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We calculate the self-force on an electric charge and electric dipole held at rest in a closed universe that
results from joining two copies of Minkowski spacetime at a common boundary. Spacetime is strictly flat
on each side of the boundary, but there is curvature at the surface layer required to join the two Minkowski
spacetimes. We find that the self-force on the charge is always directed away from the surface layer. This is
analogous to the case of an electric charge held at rest inside a spherical shell of matter, for which the self-
force is also directed away from the shell. For the dipole, the direction of the self-force is a function of the
dipole’s position and orientation. Both self-forces become infinite when the charge or dipole is made to
approach the surface layer. This study reveals that a self-force can arise even when the Riemann tensor
vanishes at the position of the charge or dipole; in such cases the self-force is a manifestation of the global
curvature of spacetime.
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I. INTRODUCTION AND SUMMARY

An electric charge held at rest in a curved spacetime
creates an electric field that interacts with the spacetime
curvature. In a flat spacetime the field lines would be
isotropically distributed around the charge, and the field
would exert no net force. In the curved spacetime, however,
the isotropy is disturbed, and there is a self-force acting on
the charge [1].
The prototypical example of a self-force in curved

spacetime implicates an electric charge q held at a position
r0 outside a nonrotating black hole of mass M. This force
was first calculated by Smith and Will [2], building up on
earlier work by a number of researchers [3–7]. It is given by

F ¼ q2M
r30

n ðcharge outside a black holeÞ; ð1:1Þ

where n is a unit vector that points from the black hole to
the charge.1 The self-force points away from the black hole,
meaning that the external force required to keep the particle
in place is smaller when the particle is charged, compared
to what it would be in the case of a neutral particle. This
iconic result was later generalized to electric charges in the
Reissner-Nordström spacetime [8,9], to scalar charges [10–
12], and to higher-dimensional black holes [13–17].

Drivas and Gralla [18] have shown that the Smith-Will
force of Eq. (1.1) is nearly universal, in the sense that its
expression is nearly independent of the internal composition
of the gravitating body. In other words, two bodies of the
samemass but of distinct internal structure give rise to nearly
identical self-forces, both given approximately by q2M=r30.
There is, however, a slight dependence on internal structure
that produces a correction of order q2M3=r50, a factor
ðM=r0Þ2 smaller than the leading-order term; the correction
depends on the internal composition of the gravitating body.
The precise nature of these corrections was identified by
Isoyama and Poisson [19], who concluded that, in principle,
the self-force can be exploited as a probe of internal structure.
The approximate universality of the Smith-Will force

suggests that a reliable estimate for the self-force acting on a
static charge in any curved spacetimemight be that it is given
byq2 times ameasure of the local curvature, as provided by a
typical component of the Riemann tensor in an orthonormal
frame. In the case of a spacetime outside a body of massM,
the local curvature at position r0 is measured byM=r30, and
the self-force is indeed given by q2M=r30.
The rule of thumb might be adequate in many circum-

stances, but its limitations become apparent when the charge
is placed in a region of spacetime in which the local
curvature vanishes. An illuminating example, first examined
by Unruh [20] and later revisited by Burko, Liu, and Soen
[21], implicates an electric charge held at rest at a position r0
inside a spherical shell of mass M and radius a. In this
situation, the spacetime inside the shell is flat, and the local
curvature at r0 vanishes. But the spacetime is curved outside
the shell, and the interaction between the electric field and
this curvature still gives rise to a self-force. In this case the

1Throughout the paper we use a Cartesian language for
vectors. In this case the spacetime is curved and the language
is not entirely appropriate. The equation, however, is still valid.
The vector F refers to an orthonormal basis attached to a static
observer at position r0, and n is the unit vector that points radially
outward.
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self-force provides a probe of the global curvature of the
spacetime.
The precise expression for the force is complicated—it

is presented as an infinite sum involving Legendre
functions—but to leading order in an expansion in powers
of M=a, it reduces to [21]

F ≃ −
q2M
2ar20

�
r0=a

1 − r20=a
2
þ 1

2
ln
1 − r0=a
1þ r0=a

�
n

ðcharge inside a shell; leading order inM=aÞ; ð1:2Þ

where n is a unit vector that points toward the charge from
the center of the shell. Here the self-force points toward the
center, away from the shell, and its scaling with M, a, and
r0 is not given by a simple expression. When r0=a is small,
the expression within brackets asymptotes to 2

3
ðr0=aÞ3, and

F ∼ − 1
3
ðq2Mr0=a4Þn. When r0=a approaches unity, the

expression within brackets is approximately equal to
½2ð1 − r0=aÞ�−1, and the self-force becomes infinite in the
limit. This example reveals that the scaling of the self-force
is difficult to estimate when the charge is placed in a region
of vanishing curvature. The rule of thumb proposed pre-
viously is clearly inadequate in such situations.
In this paper we examine an even more radical example

of a self-force acting on an electric charge held at rest in a
region of vanishing local curvature. We consider a static,
spherically symmetric spacetime with a metric given by

