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By employing the moduli space approximation, we analytically calculate the gravitational wave
signatures emitted upon the merger of two extremally charged dilatonic black holes. We probe several
values of the dilatonic coupling constant a, and find significant departures from the Einstein-Maxwell
(a ¼ 0) counterpart studied in [Phys. Rev. D 96, 061501 (2017)]. For (low-energy) string theory black
holes (a ¼ 1) there are no coalescence orbits and only a memory effect is observed, whereas for an

intermediate value of the coupling (a ¼ 1=
ffiffiffi
3

p
) the late-time merger signature becomes exponentially

suppressed, compared to the polynomial decay in the a ¼ 0 case without a dilaton. Such an imprint shows a
clear difference between the case with and without a scalar field (as, for example, predicted by string
theory) in black hole mergers.

DOI: 10.1103/PhysRevD.97.104025

I. INTRODUCTION

The great discovery made by the Laser Interferometer
Gravitational Wave Observatory (LIGO) on September 14,
2015 [1] provided the first direct confirmation that strong
gravitational waves are emitted in the process of the
coalescence of two black holes. The first event was for
black holes of around 30 solar masses; other discoveries
soon followed, and gravitational waves have now been
detected from several binary black hole mergers over a
range of masses [2–5]. The most recently announced event
is from a neutron star–neutron star collision [6], marking
the beginning of multimessenger astronomy.
Understanding a black hole merger (or scattering) and the

associated emission of gravitational waves is a complicated
problem in which strong field dynamical effects play an
important role. For this reason, there is little hope for
attacking this problem exactly, and various approximations
[7] and/or numerical studies [8–11] have been considered.
For example, a number of analytic predictions of gravita-
tional waves have been computedwithin the post-Newtonian
approximation (see, e.g., [7] and references therein).
In this paper we calculate the gravitational wave signature

of two colliding black holes surrounded by a dilatonic field.
Such a problem was recently studied numerically for weakly
charged black holes where the dilatonic field vanishes at
infinity [12], and in the post-Newtonian approximation for
nonvanishing asymptotic values of the dilaton [13]. (See also
[14] for a discussion of collisions of dilatonic black holes
with angular momentum.)

We study this problem from a different perspective,
analytically calculating the gravitational wave signature
in an approximation that is applicable in the strong field
regime and for any black hole mass ratio. To carry out this
procedure it is necessary that the two black holes be
extremally charged and that the system evolve adiabatically,
through a series of approximately static configurations—the
so-called moduli space approximation (MSA) [15,16]. We
thereby generalize recent results for the Einstein-Maxwell
case [17], finding imprints of the dilatonic field on the
gravitational wavefront. As we shall see, such imprints
depend crucially on the value of the dilatonic coupling
constant a. Interesting analytic results can be obtained at
least in two cases: i) (low energy) string theoretic black
holes, characterized by a ¼ 1, for which there are no
coalescence orbits and only a memory effect is observed;
and ii) an intermediate value a ¼ 1=

ffiffiffi
3

p
of the coupling. We

show that the late-time wavefront in the latter case becomes
exponentially suppressed, in notable contrast to the poly-
nomial decay in the case without a dilaton [17].
The outline of our paper is as follows. In the next section,

we review the evolution of a black hole binary system in
the MSA in Einstein-Maxwell theory. Following [17], the
corresponding gravitational wavefront is calculated in
Sec. III. The main results of the paper are gathered in
Sec. IV, where the dilatonic case is studied. We conclude
in Sec. V.

