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We examine the gravitational collapse and black hole formation of multiple nonspherical configurations
constructed fromSzekeres dustmodelswith positive spatial curvature that smoothlymatch to a Schwarzschild
exterior. These configurations are made of an almost spherical central core region surrounded by a network of
“pancake-like” overdensities and voids with spatial positions prescribed through standard initial conditions.
We show that a full collapse into a focusing singularity, without shell crossings appearing before the formation
of an apparent horizon, is not possible unless the full configuration becomes exactly or almost spherical.
Seeking for black hole formation, we demand that shell crossings are covered by the apparent horizon. This
requires very special fine-tuned initial conditions that impose very strong and unrealistic constraints on the
total black hole mass and full collapse time. As a consequence, nonspherical nonrotating dust sources cannot
furnish even minimally realistic toy models of black hole formation at astrophysical scales: demanding
realistic collapse time scales yields huge unrealistic black hole masses, while simulations of typical
astrophysical black hole masses collapse in unrealistically small times. We note, however, that the resulting
time-mass constraint is compatiblewith early Universe models of primordial black hole formation, suitable in
early dust-like environments. Finally, we argue that the shell crossings appearing when nonspherical dust
structures collapse are an indicator that such structures do not form galactic mass black holes but virialize into
stable stationary objects.
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I. INTRODUCTION

The gravitational collapse and black hole (BH) formation
(including singularity censorship issues) of spherically
symmetric dust models has been extensively examined
[1]. These models are described by the Lemaître-Tolman-
Bondi (LTB) solutions and typically consider a dust over-
density (a local spatial density maximum) around the
symmetry centre.
However, the proper study of BH formation from the

collapse of nonspherical dust configurations remains an
open problem (see [2,3]). In particular, the quasispherical
Szekeres solutions of class I [4–6] allow for modeling
nontrivial nonspherical configurations, involving a sphe-
roidal overdensity or density void surrounded by elaborated
networks of “pancake-like structures.” Here, by pancake-
like structures we mean elongated regions that contain local

spatial density maxima (overdensities) or minima (voids),
which can be localized in terms of radial and angular
coordinates of suitable spherical comoving coordinates. As
shown in [7–10], these Szekeres models allow for prescrib-
ing the spatial location of all these extremes from specified
initial conditions.
Since quasispherical Szekeres models are the least

idealized exact solution applicable to cosmology, there is
a large body of literature employing them as toy models for
structure formation and for fitting cosmological observa-
tions [7–13]. However, the proper study of BH formation
from quasispherical Szekeres models, and indeed from any
nonspherical progenitors, remains largely unexplored. In
this context, Ref. [14] discusses the conditions for BH
formation from the collapse of Szekeres configurations,
while the definition of their apparent horizon is discussed in
[15]. These references stand as valuable precedents, but still
leave important issues to be examined. In particular, in
astrophysical systems it is plausible to match the Szekeres
central solution to a Schwarzschild exterior. Therefore from
the outside the process is seen as the usual spherical
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collapse. However, we are interested in the nonspherical
interior and the evolution of multiple (pancake-like and
spherical) structures. The aim of the present article is to
explore the collapse of networks of nonspherical structures
modeled by Szekeres solutions into a single “big crunch”
singularity (final focusing singularity).
We find advantageous to address the problem employing

quasilocal scalar variables adapted to Szekeres models (a
formalism developed in [10,16–18]). Such formalism is
idoneous to describe the complex radial and angular
dependence of the density associated with these networks
of structures, and their specification through initial con-
ditions. Besides these advantages, the q-scalars and their
fluctuations are exact generalizations of cosmological dust
perturbations in the synchronous (and comoving) gauge of
cosmological perturbation theory [18,19].
In previous work [17] we were concerned with cosmic

structure modeling, looking at localized collapsing regions
within models whose cosmic background (a Λ cold dark
matter background) is expanding. Consequently we consid-
ered only two types of “collapse morphologies” (defined by
the three eigenvalues of the expansion tensor): the “spheri-
cal” collapse (all negative eigenvalues) and the “pancake”
collapse (two positive and one negative eigenvalues). Under
this approach we simply assumed that locally collapsing
regions (spherical or pancake) would virialize into stationary
stable structures and thus ignored their terminal evolution
into singularities (big crunch or shell crossings).
In this paper we are interested in astrophysical BH

formation from multiple overdensities. We model local
collapse (with Λ ¼ 0) of configurations with positive spatial
curvature consisting of a central LTB inhomogeneity,
surrounding Szekeres pancake solutions and embedded in
an exterior Schwarzschild spacetime (see Fig. 2 below). We
simulate the gravitational collapse through examples evolv-
ing the pure growing mode of the Szekeres structures and
find that a full big crunch collapse without shell crossings
appearing before the formation of an apparent horizon is not
possible unless the full configuration becomes exactly or
almost spherical. This is a consequence of the fact that
conditions for avoiding shell crossings are much more
stringent in Szekeres models than in LTB models. Our
results indicate that the setup may represent a suitable model
for large-scale structure formation in which the dust struc-
tures eventually enter a stage of virialization beyond the
Szekeres description [20].
Looking for the possibility of BH formation of fully

nonspherical configurations with this proviso, we fine-tune
the initial conditions, so that shell crossings become
covered by the apparent horizon and lie very close to
(what would be) the locus of the big crunch. For such
examples, we compute the final collapse time and total BH
mass. Our results show either a very short time of collapse
or a very large mass of the BH developed over astrophysical
timescales. Instead, our results show compatibility with the

