the code,
these features can be used to speed up computation (and
reduce memory usage) by sampling only half the range of
qz. This feature also explains the frequency oscillations
seen in the time series of the ϕ component; in this
component the polar variations dominate; consequently,
we see variations with a frequency 2Ωz in the time series.

As the inclination of the orbit is increased from zmax ¼
0.1 in Fig. 4 to zmax ¼ 0.9 in Fig. 8, we see that the polar qz
variation of the components of the GSF grow, while the
radial qr variations approximately maintain their ampli-
tudes. Of course, this is to be expected since the polar
variations must vanish for equatorial (zmax ¼ 0) orbits. For
the azimuthal component of the GSF, we see that this
means that at a constant eccentricity of e ¼ 0.1 it tran-
sitions from being dominated by its radial variations at low
inclinations to being dominated by its polar variations at
high inclinations. The Ft and Fr components, however,
remain dominated by their radial variations even at this
relatively low eccentricity (e ¼ 0.1) and high inclination
(zmax ¼ 0.9). The Fz component, which must vanish for
equatorial orbits, is always dominated by its polar
variations.

FIG. 8. GSF as a function on the torus for an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.9Þ. The horizontal axis displays changing qr,
while the vertical axis displays qz.
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FIG. 9. Fourier spectrum of the GSF of an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.1Þ. The horizontal axis varies the radial mode
number n, while the vertical axis displays the polar mode number k. Modes with amplitudes below the error threshold are shown
as white.

FIG. 10. Fourier spectrum of the GSF of an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.3Þ. The horizontal axis varies the radial mode
number n, while the vertical axis displays the polar mode number k. Modes with amplitudes below the error threshold are shown
as white.
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FIG. 11. Fourier spectrum of the GSF of an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.5Þ. The horizontal axis varies the radial mode
number n, while the vertical axis displays the polar mode number k. Modes with amplitudes below the error threshold are shown
as white.

FIG. 12. Fourier spectrum of the GSF of an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.7Þ. The horizontal axis varies the radial mode
number n, while the vertical axis displays the polar mode number k. Modes with amplitudes below the error threshold are shown
as white.
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V. CONCLUSIONS AND OUTLOOK

In this paper we have presented the first calculation of
the first order gravitational self-force on generic Kerr
geodesics. We have thus reached an important milestone
in the numerical GSF calculations needed to analyze
EMRIs in LISA data.
However, there is still more work to be done. Although

the calculations in this paper work fine as a proof of
concept, the implementation is fairly slow. Major optimi-
zations are needed in order to be able to fill the
ða; p; e; zmaxÞ orbital parameter space as is needed to
evolve inspirals [32,33]. In particular, it seems we may
have reached the limit of what is feasible in a
MATHEMATICA implementation, which is great for proto-
typing new calculation methods such as this one, but not
necessarily very efficient in the usage of CPU time and
memory. A next step would be to implement in a more
efficient compiled programming language.
The limited runs done for this paper involved only very

modest eccentricities of e ¼ 0.1. LISA EMRIs are expected
to have eccentricities of up to e≲ 0.8. Such calculations
would require significantly more modes and therefore
computation resources. Our code for equatorial orbits

has reached such eccentricities [76], but at high computa-
tional cost. Without a more efficient implementation it
seems infeasible to reach such high eccentricities with the
current generic orbit code.
An exciting phenomenon that can be studied using the

GSF on inclined eccentric orbits is the occurrence of orbital
resonances [77]. These resonances are linked to an inspiral
making a sudden jump in the constants of motion [77]. In
principle, all information about these jumps can be
extracted from the GSF at the moment of resonance
[78]. In particular, we should be able to settle the question
whether there are contributions to the jumps from the
conservative GSF that cannot be obtained from the fluxes
[79]. There is also an intimate link with the question of
integrability of the conservative GSF [80]. Calculating the
ψ4 generated by a resonant orbit would require some minor
modifications of our code as shown in [81]. However,
beyond that all our methods should work almost identically.
The ability to calculate the GSF on inclined orbits further

opens the door for the calculation for a slew of new (quasi-)
invariants. These include the shift of the innermost stable
spherical orbit [82], the equatorial limit of the nodal
precession, the periapsis shift of spherical orbits, and of

FIG. 13. Fourier spectrum of the GSF of an orbit with ða; p; e; zmaxÞ ¼ ð0.9; 10; 0.1; 0.9Þ. The horizontal axis varies the radial mode
number n, while the vertical axis displays the polar mode number k. Modes with amplitudes below the error threshold are shown
as white.
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course the Detweiler redshift. The calculations of these
quantities will require knowledge of the gauge completion
[68], and will be pursued in future work.
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