ds2 ¼ −dt2 þ dr2 þ R2ðrÞdΩ2; ð1:3Þ

where dΩ2 ≔ dθ2 þ sin2θdϕ2 and

RðrÞ ≔
�
r 0 ≤ r < a

2a − r a ≤ r ≤ 2a
: ð1:4Þ

The spacetime represents a static universe with closed
spatial sections, which extend from a first center at r ¼ 0, at
which RðrÞ ¼ 0, to a second center at r ¼ 2a, at which
RðrÞ also vanishes. The spacetime is strictly flat when r <
a and r > a, and it can be thought of as two copies of
Minkowski spacetime joined together at r ¼ a. The joint is
achieved with a surface layer, and the Israel junction
conditions [22] imply that the layer possesses a surface
mass density σ ¼ ð2πaÞ−1 and (negative) surface pressure
p ¼ −ð4πaÞ−1. The surface layer has an inertial mass
m ¼ 4πa2σ ¼ 2a, and it is the only place in spacetime
where one can find curvature. The Riemann tensor is a
Dirac distribution supported at r ¼ a, and the Einstein field
equations equate its Ricci piece to the distributional energy-
momentum tensor provided by the surface layer. The
spacetime is admittedly unrealistic, but it nevertheless
gives rise to a striking (and simple) example of a self-
force. In this case, the electric field interacts with curvature
that is entirely confined to the surface layer.

In Sec. II we place an electric charge q at a position r0 in
the spacetime, keep it there by means of an external agent
that balances the self-force, calculate the electric field,
observe that it is affected by the global structure of the
spacetime, and find that this field exerts a force on the
charge. Taking r0 < a without loss of generality (because
the spacetime is reflection-symmetric across r ¼ a), we
find that the self-force is given by

F¼−
q2r0
2a3

1

1− ðr0=aÞ2
n ðcharge in the closed universeÞ:

ð1:5Þ

The minus sign indicates that the force is directed away
from the surface layer. It scales as q2r0=a3 when r0=a ≪ 1,
and it diverges in the limit r0 → a.
A technical complication arises because of the closed

spatial sections of our spacetime. Gauss’s law demands that
the total charge be zero in a closed universe, and there must
therefore be a second charge −q in the spacetime. The
second charge creates an additional force on the first charge,
and this force must be distinguished from the self-force of
Eq. (1.5). This can always be done, because the self-force
depends only on the position r0, while the interaction force
between the two charges depends also on the position of the
second charge. These details are presented in Sec. II.
The scaling of the self-force with q2r0=a3 and its blowup

at r0 ¼ a are reminiscent of the behavior of the self-force in
the case of a charge inside a massive shell; see Eq. (1.2) and
the discussion that follows. In this case we found the same
blowup, and a rough scaling with q2Mr0=a4. It is tempting
to suggest that the q2r0=a3 scaling is recovered when M is
of the same order of magnitude as a. This recovery is
suggestive, but the suggestion suffers from the drawback
that the surface layer of our closed universe has a vanishing
gravitational mass; partial redemption may come from our
earlier observation that its inertial mass is indeed given by
2a. Another drawback comes from the fact that in the
example of the massive shell, the scaling with q2Mr0=a4

was identified in a self-force that was valid only to leading
order in an expansion in powers of M=a. The self-force,
however, was also calculated in the limit a → 2M in
Ref. [21]. In this case it is given by

F ≃ −
q2r0
a3

2 − r20=a
2

ð1 − r20=a
2Þ2 n

ðcharge inside a shell; a → 2MÞ; ð1:6Þ

and its scaling with q2r0=a3 is confirmed. The blowup at
r ¼ a, however, is now stronger.
The spacetime introduced in this paper is sufficiently

simple that it allows an easy investigation of self-forces in
unusual and interesting circumstances. We take advantage
of this simplicity and explore a new avenue by calculating
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the self-force acting on an electric dipole p held at rest at
position r0 < a in the spacetime. To the best of our
knowledge, there have been no studies of self-force on a
dipole in curved spacetime, beyond the foundational work
found in Ref. [23]. We hope that this initial study will
motivate further work in this direction.
The calculation of the self-force on a dipole presents

itself with a conundrum. The fact that the self-force on a
charge q scales with q2, and is therefore independent of the
sign of the charge, suggests that the forces should simply
add up when two opposite charges are brought together to
form a dipole. On the other hand, we expect that a
calculation carried out from first principles would reveal
a self-force that scales as p2, where p ≔ jpj. Because
q ¼ p=ϵ, where ϵ is the separation between the charges, the
first suggestion would produce a force that diverges when
ϵ → 0with p fixed, while the second route would produce a
finite self-force. The actual calculation of the self-force
shows that it is finite, and the expectation that the individual
self-forces add up is simply wrong.
In Sec. III we calculate the self-force acting on a point

dipole p at rest at a position r ¼ r0 < a in the closed
universe. As in the case of the charge, the dipole is kept in
place by an external agent that balances the self-force. We
find that it is given by

F¼−
p2r0
4a5

1

ð1− r20=a
2Þ3 f ðdipole in the closed universeÞ

ð1:7Þ

with

f ≔ ð1− r20=a
2Þðp̂ ·nÞp̂þ½3− r20=a

2þ2ðr20=a2Þðp̂ ·nÞ2�n;
ð1:8Þ

where p̂ ≔ p=p and n is a unit vector that points from r ¼ 0
to the dipole. The directional structure of the self-force is
rich. When p is aligned with n, that is, when the dipole
points in the radial direction, the force is directed along −n.
When p is orthogonal to n, that is, when the dipole is
transverse to the radial direction, the force is again directed
along −n. For a generic orientation of the dipole, the force
is directed opposite to a linear combination of p̂ and n. As
in the case of a point charge, the self-force on a dipole
diverges when r0 → a.