theory of primordial black holes (PBH) formation, which
involves a rapid collapse of very small masses [14,21,22].
The plan of the paper is as follows. In Sec. II we

introduce a description of the Szekeres models in terms of
q-scalars and spherical coordinates and comment on
sufficient conditions for the existence of multiple spatial
extrema of the Szekeres scalars. General features of the
quasispherical Szekeres models are reviewed in Sec. III
including the collapse morphologies, a criterium for the
identification of apparent horizons, and the occurrence of
shell crossings and concavity inversions points (the evolv-
ing of local density maxima into local minima and vice
versa). In this section we argue that shell crossings are
indicative of the start of virialization, thereforewe canmodel
the structure formation process. To illustrate our setup, in
Sec. IV we show two representative examples of structure
formation with Szekeres models, namely, a galaxy super-
cluster and a BH. Our results are summarized and discussed
in Sec. V. Finally, we have included four appendices that
complement the main text. Appendixes A and B provide the
evolution equations of the q-scalars and metric functions in
Szekeres models and their exact solution for Λ ¼ 0, respec-
tively. These solutions are rewritten in a dimensionless form
in Appendix C, and in Appendix D we list the general
conditions to avoid shell crossings.

II. SZEKERES MODELS IN SPHERICAL
COORDINATES

The quasispherical Szekeres models of class I.1 in terms
of “stereographic” spherical coordinates are described by
the metric [5],

ds2 − dt2 þ a2hijdxidxj; i; j ¼ r; θ;ϕ; ð1Þ

where a ¼ aðt; rÞ and

hrr ¼
ðΓ −WÞ2
1 −Kqir2

þ ðP þW;θÞ2 þ U2W2
;ϕ; ð2Þ

hrθ ¼ −rðP þW;θÞ; ð3Þ

hrϕ ¼ −rUW;ϕ; hθθ ¼ r2; hϕϕ ¼ r2sin2θ; ð4Þ

with

Γ ¼ 1þ ra0

a
; U ¼ 1 − cos θ; ð5Þ

1All further mention of “Szekeres models” will refer only to
quasispherical models of class I (see [5] for a broad discussion on
their classification). We are not considering models whose
constant time slices have spherical or wormhole topology [5]
(the appropriate form of the metric (1) for those cases is given in
Appendix D of [16]).
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P ¼X cosϕþY sinϕ; W ¼−P sinθ−Z cosθ; ð6Þ

and four free parameters X; Y; Z;Kqi which depend only on
r [see interpretation of Kqi in (10)]. The function W has
the mathematical structure of a dipole and governs the
deviation from spherical and axial symmetries [10].
Therefore, different particular cases follow by specializing
this function: X ¼ Y ¼ Z ¼ W ¼ 0 corresponds to the
spherically symmetric LTB models, while X ¼ Y ¼ 0,
Z ≠ 0 so that W ¼ Wðr; θÞ ¼ −Z cos θ corresponds to
axial symmetry.

A. Quasilocal scalars and their fluctuations

To look at the dynamics of the models we introduce the
quasilocal variables (q-scalars) Aq for each covariant scalar
A ¼ ρ, H ¼ Θ=3, K ¼ ð3ÞR=6, (density, Hubble expansion
and spatial curvature)

Aq ¼
R
D AFdVpR
D FdVp

; with

dVp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
d3x ¼ a3r2ðΓ −WÞ sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −Kqir2
q drdθdϕ; ð7Þ

while their exact fluctuations (DðAÞ) are given by [16]

DðAÞ ¼ A − Aq ¼
rA0

q

3ðΓ −WÞ ; ð8Þ

ΔðρÞ ¼ DðρÞ

ρq
¼ ρ − ρq

ρq
; ð9Þ

which lead to the following scaling laws2:

ρq ¼
ρqi
a3

; Kq ¼
Kqi

a2
; Hq ¼

_a
a
; ð10Þ

1þ ΔðρÞ ¼ 1þ ΔðρÞ
i

G
;

2

3
þ ΔðKÞ ¼

2
3
þ ΔðKÞ

i

G
; ð11Þ

G ¼ Γ −W
1 −W

: ð12Þ

Here we have assumed the radial coordinate gauge
ai ¼ Γi ¼ Gi ¼ 1with i denoting evaluation at an arbitrary
t ¼ ti.

The q-scalars and their fluctuations are covariant objects
[16] reduced in the linear limit to standard variables of
cosmological dust perturbations in the synchronous
gauge [18,19].

B. Spatial location of the extrema of the Szekeres scalars

The spatial location of the scalars extrema follows from
the condition A0 ¼ A;θ ¼ A;ϕ ¼ 0, whose solutions are

r¼ re�; θ�ðre�Þ; ϕ�ðre�Þ; at t¼ const: ð13Þ
where the angular extrema are given by

ϕ− ¼ arctan

�
Y
X

�
; ϕþ ¼ π þ ϕ−; ð14Þ

θ− ¼ arccos

�
Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2 þ Z2
p

�
; θþ ¼ π − θ−: ð15Þ

The extrema define an angular direction for every fixed r,
and the two “curves of angular extrema” B�ðrÞ ¼
½r; θ�ðrÞ;ϕ�ðrÞ�, parametrized by r in all time slices.
A sufficient condition for the existence of an arbitrary

number of radial extrema of the Szekeres scalars is
achieved by assuming a sequence of “local homogeneity
spheres,” defined by the vanishing at all times of the shear
and electric Weyl tensors along a comoving 2-sphere of
generic radius r� [10]. Since the local homogeneity spheres
are preserved by the time evolution, they can be specified
by initial conditions such that all the exact fluctuations
vanish at r�: DðAÞðt; r�Þ ¼ 0 ⇒ A0

qðt; r�Þ ¼ 0.
In general, sufficient conditions for the existence of

extrema can be summarized as follows [10];
(i) If regularity conditions hold, the origin of coordi-

nates is a spatial extremum of the scalars. It will be a
minimum (void) if A00

qðt0; r ¼ 0Þ > 0 or a maximum
(overdensity) if A00

qðt0; r ¼ 0Þ < 0.
(ii) There is a radial extremum of the scalars in the

radial interval between two homogeneity spheres:
Δi� ¼ ri−1� < r < ri�. This is a maximum or a mini-
mum depending on the sign of A0

qðt0; rÞ in Δi�.
(iii) The angular extrema of the scalars lie in the branch

BþðrÞ of the curves of angular extrema, while the
other branch only contains saddle points.