II. BLACK HOLE MERGER IN MODULI
SPACE APPROXIMATION

To describe a black hole merger in the MSA in Einstein-
Maxwell theory, we start with the static multi–black hole
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solution due to Majumdar and Papapetrou (MP) [18,19].
The MP solution represents a static configuration of n
extremally charged black holes, each of mass mi and
position x⃗i; for n ¼ 1 it reduces to the familiar extremal
Reissner-Nordström spacetime. The solution reads

ds2 ¼ −ψ−2dt2 þ ψ2dx⃗ · dx⃗; ð1Þ

A ¼ −ð1 − ψ−1Þdt: ð2Þ

Here, A is the Maxwell vector potential, and the metric
function ψ is given by

ψ ¼ 1þ
Xn
i¼1

mi

ri
: ð3Þ

In what follows, we shall often write dx⃗ ·dx⃗¼dr2þr2dΩ2,
with r ¼

ffiffiffiffiffiffiffiffiffi
x⃗ · x⃗

p
¼ jx⃗j. We also have ri ¼ jr⃗ij ¼ jx⃗ − x⃗ij.

The MP solution is static. To describe a dynamical
system, we promote the black hole positions x⃗i in (3) to
functions of time, x⃗i ¼ x⃗iðtÞ, and further employ the MSA,
requiring that the system moves through configurations
with small velocities, always remaining approximately
static. This amounts to perturbing the solution and treating
the black holes as slow-moving. To second order in
velocities one obtains the moduli space metric, in which
the motion of black holes is geodesic [15,16]. In particular,
the Lagrangian

L ¼ 1

2
μγðr12Þv⃗ · v⃗ ð4Þ

describes the center-of-mass motion of two black holes,
with the center-of-mass motion subtracted. Here M ≡
m1 þm2 and μ≡ m1m2

M are the total and reduced black

hole masses, and r⃗12 ≡ x⃗1 − x⃗2 and v⃗ ¼ dr⃗12
dt are the relative

black hole separation and velocity. The conformal factor
γðr12Þ takes the form

γðr12Þ ¼
�
1þ M

r12

�
3

−
2μM2

r312
: ð5Þ

The approximation holds for [16]

r12
M

≫ v2∞; ð6Þ

and so will certainly break down in the final stages of the
black hole coalescence, although note that by choosing
small v∞ we can get arbitrarily close to the complete
merger.
All we have to do to study the black hole merger or

scattering is to solve the equations of motion

_ϕ12 −
bv∞

r212γðr12Þ
¼ 0 ð7Þ

�
dr12
dt

�
2

þ v2∞
γðr12Þ

�
b2

γðr12Þr212
− 1

�
¼ 0 ð8Þ

that follow from (4). Conservation of energy E ¼ 1
2
Mv2∞

and angular momentum l ¼ bv∞ follow straightforwardly,
with v∞ the relative velocity at infinite separation of the
black holes, and b the impact parameter. Without loss of
generality we can confine the motion to a plane θ ¼ π

2
due

to the spherical symmetry of γðr12Þ.
These equations of motion allow for both coalescing and

scattering orbits, depending on the value of the impact
parameter: if b > bcrit, scattering will occur, and for
b < bcrit there will be a merger. For any mass ratio, bcrit
is obtained by computing the degenerate positive root in the
effective potential in (8), yielding

2b3crit
3

ffiffiffi
3

p − b2critM þ 2μM2 ¼ 0; ð9Þ

which becomes bcrit ¼ 3þ ffiffi
3

p
2

M for equal-mass black holes.
There are two limiting cases of physical interest for

which trajectories can be found: i)M ≪ r12 when the black
holes are widely separated (corresponding to early times of
the interaction, t → −∞, or late times of the black hole
scattering, t → þ∞) and ii) r12 ≪ M for late times for
black hole coalescence.
In the first regime, Eqs. (7) and (8) become