II. ELECTROMAGNETIC SELF-FORCE
ON A POINT CHARGE

We wish to calculate the self-force acting on an electric
charge q at rest at r ¼ r0 in the closed universe with the
metric of Eq. (1.3). Because the spacetime is reflection-
symmetric across r ¼ a, there is no loss of generality in
taking r0 < a. Because the spatial sections are closed,
Gauss’s law demands that the total charge be zero, and

therefore there must be a second charge−q in the spacetime,
which we put at r ¼ r1. We shall consider the cases r1 < a
and r1 > a. The total force acting onþq is given by the sum
of the self-force and the force exerted by −q.
The spacetime comes with a timelike Killing vector tα,

with nonvanishing component tt ¼ 1. The vector is cova-
riantly constant, so that ∇αtβ ¼ 0.

A. Maxwell’s equations

Maxwell’s equations are∇½αFβγ� ¼ 0 and∇βFαβ ¼ 4πjα,
where Fαβ is the electromagnetic field tensor, and

jαðxÞ ¼ q
Z

uα0δðx; z0Þdτ0 − q
Z

uα1δðx; z1Þdτ1 ð2:1Þ

is the current density, with zα0ðτ0Þ describing the world line
of the charge þq, while zα1ðτ1Þ describes the world line of
the charge −q; τ0 and τ1 are the respective proper times,
uα0 ≔ dzα0=dτ0 and uα1 ≔ dzα1=dτ1 are the respective veloc-
ity vectors, and δðx; zÞ is a scalarized Dirac distribution.
The force exerted on þq is formally given by Fα ¼ qFα

βu
β
0.

This expression must be regularized to account for the
singularity of the field tensor on the charge’s world line.
For two charges at rest in the spacetime, we have that

uα0 ¼ uα1 ¼ tα, and the current density is jα ¼ ρtα with

ρ ¼ q
R2
0

δðr − r0Þδðcos θ − cos θ0Þδðϕ − ϕ0Þ

−
q
R2
1

δðr − r1Þδðcos θ − cos θ1Þδðϕ − ϕ1Þ; ð2:2Þ

where R0 ≔ Rðr0Þ ¼ r0, R1 ≔ Rðr1Þ, ðθ0;ϕ0Þ are the polar
angles of the charge þq, and ðθ1;ϕ1Þ are those of the
charge −q.
We introduce a vector potential Aα and express the field

tensor as Fαβ ¼ ∇αAβ −∇βAα. With Aα ¼ Φtα andΦ time-
independent, Maxwell’s equations become

□Φ ¼ −4πρ; ð2:3Þ

where □ ≔ gαβ∇α∇β. The force acting on þq can then be
expressed as

Fα ¼ qEα ¼ −q∇αΦ; ð2:4Þ

where Eα ¼ −∇αΦ is the electric field, related to the field
tensor by Fαβ ¼ tαEβ − Eαtβ.
Incorporating the metric of Eq. (1.3), Eq. (2.3) reduces to

∂rrΦþ 2R0

R
∂rΦþ 1

R2
D2Φ ¼ −4πρ; ð2:5Þ

where R0 ≔ dR=dr and D2 ≔ ∂θθ þ ðcos θ= sin θÞ∂θ þ
ðsin θÞ−2∂ϕϕ is the Laplacian operator on the unit
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two-sphere. The potential Φ is expanded in spherical
harmonics,

Φðr; θ;ϕÞ ¼
X
lm

ΦlmðrÞYlmðθ;ϕÞ; ð2:6Þ

and we make use of the completeness relation

δðcosθ−cosθ0Þδðϕ−ϕ0Þ¼
X
lm

Y�
lmðθ0;ϕ0ÞYlmðθ;ϕÞ; ð2:7Þ

as well as the eigenvalue equationD2Ylm¼−lðlþ1ÞYlm.
Equation (2.5) becomes

Φ00
lmþ2R0

R
Φ0

lm−
lðlþ1Þ

R2
Φlm

¼−
4πq
r20

Y�
lmðθ0;ϕ0Þδðr− r0Þþ

4πq
R2
1

Y�
lmðθ1;ϕ1Þδðr− r1Þ:

ð2:8Þ

For simplicity we place the two charges on the same radial
line, so that ðθ1;ϕ1Þ ¼ ðθ0;ϕ0Þ, and for convenience we
align the polar axis with this line, so that θ0 ¼ θ1 ¼ 0.
Noting that

Y�
lmð0;ϕ0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
δm0;

Yl0ðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Plðcos θÞ; ð2:9Þ

we find that Φ is axisymmetric and admits an expansion in
Legendre polynomials,

Φðr; θÞ ¼
X
l

ΦlðrÞPlðcos θÞ; ð2:10Þ

with radial functions that satisfy

Φ00
lþ

2R0

R
Φ0

l−
lðlþ1Þ

R2
Φl

¼−ð2lþ1Þ q
r20
δðr− r0Þþð2lþ1Þ q

R2
1

δðr− r1Þ: ð2:11Þ

These are related by Φl ¼ ½ð2lþ 1Þ=ð4πÞ�1=2Φl0 to the
radial functions that appear in the original expansion
of Eq. (2.6).
When r ≠ r0 and r ≠ r1, Eq. (2.11) admits the linearly

independent solutions Φl ¼ fRl; R−ðlþ1Þg. The solution
must be regular at r ¼ 0 and r ¼ 2a, and to account for the
delta function at r ¼ r0, it must satisfy the junction
conditions

½Φl�r0 ¼ 0; ½Φ0
l�r0 ¼ −ð2lþ 1Þ q

r20
; ð2:12Þ

with ½f�r0 ≔ fðr ¼ rþ0 Þ − fðr ¼ r−0 Þ denoting the jump of
f across r ¼ r0. Similarly, the junction conditions

½Φl�r1 ¼ 0; ½Φ0
l�r1 ¼ ð2lþ 1Þ q

R2
1

ð2:13Þ

account for the delta function at r ¼ r1. We assume that the
surface layer is electrically inert, so that bothΦl andΦ0

l are
continuous at r ¼ a.