These extrema are preserved throughout time evolution,
pending shell crossings or concavity inversions which we
discuss in Sec. III.

C. The dynamics of the models

The dynamics of the models can be fully determined by
solving the evolution equations for the variables (7)–(9) (see
Appendixes A and B). However, we can also determine the
models through their metric functions, in particular the
metric function a (which generalizes the Friedman-
Lemaître-Robertson-Walker (FLRW) scale factor) follows

2The integral in (7) is evaluated in an arbitrary time slice
(constant t) in a spherical comoving domain D bounded by an
arbitrary fixed r > 0. The lower bound is the locus r ¼ 0,
analogous to the symmetry centre of spherical models [9]. While
Szekeres models are not spherically symmetric, the surfaces of
constant r are nonconcentric 2-spheres [5]. Notice that Aq ¼
Aqðt; rÞ even if the scalars A depend on the four coordinates
ðt; r; θ;ϕÞ [16].
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from solving the Friedman equation that results from (C8)
and (10):

t − tbb ¼
Z

a

0

ffiffiffi
ξ

p
dξ

½8π
3
ρqi −Kqiξþ 8π

3
Λξ3�1=2 ; ð16Þ

where tbb ¼ tbbðrÞ is the inhomogeneous “big-bang time”
satisfying aðtbbðrÞ; rÞ ¼ 0, which can be found from evalu-
ating the integral (16) for t ¼ ti up to ai ¼ 1. The other scale
factor Γ in (5) follows by differentiating both sides of (16)
and rearranging terms [16]. Once a and Γ are found from the
quadrature (16) we have analytic expressions for all relevant
variables. If the cosmological constant is neglected, the
quadrature (16) is expressible in terms of elementary
functions, which leads to analytic solutions of the evolution
equations in terms of the scale factors and scaling laws for
the q-scalars and their fluctuations. These solutions are given
in detail in Appendix B.
Since Szekeres dust models are characterized by all

vorticity, 4-acceleration and magnetic Weyl tensor vanish-
ing together, they belong to a class of models called “silent
universes” [23,24], in which no information is propagated
either by sound or gravitational waves and, consequently,
each worldline evolves independently. The quasispherical
Szekeres spacetime can be matched either to an FLRW or
(de Sitter-)Schwarzschild spacetime [5,11] and due to its
silent properties the Szekeres evolution is not affected by
our background choice.

III. GRAVITATIONAL COLLAPSE AND
VIRIALIZATION

A. Singularities and collapse morphologies

The collapse morphologies can be described through the
“expansion tensor” Hab ¼ hcahdbuc;d ¼ Hhab þ σab, where
hab and σab are the spatial projection and shear tensors,
respectively. The tensor Ha

b admits three eigenvalues:

Hð1Þ ¼ Hjj ¼
_a
a
þ

_G
G
; Hð2Þ ¼Hð3Þ ¼H⊥ ¼ _a

a
; ð17Þ

which follow from expressing this tensor in terms of a
canonical orthonormal triad of spacelike unit vectors [23].
Notice that H ¼ ðHa

aÞ ¼ Hjj þ 2H⊥ is a measure of the
average expansion/collapse rate. These eigenvalues define
three normalized “scale factors” flð1Þ;lð2Þ;lð3Þg fulfilling

Hjj ¼ _ljj=ljj, H⊥ ¼ _l⊥=l⊥:

ljj ¼ lð1Þ ¼ aG ¼ aðΓ −WÞ
1 −W

; ð18Þ

l⊥ ¼ lð2Þ ¼ lð3Þ ¼ a; ð19Þ

that describe the rate of local expansion/collapse of dust
elements along the principal directions, leading to the
following collapse morphologies:

Spherical collapse: 3-dimensional collapse in which the
three scale factors decrease at a similar rate:
lð1Þ;lð2Þ;lð3Þ → 0. For these conditions to occur
simultaneously we require aðr; tcolÞ → 0 at the point
of collapse.

“Pancake” collapse: 1-dimensional collapse with
ljj → 0 or decreasing close to zero and Hjj becoming
very small or negative, with l⊥ ≫ ljj.

Filamentary collapse: Collapse along two principal
directions, hence: l⊥ → 0 with finite (or diverging)
ljj.