B. Case r1 = 0 or r1 = 2a

The simplest situation has the charge −q at either r1 ¼ 0
or r1 ¼ 2a, the two centers of the spacetime. In this
situation the charge −q creates a monopole field, and its
attraction on þq is simple to describe. With this attraction
accounted for, what is left over is the self-force acting on
the original charge.
When l ≠ 0, the solution to Eq. (2.11) is

Φlð0 < r < r0Þ ¼ q
rl

rlþ1
0

þ q
2l

ðr0rÞl
a2lþ1

; ð2:14aÞ

Φlðr0 < r < aÞ ¼ q
rl0
rlþ1

þ q
2l

ðr0rÞl
a2lþ1

; ð2:14bÞ

Φlða < r < 2aÞ ¼ q
ðr0RÞl
a2lþ1

þ q
2l

ðr0RÞl
a2lþ1

; ð2:14cÞ

where R ¼ 2a − r. When l ¼ 0, the solution is defined up
to an overall additive constant. When r1 ¼ 0 we choose

Φ0ð0 < r < r0Þ ¼ −q=rþ q=r0; ð2:15aÞ

Φ0ðr0 < r < aÞ ¼ 0; ð2:15bÞ

Φ0ða < r < 2aÞ ¼ 0; ð2:15cÞ

and note that in this situation, the solution cannot be regular
at r ¼ 0. When r1 ¼ 2a, we choose instead

Φ0ð0 < r < r0Þ ¼ q=r0; ð2:16aÞ

Φ0ðr0 < r < aÞ ¼ q=r; ð2:16bÞ

Φ0ða < r < 2aÞ ¼ 2q=a − q=R; ð2:16cÞ

and note that this solution cannot be regular at r ¼ 2a.
The complete potential in the region 0 ≤ r ≤ a is

given by

Φ ¼ ΦS þΦR þΦint; ð2:17Þ

where
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ΦS ¼ q
X∞
l¼0

rl<
rlþ1
>

Plðcos θÞ ð2:18Þ

with r< ≔ minðr; r0Þ and r> ≔ maxðr; r0Þ,

ΦR ¼ q
2

X∞
l¼1

1

l
ðr0rÞl
a2lþ1

Plðcos θÞ; ð2:19Þ

and

Φint ¼
�−q=r −q at r1 ¼ 0

0 −q at r1 ¼ 2a
: ð2:20Þ

The monopole potential Φint describes the interaction
between the two charges. When the charge −q is at
r1 ¼ 0, so that r1 < r0, the interaction potential is given
by −q=r, and the charge þq feels the force created by −q,
given by−q2=r20; this is the expected attraction described by
the usual Coulomb law.When, on the other hand, the charge
−q is at r1 ¼ 2a, so that r1 > r0, the force vanishes because
−q represents a spherical distribution of charge external to
the sphere r ¼ r0. The potential ΦS is recognized as the
potential that would be created by the charge þq if it were
situated in a globally flat spacetime. This potential is
singular at r ¼ r0, but it produces an isotropic electric field
around the charge, and this field does not contribute to the
self-force acting on the charge. This potential can be
identified with the Detweiler-Whiting singular potential
[24]. The remaining contribution to Φ is ΦR, which is
smooth at r ¼ r0 and is entirely responsible for the self-
force; this is identified with the Detweiler-Whiting regular
potential.
The mode sums for ΦS and ΦR can be evaluated; the

details are provided in the Appendix. For the singular
potential we have the familiar expression

ΦS ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2r0r cos θ þ r20

p ; ð2:21Þ

and for the regular potential we have

ΦR ¼−
q
2a

ln

�
a2− r0rcosθþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20r

2−2a2r0rcosθþa4
p

2a2

�
:

ð2:22Þ

The regular potential produces the electric field
ER
a≔−∂aΦR, and the radial component evaluated at

θ ¼ 0 is given by

ER
r ðr; θ ¼ 0Þ ¼ −

qr0
2a3

1

1 − r0r=a2
: ð2:23Þ

This expression is valid for 0 ≤ r ≤ a and r0 < a, and the
apparent singularity at r ¼ a2=r0 is situated beyond r ¼ a,

where another (nonsingular) form of solution takes over.
The self-force acting on the charge þq is Fself

r ¼
qER

r ðr ¼ r0; θ ¼ 0Þ, or

Fself
r ¼ −

q2r0
2a3

1

1 − ðr0=aÞ2
; ð2:24Þ

as was first displayed in Eq. (1.5). The expression applies
when r0 < a, and it becomes singular in the limit r0 → a.