B. Shell crossings singularities and
concavity inversions

1. Shell crossings singularities

These singularities occur when the mass density diverges
as the proper distance between comoving layers (with
different comoving coordinates r) vanishes, while their area
distances R ¼ ar remain greater than zero. Shell crossings
are considered weak singularities or less severe than the big
bang or big crunch (which occur as a → 0), and they can be
transformed away by a continuous nondifferentiable (C0)
coordinate transformation [5,25,26].
Shell crossings singularities can be avoided throughout

the evolution of dust layers by suitable choices of the initial
data. In Szekeres models the necessary and sufficient
condition to prevent shell crossings can be simply stated as

Γ −W > 0 for all ðt; r⃗Þ such that a > 0: ð20Þ

For the caseΛ ¼ 0 condition (20) can be expressed in terms
of the initial functions, but for the general case with Λ > 0
the fulfilment of this condition must be verified numerically
(see Appendix D).
The emergence of shell crossings (i.e. caustics) mark

the onset of virialization processes (phase mixing and
violent relaxation) characteristic of collisionless systems
(whether cold dark matter WIMP’s or baryons), which
indicates the breaking down of a dust continuum as an
idealized matter-energy model [20,27]. Nevertheless, we
emphasize that the dynamical description that we have
provided of the formation of pancake-like structures from
the Szekeres dust models (connected to the Zeldovich
approximation [17]) is appropriate up to the emergence of
these caustics. The proper description of the dynamics of
structure formation beyond these caustics lies beyond the
present paper and can be obtained (albeit approximately)
by numerical N-body simulations, see Sec. 4. 10. 3 of [27]
for details. In the following we explore the conditions to
obtain an evolution free from shell crossings, or at least for
shell crossings forming sufficiently close to the big crunch
so that they are covered and hidden away by an apparent
horizon.
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2. Concavity inversions

The concavity associated with an inhomogeneity
(whether density has the local shape of a “clump” or
“void”) is closely related with the local sign of the “radial”
coordinate derivatives (∂=∂r) of the density, which is in
turn related with the local sign of the density fluctuation
ΔðρÞ. Hence, a local maximum (minimum) in ρwill indicate
both a upward (downward) local concave profile and an
overdensity (underdensity or void). Since the density
fluctuation can change its sign along the time evolution
of the model, local concavity inversions (from clumps to
voids or vice versa) can occur indicating that local maxima
evolve into local minima and vice versa. The conditions for
these local concavity inversions follow from the existence
of solutions of DðρÞ ¼ 0 (or ΔðρÞ ¼ 0):

DðρÞ ¼0⇔HqiðΨq−ΨqiÞþ
2

3

�
1−

Hqi

Hq

�
¼−

δðρÞi

3ðδðρÞi −3
2
δðKÞ
i Þ

;

ð21Þ

with Ψq ¼ Hqðt − tbbÞ. As shown in [28] for the central
extremum in generic LT models, the presence of a decaying
mode, or equivalently a nonhomogeneous big-bang time
[29], is a required condition for this phenomenon (a
statement that is also valid for the evolution of a thick
dust shell).
In Table I we examine the possible concavity inversions

and shell crossings in the evolution of a dust shell for the
case Λ ¼ 0. By looking at all possible combinations of
initial conditions, we find that it is impossible to have an
evolution of overdensities that keep the original concavity

profile and collapse onto a BH (a big crunch central
singularity) without shell crossings at late times.3 That
is, the collapse to a big crunch singularity will take place
only if the original overdensity is inverted into a void,
directly associated to the decaying mode. (See Fig. 1 for an
illustration of this aspect.)

C. Apparent horizon

The apparent horizon is the surface boundary of the
region containing trapped surfaces in which outgoing
null geodesic congruences present a negative expansion
scalar. Although some “new effects” appear in quasi-
spherical Szekeres models due to the lack of symmetry
[5,6,15,30], this definition results in the same condition as
in LTBmodels: R ¼ 2M [31]. Further, in the matching with
a Schwarzschild exterior the apparent horizon thus defined
coincides with the Schwarzschild event horizon.4

IV. SETTING UP MODELS OF MULTIPLE
COLLAPSING STRUCTURES

We consider the multiple collapse of cold dark matter
structures, with each structure defined by a density maxi-
mum of quasispherical Szekeres or LTB dust models. Such
configurations are obtained via a smooth matching along
the homogeneities spheres of sections of distinct Szekeres

TABLE I. All possible cases for the evolution of a dust shell occupying the region ðr�1 < r < r�2Þ in LTB/Szekeres
with Λ ¼ 0. The table shows the signs of the radial derivative of the big bang and collapse times as well as the sign
of the density fluctuation as we approach the big crunch. Although positive signs of t0bb and negative signs of t0coll
necessarily lead to shell crossings, the shell crossings produced by t0bb > 0 occur before ti, out of the range of
validity of the model.

Cases Descriptiona Signðt0bbÞ Signðt0collÞ SignðDðρÞ
collÞ

I δðβÞ0 ¼ 0 (δðβÞ0 ¼ − 3
2
δðKÞ
0 ) −SignðδðKÞ

0 Þ −SignðδðKÞ
0 Þ SignðδðKÞ

0 Þ
II δðKÞ

0 ¼ 0 (δðβÞ0 ¼ δðρÞ0 ) SignðδðρÞ0 Þ SignðδðρÞ0 Þ −SignðδðρÞ0 Þ
III δðβÞ0 ¼ 0 SignðδðρÞ0 Þ SignðδðρÞ0 Þ −SignðδðρÞ0 Þ
IVb t0bb < 0

δðβÞ0 < 0 −1 −1 �1

δðβÞ0 > 0 −1 �1 �1

Vb t0bb ¼ 0
δðβÞ0 < 0 0 −1 þ1

δðβÞ0 > 0 0 þ1 −1

VIb t0bb > 0
δðβÞ0 < 0

þ1 −1 þ1
þ1 þ1 −1

δðβÞ0 > 0 þ1 þ1 −1
aδðβÞ0 ≡ δðρÞ0 − 3

2
δðKÞ
0 .

bδðρÞ, δðKÞ
0 and δðβÞ0 ≠ 0.