C. Case r1 < a

Next we place the charge −q at an arbitrary position r1
inside the surface layer, so that r1 < a. For concreteness
we present the calculation assuming that r1 > r0; the case
r1 < r0 is very similar, and there is no need to describe it
in detail.
When l ≠ 0, the solution to Eq. (2.11) is given by

Φlð0<r<r0Þ¼ q
rl

rlþ1
0

−q
rl

rlþ1
1

þ q
2l

ðr0rÞl
a2lþ1

−
q
2l

ðr1rÞl
a2lþ1

;

ð2:25aÞ

Φlðr0 <r<r1Þ¼ q
rl0
rlþ1

−q
rl

rlþ1
1

þ q
2l

ðr0rÞl
a2lþ1

−
q
2l

ðr1rÞl
a2lþ1

;

ð2:25bÞ

Φlðr1 <r<aÞ¼ q
rl0
rlþ1

−q
rl1
rlþ1

þ q
2l

ðr0rÞl
a2lþ1

−
q
2l

ðr1rÞl
a2lþ1

;

ð2:25cÞ

Φlða < r < 2aÞ ¼ q
ðr0RÞl
a2lþ1

− q
ðr1RÞl
a2lþ1

þ q
2l

ðr0RÞl
a2lþ1

−
q
2l

ðr1RÞl
a2lþ1

; ð2:25dÞ

where R ¼ 2a − r. For l ¼ 0 we have

Φ0ð0 < r < r0Þ ¼ q=r0 − q=r1; ð2:26aÞ

Φ0ðr0 < r < r1Þ ¼ q=r − q=r1; ð2:26bÞ

Φ0ðr1 < r < aÞ ¼ 0; ð2:26cÞ

Φ0ða < r < 2aÞ ¼ 0: ð2:26dÞ

The complete potential in the region 0 ≤ r < r1 is
given by

Φ ¼ ΦS þΦR þΦint; ð2:27Þ

with ΦS given by Eqs. (2.18) and (2.21), ΦR given by
Eqs. (2.19) and (2.22), and
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Φint ¼ −q
X∞
l¼0

rl

rlþ1
1

Plðcos θÞ −
q
2

X∞
l¼1

1

l
ðr1rÞl
a2lþ1

Plðcos θÞ:

ð2:28Þ

A calculation carried out for r1 < r0 would return the same
expression for Φ, except that the first sum for Φint would
have rl1=r

lþ1 in front of the Legendre polynomials; the
general expression is rl<=r

lþ1
> , with r< ≔ minðr; r1Þ and

r> ≔ maxðr; r1Þ. The potentials keep their interpretations:
ΦS is the singular potential, ΦR is the regular potential
responsible for the self-force, and Φint describes the
interaction between charges.
The interaction potential can be evaluated explicitly (see

the Appendix for details). We have

Φint ¼ −qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−2r1rcosθþ r21

p

þ q
2a

ln

�
a2− r1rcosθþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21r

2−2a2r1rcosθþa4
p

2a2

�
:

ð2:29Þ

The potential produces the electric field Eint
a ¼−∂aΦint, and

the force acting on the charge þq is Fint
r ¼ qEint

r ðr¼ r0;
θ¼ 0Þ, or

Fint
r ¼ � q2

ðr1 − r0Þ2
þ q2r1

2a3
1

1 − r0r1=a2
; ð2:30Þ

with the positive sign applying when r1 > r0, and the
negative sign applying when r1 < r0. Equation (2.30)
reduces to Fint

r ¼ −q2=r20 when r1 ¼ 0, in agreement with
our results in Sec. II B. The first term in the interaction
force is the usual expression of Coulomb’s law; the force is
directed toward the −q charge at r ¼ r1. The second term is
a modification to Coulomb’s law contributed by the global
curvature of the spacetime; it is directed toward the sur-
face layer.

D. Case r1 > a

In this section we place the charge −q at an arbitrary
position r1 outside the surface layer, so that r1 > a. When
l ≠ 0, the solution to Eq. (2.11) is given by

Φlð0<r<r0Þ¼q
rl

rlþ1
0

−q
ðR1rÞl
a2lþ1

þ q
2l

ðr0rÞl
a2lþ1

−
q
2l

ðR1rÞl
a2lþ1

;

ð2:31aÞ

Φlðr0<r<aÞ¼q
rl0
rlþ1

−q
ðR1rÞl
a2lþ1

þ q
2l

ðr0rÞl
a2lþ1

−
q
2l

ðR1rÞl
a2lþ1

;

ð2:31bÞ

Φlða<r<r1Þ¼q
ðr0RÞl
a2lþ1

−q
Rl
1

Rlþ1
þ q
2l

ðr0RÞl
a2lþ1

−
q
2l

ðR1RÞl
a2lþ1

;

ð2:31cÞ

Φlðr1 < r < 2aÞ ¼ q
ðr0RÞl
a2lþ1

− q
Rl

Rlþ1
1

þ q
2l

ðr0RÞl
a2lþ1

−
q
2l

ðR1RÞl
a2lþ1

; ð2:31dÞ

where R ¼ 2a − r and R1 ¼ 2a − r1. For l ¼ 0 we have

Φ0ð0 < r < r0Þ ¼ q=r0 − q=a; ð2:32aÞ

Φ0ðr0 < r < aÞ ¼ q=r − q=a; ð2:32bÞ

Φ0ða < r < r1Þ ¼ −q=Rþ q=a; ð2:32cÞ

Φ0ðr1 < r < 2aÞ ¼ −q=R1 þ q=a: ð2:32dÞ

The complete potential in the region 0 ≤ r ≤ a is
given by

Φ ¼ ΦS þΦR þΦint; ð2:33Þ

with ΦS given by Eqs. (2.18) and (2.21), ΦR given by
Eqs. (2.19) and (2.22), and Φint now given by