3Shell crossings at very early times (i.e. before ti) are not
problematic since they occur out of the range of applicability of
the model.

4Note that since the apparent horizon is a quasilocal and
foliation-dependent concept, we could have employed another
criterium for BH formation instead of the surface R ¼ 2M, e.g. a
concept based on scalar curvature invariants is proposed in [32].
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spacetimes, and constitute global self-consistent exact
solutions of Einstein’s equations, as long as the Darmois
matching conditions are satisfied along the interfaces of the
sections [17,33–38].
We look at a specific configuration consisting of a central

spherical overdensity described by a section of an LTB
spacetime, surrounded by two Szekeres shells, each one
hosting a nonspherical overdensity, with the most external
one smoothly matched to a Schwarzschild exterior. By
taking the dipole parameter Y ¼ Z ¼ 0 and X ≠ 0, the
angular location of these nonspherical overdensities is set at
ϕ ¼ 0 and θ ¼ π=2 (x axis; see e.g. Fig. 2).
The initial density mass is given in terms of a dimen-

sionless q-density function (μq) defined as follows:

½μqðχÞ�i ¼
4π½ρq�i
3H2�

; with χ ¼ r=ls; ð22Þ

where ls and H� are the characteristic length scale and the
inverse of the characteristic time scale, respectively. In

addition, we define the dimensionless curvature
(κq ¼ Kq=H2�) and rewrite the evolution equations, as well
as their analytic solutions, in terms of dimensionless
quantities. Proceeding along these lines we have the
freedom of choice for both temporal and spatial scales.
As a consequence a single numerical solution can
have various interpretations, corresponding to different
evolution times [t − tbb ¼ ðτ − τbbÞ=H�] and length scales
[Rðτ; χÞ ¼ χaðτ; χÞls].
Furthermore, we impose initial conditions with a homo-

geneous big-bang time (t0bb ¼ 0), which sets the initial
q-curvature through Eq. (B3). This widely used condition is
equivalent to avoiding the decaying modes [29].
We find that it is impossible to follow the full evolution

of collapsing overdensities without shell crossings emerg-
ing before the big crunch. Therefore, we have no alternative
but to allow for their presence. In the following we present
two possible outcomes from the choice of time and length
scales, which result in two different astrophysical objects.
The initial conditions for these two scenarios are listed in
Table II.

A. An approximate model for a galaxy cluster

As a first case, we examine the evolution of a multiple
structures configuration from linear conditions at a redshift
z ¼ 7 to a present day final configuration of scale ∼1 Mpc
and mass of ∼1015 M⊙, which can be compared to a
galactic super–cluster5 In general terms the evolution
proceeds as follows, the structures are initially expanding,
then reach (not simultaneously) the turnaround point.
Subsequently, at the present cosmic time, when the shell
crossings first appear, part of the central structure has
already collapsed into a hidden spherical singularity.
Considering the shell crossings as rough estimators of

FIG. 1. Comparison of density profiles. The panels show the
profile of the mass density ρðr; t; θÞ evaluated along the curve of
the angular maxima of W (red and solid) and the q-density
average ρqðr; tÞ [black and dotted, Eq. (7)]. The left panel shows
a typical initial setup of multiple overdensity structures. Evolved
with the growing mode, the Szekeres regions II and III will
eventually present shell crossings. On the other hand, the right
panel shows the evolution with a dominant decaying mode which
flattens the profile and allows for a collapse free of shell crossings
(at least at late times).

FIG. 2. Density mass in the equatorial plane in units of
M⊙=Mpc3. Equatorial projection of the density mass distribution
at a time close, but before to the time of shell crossings. The “x”
and “y” axes respectively correspond to R cosϕ and R sinϕ,
with R ¼ ar.

TABLE II. Initial conditions. The table displays the piecewise
definition of the functions μqi and W needed to either integrate
the system (C2)–(C9) or evaluate the analytic solutions shown
in B. Functions Qi are third order polynomials defined by their
values and vanishing first derivatives at χ0�, χ1�, χ2� and χ3�. k2 and
k3 are the amplitude constants of the dipole magnitude.

0 < χ < χ1� χ1� < χ < χ2� χ2� < χ < χ3�
μqi Q1ðχÞ Q2ðχÞ Q3ðχÞ

W X ¼ Y ¼ Z ¼ 0

X ¼ −k2× X ¼ −k3×
×sin2

�
χ−χ1�
χ2�−χ1�

π
�

×sin2
�

χ−χ2�
χ3�−χ2�

π
�

Y ¼ Z ¼ 0 Y ¼ Z ¼ 0

5Following the scheme of Table II, we set Q1ð0Þ ¼
1þ 9.1 × 10−3, Q1ðχ1�Þ ¼ Q2ðχ1�Þ ¼ 1þ 10−3, Q2ðχ2�Þ ¼
Q3ðχ2�Þ ¼ 1þ 2 × 10−3 andQ3ðχ3�Þ ¼ 1þ 3 × 10−3 for the piece-
wise polynomial, k1 ¼ 5.5 × 10−1 and k2 ¼ 3.4 × 10−1 for the
dipole magnitude and the constant H� ¼ 2=ð3tz¼7Þ.
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the virialization time (as interpreted in Sec. III B 1), we can
argue that the whole set of structures correspond to a cluster
that is virializing today and hosting a central BH of
∼109 M⊙ (see Fig. 2).
The times of collapse and shell crossings are shown in

Fig. 3. While the collapse time only depends on the
comoving radial coordinate, the shell crossing time depends
on all the spatial coordinates [cf. Eq. (20)]. The red and blue
curves represent the shell crossings times along the curves of
angular maxima and minima of the dipole function, respec-
tively. We also plot the results of the calculations taking into
account the cosmological constant, whose sole effect is to
delay the collapse and the shell crossings.

B. A model for multiple collapse into a black hole

Another choice is to delay the shell crossings as much as
possible (i.e. as close as possible to the big crunch) and
accumulate enough mass as to cover them within an
apparent horizon surface. For that purpose, at the time
when shell crossings emerge (τShx) the apparent horizon
radius must satisfy,

½Rðτ; χÞ ¼ 2MðχÞ�ðτShx;χ3�Þ; ð23Þ

where R ¼ aχls is the area distance, M ¼ ð4π=3ÞρqiðχlsÞ3
is the quasilocal mass of the whole configuration and χ3�
marks the boundary between the Szekeres and
Schwarzschild regions. At this surface the apparent horizon
coincides with the Schwarzschild event horizon, so by
construction, we will have a covered singularity.6 Figure 4

depicts the collapse and shell crossing times, as well as the
apparent horizon curve covering the shell crossing singu-
larities. However, the fulfilment of the condition (23)
demands either extremely large values of the overall mass
or very short collapse times. To illustrate this we consider
as a first example a case with initial conditions at z ¼ 7
such that the shell crossings appeared approximately today.
Then after undertaking an extensive search of initial
conditions, by trial and error we found that hiding the
shell crossing inside the apparent horizon requires large
total masses of the order of 1020 M⊙. As shown in the left
panel of Fig. 5, for mass values of astrophysical or galactic
BHs the shell crossings are formed before being covered by
the apparent horizon. The red-shaded area represents the
values of time/mass for which the shell crossings remain
uncovered. Conversely one can impose, instead of a fixed
shell crossing time, a final mass for the apparent horizon
M ¼ MBH. Equation (23) thus fixes the time and length
scales for the BH formation. With this choice we find that,
just as for the case of PBH formation, the timescales for the
collapse are very short (as shown in right panel of Fig. 5).
For instance, a typical supermassive BH (M ≈ 109 M⊙)
would collapse in less than a year (tcol − ti ≈ 0.005 yr),
while a PBH formed in an early dust-like era at the
reheating period is allowed to present a mass of order M ≈
10−16 M⊙ [39], and our results show a time of collapse of
order tcol − ti ≈ 10−20 s. This is in agreement with numeri-
cal simulations of PBH formation [40].
So far we have been concerned with the collapse of

multiple pancake-shaped overdensities whose evolution
cannot avoid the appearance of shell crossings. The shell
crossings, however, can be avoided (at least at later times)
by choosing initial conditions whose evolution exhibits

FIG. 3. Collapse and shell crossings times. Grey, light red and
blue curves respectively represent the times of collapse and shell
crossing along the direction of the maxima and minima of the
dipole for the case Λ ¼ 0. Black, dark red and violet lines
respectively represent the time of collapse and shell crossings
considering Λ.

FIG. 4. Hiding the shell crossing singularities behind the
apparent horizon surface. The apparent horizon (black curve)
hides the shell crossings thus they are already inside the black
hole by the time they appear. Notice that in the yellow-shaded
area the apparent horizon first appears at the point B, where tAH
has a local minimum, tðBÞAH. At all times in the interval (tðBÞAH, t

ðAÞ
AH),

the mass swallowed up by the singularity is necessarily smaller
than the mass into the AH.

6We tookQ1ð0Þ¼1þ4×10−2,Q1ðχ1�Þ ¼ Q2ðχ1�Þ ¼ 1þ 10−3,
Q2ðχ2�Þ ¼ Q3ðχ2�Þ ¼ 1þ 2 × 10−3 and Q3ðχ3�Þ ¼ 1þ 3 × 10−3,
k1 ¼ 4×10−1, k2 ¼ 3.4 × 10−1 and the constant H� ¼ 2=ð3tz¼7Þ
(see Table II).
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concavity inversions which can complete the collapse of
dust overdensities towards the central singularity. The
resulting mass distribution exhibits a collapse that is
qualitatively analogous to that of collapsing LTB models
(see Fig. 1) but is sourced by configurations that evolve
away of the pure growing mode.

V. DISCUSSION AND FINAL REMARKS

In this paper we have studied the collapse of nonspheri-
cal structures, modeled by multiple concentrations of
pressureless matter. We have examined an interesting
type of collapse through the joint evolution of a central
spherical overdensity and neighbor nonspherical structures.
Specifically, we have looked at the formation of a spherical
apparent horizon, and characterised the possible shell
crossings that prevent BH formation. The latter are inter-
preted as the breakdown of the dust model and the onset of
an intricate virialization process beyond the Szekeres
description [20].
We have found that the conditions to prevent shell

crossings are much more stringent in regions that deviate
significantly from homogeneity [cf. condition (20)].
Specifically, we have shown that shell crossings cannot
be avoided in the collapse of regions where high density
pancake-like inhomogeneities evolve in the pure growing
mode. One way of interpreting the evolution of these
multiple configurations is to consider the shell crossings
as the onset of virialization. Note that this characteristic is
not exclusive of the nonspherical collapse, since the
reported general conditions for the formation of shell
crossings (in Table I) hold even for the case where the
dipole is null (LTB case).
In Sec. IVA, we exemplify the evolution of a galaxy

cluster which starts at z ¼ 7 up until the present cosmic
time. We simulate the formation of both a central back hole
of mass M ∼ 109 M⊙, and a couple of overdensities which