Φint ¼−q
X∞
l¼0

ðR1rÞl
a2lþ1

PlðcosθÞ−
q
2

X∞
l¼1

1

l
ðR1rÞl
a2lþ1

PlðcosθÞ:

ð2:34Þ

The interaction potential is given explicitly by (see the
Appendix)

Φint¼ −qaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1r

2−2a2R1rcosθþa4
p

þ q
2a

ln

�
a2−R1rcosθþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1r

2−2a2R1rcosθþa4
p

2a2

�
;

ð2:35Þ

and it produces the electric field Eint
a ¼ −∂aΦint. The force

acting on the charge þq is Fint
r ¼ qEint

r ðr ¼ r0; θ ¼ 0Þ, or

Fint
r ¼ q2R1

2a3
3 − r0R1=a2

ð1 − r0R1=a2Þ2
: ð2:36Þ

The force vanishes when R1 ¼ 0, or r1 ¼ 2a, in agreement
with our results in Sec. II B. With the charges situated on
opposite sides of the surface layer, the interaction force
bears little resemblance to the usual Coulomb force, and it
is always directed toward the surface layer.
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III. ELECTROMAGNETIC SELF-FORCE
ON A POINT DIPOLE

In this section we consider a point electric dipole p
situated at r ¼ r0 < a (inside the surface layer), and we
calculate the self-force on this dipole.

A. Point dipole

Because the dipole is at rest in a local patch of
Minkowski spacetime, it is convenient to describe its local
physics in a Newtonian language involving Cartesian
vectors such as p; relativistic aspects reveal themselves
only when we integrate Maxwell’s equations for the
electrostatic potential Φ. We shall use both the original
spherical coordinates ðr; θ;ϕÞ and the associated Cartesian
coordinates ðx; y; zÞ, but express all vectors and tensors in
Cartesian coordinates. We recall that the vector basis
attached to the spherical coordinates is given by

r̂ ¼ sin θ cosϕx̂þ sin θ sinϕŷþ cos θẑ; ð3:1aÞ
θ̂ ¼ cos θ cosϕx̂þ cos θ sinϕŷ − sin θẑ; ð3:1bÞ
ϕ̂ ¼ − sinϕx̂þ cosϕŷ; ð3:1cÞ

in terms of the Cartesian basis vectors. All vectors have a
unit length.
The charge density of a point dipole is given by

ρðxÞ ¼ −p · ∇δðx − r0Þ; ð3:2Þ

where δðx − r0Þ is a three-dimensional delta function, and
r0 ¼ ð0; 0; r0Þ is the dipole’s position vector. The potential
Φ created by the dipole satisfies Eq. (2.3), or its explicit
expression of Eq. (2.5). The force exerted on the dipole is
given formally by

Fa ¼ pb∂bEa ¼ −pb∂abΦ; ð3:3Þ

in which Ea ≔ −∂aΦ is the electric field, and the potential
is evaluated at x ¼ r0 after differentiation. This expression
must be regularized before a meaningful result is obtained
for the self-force.

B. Dipole in the z direction

We first calculate the potential for a dipole aligned with
the z axis. We have p ¼ pẑ, so that p≡ pz. We wish to
perform the calculation in spherical coordinates, and to
handle the coordinate singularity on the polar axis—ϕ is
not defined there—we first place the dipole at ðr0; θ0;ϕ0Þ
and eventually take the limit θ0 → 0; the limit is indepen-
dent of ϕ0. We also put the dipole in the direction of r̂0, the
radial unit vector evaluated at ðθ ¼ θ0;ϕ ¼ ϕ0Þ; in the limit
the dipole becomes aligned with the z axis.
Working momentarily in Cartesian coordinates, the

dipole’s charge density is given by

ρ ¼ −pr̂0 · ∇δðx − r0Þ ¼ þpr̂0 · ∇0δðx − r0Þ; ð3:4Þ

where ∇0 is the gradient operator associated with the
variables contained in r0. Switching now to the spherical
coordinates, we have

ρ ¼ p
∂
∂r0

�
δðr − r0Þ

r2
δðcos θ − cos θ0Þδðϕ − ϕ0Þ

�
; ð3:5Þ

or

ρ¼−p
�
δ0ðr−r0Þ

r20
þ2

δðr− r0Þ
r30

�
δðcosθ− cosθ0Þδðϕ−ϕ0Þ;

ð3:6Þ

with a prime indicating differentiation with respect to r; we
made use of the distributional identity fðrÞδ0ðr − r0Þ ¼
fðr0Þδ0ðr − r0Þ − f0ðr0Þδðr − r0Þ. The same expression for
ρ can be obtained from the two-charge model of Eq. (2.2)
by letting r1 ¼ r0 − δr, θ1 ¼ θ0, ϕ1 ¼ ϕ0, and taking the
limit δr → 0 with p ≔ qδr kept fixed.
The calculation ofΦ proceeds as in Sec. II A. In the limit

θ0 → 0 with ϕ0 arbitrary, the potential is axisymmetric and
admits the decomposition

Φðr; θÞ ¼
X
l

ΦlðrÞPlðcos θÞ; ð3:7Þ

with radial functions that satisfy

Φ00
l þ

2R0

R
Φ0

l −
lðlþ 1Þ

R2
Φl

¼ ð2lþ 1Þp
�
δ0ðr − r0Þ

r20
þ 2

δðr − r0Þ
r30

�
: ð3:8Þ

When r ≠ r0, the differential equation admits the linearly
independent solutions Φl ¼ fRl; R−ðlþ1Þg. The solution
must be regular at r ¼ 0 and r ¼ 2a, and to account for the
singularity at r ¼ r0, it must satisfy the junction conditions