evolve up to the shell crossing time (interpreted as the start
of virialization of galaxy components).
To examine a full collapse of multiple configurations we

have presented examples where the initial conditions delay
the emergence of shell crossings, so that the latter are
covered by an apparent horizon, and remain undetectable to
observers in the exterior Schwarzschild spacetime. In this
case, the fact that some dust layers terminate at a shell
crossings is practically indistinguishable from the “real”
collapse in which they terminate at the central singularity.
The fine-tuned initial conditions needed to build such

configuration, impose constraints on the BH mass and
collapse time of the whole structure which are incompatible
with astrophysical scales. For example, considering masses
of the size of a galactic system we find that extremely large
density concentrations are required to obtain a final single
BH in an astrophysical and/or cosmological time scales, see
Fig. 4. If we assume an initial time around z ∼ 7, as in our
example, the initial distribution of inhomogeneities of
galactic mass collapses completely to form a BH of the
order of 1020 M⊙, which is at least 5 orders of magnitude
larger than the typical supercluster mass.
Alternatively, if we wish to impose a smaller mass for the

BH to coincidewith (say) a largemassive BH in the center of
a galaxy (M ∼ 109 M⊙), then the collapsing timescales
become extremely small (tcol ∼ 0.005 yr, see right panel
of Fig. 5). As a consequence, the collapse of nonspherical
dust configurations is not an appropriate mechanism to form
BHs of astrophysical interest (stellar size or massive BHs
in galactic centres or AGNs), not even as a rough toy
model level.
It is not surprising that self-consistent astrophysical BHs

formed from the collapse of nonspherical pancake struc-
tures are prevented by shell crossings, as these BHs form
from rotating baryonic sources in which hydrodynamical
processes become dominant in the regime near the collapse.

FIG. 5. Black hole formation time as function of the mass. The left panel shows with a black line the time in which the entire region of
Szekeres has been hidden behind the apparent horizon as a function of black hole mass. For the values of time and masses shaded in red,
which include the masses of astrophysical black holes, the shell crossings are formed outside the apparent horizon. The curve in the right
panel represents the collapse time as a function the of the mass demanding the condition (23) to be satisfied. We have also indicated with
dashed grey lines the typical masses of active galactic nuclei (AGN, ∼109 M⊙), galaxies (∼1011 M⊙) and superclusters (∼1015 M⊙), as
a reference.
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On the other hand, BH formation in the type of Szekeres
configurations we are considering is consistent with PBHs
formation scenarios that involve much smaller masses and
very fast collapsing times. For example, a PBH formed
in an early dust-like era of mass M ≈ 10−16 M⊙, would
collapse in ∼10−20 seconds. This is perfectly consistent
with PBH formation timescales and our result may comple-
ment previous work assessing the formation of PBHs in an
early dust-like era [39,41–43]. Our result also argues in
favor of recent work on the formation of PBHs from
nonspherical configurations [14,22].
Finally we comment on the flexibility of the featured

model. Our results present enough freedom as to set the
mass as an initial condition and preserve it throughout the
evolution. Additionally we can manipulate the parameters
to set shell crossing times for nonspherical overdensities.
This freedom allows us to model either a multiple structures
collapse (as in the last case studied in Sec. IV B, and on the
other hand, allowing for the concavity inversion of inho-
mogeneities, we can follow their evolution without shell
crossing singularities up to the time when they cross the
apparent horizon. All the freedom of our model is manifest
when working with dimensionless quantities.
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APPENDIX A: EVOLUTION EQUATIONS
FOR NUMERICAL WORK

The models become fully determined by solving numeri-
cally the following set of first order autonomous partial
differential equations (which are effectively constrained
ordinary differential equations):

_ρq ¼ −3ρqHq; ðA1Þ

_Hq ¼ −H2
q −

4π

3
ρq þ

8π

3
Λ; ðA2Þ

_ΔðρÞ ¼ −3ð1þ ΔðρÞÞDðHÞ ðA3Þ

_DðHÞ ¼ ð−2Hq þ 3DðHÞÞDðHÞ −
4π

3
ρqΔðρÞ; ðA4Þ

_a ¼ aHq; ðA5Þ

_G ¼ 3GDðHÞ; G ¼ Γ −W
1 −W

; ðA6Þ

subject to the algebraic constraints:

H2
q ¼

8π

3
½ρq þ Λ� −Kq; ðA7Þ

3

2
DðKÞ ¼ 4πρqΔðρÞ − 3HqDðHÞ; ðA8Þ

where the q scalars Aq and their fluctuations, DðAÞ and ΔðρÞ,
are defined in Sec. II A.

APPENDIX B: ANALYTIC SOLUTIONS FOR Λ= 0

For elliptic models,K > 0, the solution of the quadrature
(16) is given explicitly as follows (see [16] for more details
and solutions for parabolic and hyperbolic models):

t − tbb ¼
�F eðαqÞ=βqi expanding phaseHqi > 0;

½2π − F eðαqÞ�=βqi collapsing phaseHqi < 0;

ðB1Þ

where αq ¼ αqia, αqi ¼ 3
4π jKqij=ρqi, βqi ¼ 3

4π jKqij3=2=ρqi
and F e is defined as

F e ¼ u ↦ arccosð1 − uÞ − ffiffiffi
u

p ffiffiffiffiffiffiffiffiffiffiffi
2 − u

p
: ðB2Þ

The big bang, maximal expansion and collapsing times are
given by

tbb ¼ ti −
F eðαqiÞ
H̄�βqi

; tmax ¼ tbb þ
π

H�βqi
;

tcoll ¼ tbb þ
2π

H�βqi
; ðB3Þ

and the expression for the metric function Γ, obtained from
(B1), takes the following form:

Γ¼ 1þδðρÞi −3
�
δðρÞi −

3

2
δðKÞ
i

�h
Ψq−

2

3

i
−Hqrt0bb; ðB4Þ

with Hq, Ψq, δ
ðρÞ
i and δðKÞ

i given by

Hq ¼
_a
a
¼ �

ffiffiffiffiffiffiffiffiffiffi
4π
3
ρqi

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − αq

p
a3=2

; ðB5Þ

ΨqðαqÞ≡Hqðt − tbbÞ ¼
Hq

H̄�

F ðαqÞ
βqi

ðB6Þ

δðρÞi ¼ ΔðρÞ
i jW¼0 ¼

r
3

ρ0qi
ρqi

; ðB7Þ

δðKÞ
i ¼ ΔðKÞ

i jW¼0 ¼
r
3

K0
qi

Kqi
: ðB8Þ

For the analysis of the existence of shell crossings, it is
worthwhile to rewrite Γ in the following form, valid during
the collapsing phase (Hq < 0):

BLACK HOLE FORMATION FROM THE GRAVITATIONAL … PHYS. REV. D 97, 104029 (2018)

104029-9



Γ ¼ 1þ δðρÞi − 3

�
δðρÞi −

3

2
δðKÞ
i

��
jHqðt − tcollÞj −

2

3

	

þ jHqjrt0coll: ðB9Þ

APPENDIX C: DIMENSIONLESS EVOLUTION
EQUATIONS AND ANALYTIC SOLUTIONS

By introducing dimensionless time, τ ¼ H�t, scale,
Ri ¼ r ¼ χls, and variables,

μq ¼
4π

3

ρq
H2�

; κq ¼
Kq

H2�
; hq ¼

Hq

H2�
; λ ¼ 8π

3
Λ;

ðC1Þ

the evolution equations result in the following dimension-
less system:

_μq ¼ −3μqHq; ðC2Þ

_hq ¼ −h2q − μq þ λ; ðC3Þ

_ΔðμÞ ¼ −3ð1þ ΔðμÞÞDðhÞ ðC4Þ

_DðhÞ ¼ ð−2hq þ 3DðhÞÞDðhÞ − μqΔðμÞ; ðC5Þ

_a ¼ ahq; ðC6Þ

_G ¼ 3GDðhÞ; G ¼ Γ −W
1 −W

; ðC7Þ

subject to the constraints:

h2q ¼ 2μq þ λ − κq; ðC8Þ

1

2
DðκÞ ¼ μqΔðμÞ − hqDðhÞ; ðC9Þ

where the arbitrary constants H� and ls set the time and
spatial scales, respectively. As above, DðAÞ ¼ A − Aq

denotes the exact fluctuations and ΔðμÞ ¼ ðμ − μqÞ=μq.
On the other hand the analytic solution for the case with

Λ ¼ 0, Eq. (C10), can be rewritten in terms of dimension-
less quantities as

τ − τbb ¼
�F eðα̂qÞ=β̂qi expanding phase hqi > 0;

½2π − F eðα̂qÞ�=β̂qi collapsing phasehqi < 0;

ðC10Þ

where α̂q ¼ α̂qia, α̂qi ¼ jκqij=μqi, β̂qi ¼ jκqij3=2=μqi
and F e was defined above in Eq. (B2). Further, the

dimensionless big bang, maximal expansion and collapsing
times are given by

τbb ¼ τi −
F eðα̂qiÞ

β̂qi
; τmax ¼ τbb þ

π

β̂qi
;

τcoll ¼ τbb þ
2π

β̂qi
; ðC11Þ

and the expression for the metric function Γ reads

Γ ¼ 1þ δðμÞi − 3

�
δðμÞi −

3

2
δðκÞi

��
Ψ̂q −

2

3

	
− hqχτ0bb;

ðC12Þ

where

hq ¼
_a
a
¼ �

ffiffiffiffiffiffi
μqi

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − α̂q

p
a3=2

; ðC13Þ

Ψ̂qðα̂qÞ≡ hqðτ − τbbÞ ¼ hq
F ðα̂qÞ
β̂qi

ðC14Þ

δðμÞi ¼ ΔðμÞ
i jW¼0 ¼

χ

3

μ0qi
μqi

; ðC15Þ

δðκÞi ¼ ΔðκÞ
i jW¼0 ¼

χ

3

κ0qi
κqi

: ðC16Þ

APPENDIX D: AVOIDANCE OF SHELL
CROSSINGS

The necessary and sufficient condition to avoid shell
crossings can be simply stated as

Γ −W > 0 for all ðt; r⃗Þ such that a > 0: ðD1Þ

From this equation we obtain various necessary (but not
sufficient) conditions, such as Γ > 0, jWj < 1, 0 < X2 þ
Y2 þ Z2 < 1 and jXj; jYj; jZj < 1. For the general case
Λ > 0 the necessary and sufficient condition (D1) must be
verified numerically, but for the case Λ ¼ 0 it can be given
in terms of initial value functions. For elliptic models (or
regions) these conditions are summarized as follows [16]

1þ δðρÞi −W ≥ 0; t0bb ≤ 0; t0coll ≥ 0; ðD2Þ

δðρÞi −
3

2
δðKÞ
i ≥ 0 necessary not sufficient: ðD3Þ

Notice that for the study of a collapsing region the
condition t0bb ≤ 0 can be relaxed, as it would produce shell
crossings that can be confined to early cosmic times if rt0bb
is much smaller than horizon distances at t ¼ ti.
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