½Φl�r0 ¼ ð2lþ 1Þ p
r20

; ½Φ0
l�r0 ¼ 0: ð3:9Þ

We again assume that the surface layer is electrically inert,
so that both Φl and Φ0

l are continuous at r ¼ a.
The solution that satisfies all these requirements is

Φlð0 < r < r0Þ ¼ −ðlþ 1Þp rl

rlþ2
0

þ 1

2
p
rl−10 rl

a2lþ1
; ð3:10aÞ

Φlðr0 < r < aÞ ¼ lp
rl−10

rlþ1
þ 1

2
p
rl−10 rl

a2lþ1
; ð3:10bÞ
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Φlða < r < 2aÞ ¼ 1

2
ð2lþ 1Þp rl−10 Rl

a2lþ1
: ð3:10cÞ

The complete potential in the region 0 < r < a is then

Φ ¼ ΦS þΦR ð3:11Þ
with

ΦS ¼ p
∂
∂r0

X∞
l¼0

rl<
rlþ1
>

Plðcos θÞ ð3:12Þ

and

ΦR ¼ 1

2
p
X∞
l¼0

rl−10 rl

a2lþ1
Plðcos θÞ; ð3:13Þ

where r< ≔ minðr; r0Þ and r> ≔ maxðr; r0Þ.
Comparison with Eqs. (2.18) and (2.21) allows us to

evaluate the sums, and we arrive at

ΦS ¼ pðr cos θ − r0Þ
ðr2 − 2r0r cos θ þ r20Þ3=2

ð3:14Þ

and

ΦR ¼ pa
2r0s2

; ð3:15Þ

where

s2 ≔ ðr20r2 − 2a2r0r cos θ þ a4Þ1=2: ð3:16Þ
Equation (3.14) is the familiar expression for the potential
of a point dipole aligned with the z axis, when the dipole is
placed in a globally flat spacetime; this potential diverges at
the dipole’s position, and it can be identified with the
singular Detweiler-Whiting potential [24]. The potential of
Eq. (3.15) is smooth at the dipole’s position, and it can be
identified with the regular Detweiler-Whiting potential.
The self-force acting on the dipole will come entirely
from ΦR.

C. Dipole in the x direction

Next we take the dipole to be aligned with the x axis, so
that p ¼ px̂ and p≡ px. To set up the calculation we place
the dipole at ðr0; θ0;ϕ0Þ and align it with θ̂0, the angular
unit vector evaluated at the dipole’s position. Taking the
limit θ0 → 0 with ϕ0 ¼ 0 will take the dipole to the z axis
and align it with the x direction.
The charge density is given by

ρ¼−pθ̂0 ·∇δðx− r0Þ¼pθ̂0 ·∇0δðx− r0Þ

¼ p
r0

∂
∂θ0

�
δðr− r0Þ

r2
δðcosθ− cosθ0Þδðϕ−ϕ0Þ

�
; ð3:17Þ

or

ρ ¼ p
r30
δðr − r0Þ∂θ0δðcos θ − cos θ0Þδðϕ − ϕ0Þ: ð3:18Þ

The same expression can be obtained from the two-
charge model of Eq. (2.2) by letting r1¼r0, θ1¼θ0−δθ,
ϕ1 ¼ ϕ0, and taking the limit δθ → 0 keeping p ≔
qr0δθ fixed.
The potential is expanded in spherical harmonics as in

Eq. (2.6), and the completeness relation of Eq. (2.7) is
differentiated with respect to θ0. The identity

∂θYlm ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðlþmþ 1Þ

p
Yl;mþ1e−iϕ

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl −mþ 1Þ

p
Yl;m−1eiϕ ð3:19Þ

allows us to express ∂θ0Ylmðθ0;ϕ0Þ in terms of spherical
harmonics, and to take the limit θ0 → 0 with ϕ0 ¼ 0; we
obtain

lim
θ0→0

∂
∂θ0Ylmðθ0;0Þ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
ðδm;−1−δm;1Þ:

ð3:20Þ

This relation implies that Φl;−1 ¼ −Φl;1. With

Yl;�1 ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp P1
lðcos θÞe�iϕ; ð3:21Þ

where P1
l is an associated Legendre function, and the

definition

Φl ≔ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Φl;1; ð3:22Þ

we find that the potential admits the decomposition

Φðr; θ;ϕÞ ¼
X∞
l¼1

ΦlðrÞP1
lðcos θÞ cosϕ ð3:23Þ

with radial functions that satisfy

Φ00
l þ

2R0

R
Φ0

l −
lðlþ 1Þ

R2
Φl ¼ −ð2lþ 1Þ p

r30
δðr − r0Þ:

ð3:24Þ

The solution to the differential equation is

Φlð0 < r < r0Þ ¼ p
rl

rlþ2
0

þ p
2l

rl−10 rl

a2lþ1
; ð3:25aÞ

Φlðr0 < r < aÞ ¼ p
rl−10

rlþ1
þ p
2l

rl−10 rl

a2lþ1
; ð3:25bÞ
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Φlða < r < 2aÞ ¼ p
rl−10 Rl

a2lþ1
þ p
2l

rl−10 Rl

a2lþ1
; ð3:25cÞ

and the potential in the region 0 < r < a is

Φ ¼ ΦS þΦR ð3:26Þ
with

ΦS ¼ p
r0

X∞
l¼1

rl<
rlþ1
>

P1
lðcos θÞ cosϕ ð3:27Þ

and

ΦR ¼ 1

2
p
X∞
l¼1

1

l
rl−10 rl

a2lþ1
P1
lðcos θÞ cosϕ: ð3:28Þ

The sum for ΦS can be evaluated by noting that
P1
lðcos θÞ ¼ −ðd=dθÞPlðcos θÞ, and we obtain

ΦS ¼ pr sin θ cosϕ

ðr2 − 2r0r cos θ þ r20Þ3=2
: ð3:29Þ

This is the familiar expression for the potential of a point
dipole in a globally flat spacetime, when the dipole is
aligned with the x axis; this potential diverges at the
dipole’s position, and it can be identified with the singular
Detweiler-Whiting potential [24]. The sum for ΦR can also
be evaluated by comparing with Eqs. (2.19) and (2.22).
After differentiation with respect to θ we arrive at

ΦR ¼ p
2a

ða2 þ s2Þr sin θ cosϕ
s2ða2 − r0r cos θ þ s2Þ ; ð3:30Þ

where s2 is defined by Eq. (3.16). This potential is smooth
at the dipole’s position, and it can be identified with the
regular Detweiler-Whiting potential. The self-force acting
on the dipole will originate entirely from ΦR.

D. Dipole in the y direction

The calculation of Φ for a dipole aligned with the y axis
proceeds as in Sec. III C. The steps are identical, except for
the fact that the limit θ0 → 0 is now taken with ϕ0 ¼ π=2 to
produce the correct orientation for the dipole. The end
result for ΦR is

ΦR ¼ p
2a

ða2 þ s2Þr sin θ sinϕ
s2ða2 − r0r cos θ þ s2Þ ; ð3:31Þ

which can be obtained directly from Eq. (3.30) by replacing
the factor of cosϕ with sinϕ.

E. Self-force on a dipole

The complete ΦR for an arbitrarily aligned dipole can
be obtained by combining Eqs. (3.15), (3.30), and (3.31).
We get

ΦR ¼ða2þ s2ÞðpxrsinθcosϕþpyrsinθsinϕÞ
2as2ða2− r0rcosθþ s2Þ þ apz

2r0s2
;

ð3:32Þ

with s2 defined by Eq. (3.16). The self-force acting on the
dipole is calculated from Eq. (3.3), which we write as

Fself
a ¼ −pb∂abΦR: ð3:33Þ

To calculate the components of the force we express the
potential in Cartesian coordinates, take the derivatives, and
evaluate the result at x ¼ y ¼ 0 and z ¼ r0. We obtain

Fself
x ¼ −

r0pxpz

4a5ð1 − r20=a
2Þ2 ; ð3:34aÞ

Fself
y ¼ −

r0pypz

4a5ð1 − r20=a
2Þ2 ; ð3:34bÞ

Fself
z ¼ −

r0½ð3 − r20=a
2Þðp2

x þ p2
yÞ þ 4p2

z �
4a5ð1 − r20=a

2Þ3 : ð3:34cÞ

This can be put in the vectorial form of Eq. (1.7),
with n ≔ r0=r0 ¼ ẑ.
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APPENDIX: DERIVATION OF
EQS. (2.21), (2.22), (2.29), AND (2.35)

Equation (2.21) follows directly from Eq. (2.18) and the
identity

ð1 − 2txþ t2Þ−1=2 ¼
X∞
l¼0

tlPlðxÞ; ðA1Þ

which holds for jtj < 1.
To obtain Eq. (2.22), we note that Eq. (2.19) can be

expressed as

ΦR ¼ qa
2

Z
dr0

�
1

r20

X∞
l¼1

rl

ða2=r0Þlþ1
Plðcos θÞ

�
; ðA2Þ

or

ΦR¼qa
2

Z
dr0

�
1

r20

X∞
l¼0

rl

ða2=r0Þlþ1
PlðcosθÞ−

1

a2r0

�
: ðA3Þ

Making use of Eq. (A1), the sum over Legendre poly-
nomials evaluates to
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X∞
l¼0

rl

ða2=r0Þlþ1
PlðcosθÞ¼

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20r

2−2a2r0rcosθþa4
p ;

ðA4Þ

and the potential becomes

ΦR ¼ qa
2

Z
dr0

�
1

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20r

2 − 2a2r0r cos θ þ a4
p −

1

a2r0

�
:

ðA5Þ

Direct integration gives rise to Eq. (2.22) after adjusting the
constant of integration so thatΦRðr ¼ 0; θÞ ¼ 0, as implied
by Eq. (2.19).
The steps required to arrive at Eq. (2.29) from Eq. (2.28)

are identical to those described previously, with the changes

q → −q and r0 → r1. To go from Eq. (2.34) to Eq. (2.35),
we let q0 ≔ −qa=R1 and R0

1 ≔ a2=R1 in the first sum,
which becomes

q0
X∞
l¼0

rl

ðR0
1Þlþ1

PlðcosθÞ¼
q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2−2R0
1rcosθþR02

1

p ; ðA6Þ

and which gives rise to the first term in Eq. (2.35). It is
interesting to note that the expressions for q0 and R0

1 are the
same ones that arise for the image charge in the problem of
a point charge outside a grounded, spherical conductor. The
second sum in Eq. (2.34) is of the same form as Eq. (2.19)
with r0 → R1, and it leads directly to the second term
in Eq. (2.35).
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