_r12¼∓v∞

�
1−

3

2
ϵþ…

�
; _ϕ12¼

bv∞ϵ2

M2
þ…; ð10Þ

where ϵ ¼ M=r12 ≪ 1, yielding

r12 early=late ¼ ∓v∞t −
3

2
M logð∓ v∞t=r0Þ;

ϕ12 early=late ¼ −
b
v∞t

þ ϕ120: ð11Þ

For late-time coalescing orbits, Eqs. (7) and (8) read

_r12 ¼ −
v∞ϵ3=2

ffiffiffiffiffi
M

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 2μ

p ; _ϕ12 ¼
bv∞ϵ

MðM − 2μÞ ; ð12Þ

where now ϵ ¼ r12=M ≪ 1, giving

r12 coalescing¼
4M2ðM−2μÞ

v2∞t2
; ϕ12 coalescing¼−

4b
v∞t

; ð13Þ

disregarding the integration constants.
These simple expressions will allow us to find analytic

approximations for the early- and late-time radiation. For
intermediate times we shall solve Eqs. (7) and (8) numeri-
cally, plotting the trajectories for various values of b. We
depict the solutions in Fig. 1, which provides an illustration
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of trajectories just above and below the critical impact
parameter for a collision.

III. GRAVITATIONAL RADIATION
TO LEADING ORDER

Following closely the discussion in [17], let us now
study the gravitational radiation from the binary black hole
system described by the moduli space approximation.
To leading order, gravitational radiation experienced by

an observer at radial coordinate r is given by the quadru-
pole formula

hTT ¼ 2

r
d2

dt2
QTT

����
tret

: ð14Þ

Here, h is the metric perturbation describing the gravity
wave,Q is the mass quadrupole, TT denotes the transverse-
traceless projection, and tret ¼ t − r is the retarded time.
For a metric such as (1), it is easy to read off Q due to its
asymptotically Cartesian mass-centered form (see Sec. XI
of [20] for a definition of this form). In the center of mass
frame, the expansion of gtt gives

1

gtt ¼ −1þ 2M
r

þ 3M2

r2
−
4M3

r3

þ μr212
r3

ffiffiffiffiffiffi
6π

5

r �
e−2iϕ12Y2

2 −
ffiffiffi
2

3

r
Y2

0 þ e2iϕ12Y2
−2
�

þO
�
1

r4

�
; ð15Þ

where the mass quadrupole moments I2m are

I2�2 ¼ 2

ffiffiffiffiffiffi
2π

5

r
μr212e

∓2iϕ12 ; I20 ¼ −4
ffiffiffiffiffi
π

15

r
μr212; ð16Þ

obtained by comparing with equation (11.4a) of [20]. The
transverse traceless projection of QTT is

QTT¼1

4
ðI22−2Y2

2þI20−2Y2
0þI2−2−2Y2

−2ÞêRþc:c:; ð17Þ

where c:c: stands for complex conjugate, êR is the circular
polarization tensor

êR ¼ 1ffiffiffi
2

p ðêþ þ iê×Þ; ð18Þ

and −2Yl
m are the spin-weighted spherical harmonics of

spin-weight −2:

−2Y2
2 ¼ 1

2

ffiffiffi
5

π

r
e2iϕcos4

�
θ

2

�
; −2Y2

0 ¼ 1

4

ffiffiffiffiffiffi
15

2π

r
sin2θ;

−2Y2
−2 ¼ 1

2

ffiffiffi
5

π

r
e−2iϕsin4

�
θ

2

�
: ð19Þ

ðθ;ϕÞ are the angular coordinates of the observer. To
simplify matters, we can choose an observer on the north
pole ðθ;ϕÞ ¼ ð0; 0Þ (so −2Y2

0 ¼ 0 ¼ −2Y2
−2) and

hTT ¼ μffiffiffi
2

p
r

d2

dt2
ðr212e−2iϕ12ÞêR þ c:c: ð20Þ

All that remains to calculate the gravitational radiation is to
solve (8) for r12 and ϕ12. This can easily be done
numerically, or, for early and late times, analytically, using
the results of the previous section. Using (11) we find

hTTearly=late ¼
ffiffiffi
2

p
μv2∞
r

�
1� 3

2

M
v∞t

�
e−2iϕ12 êR þ c:c:; ð21Þ

where the upper/lower signs correspond to early-/late-time
scattering orbits. As noted in [17], (21) provides a clear
illustration of the gravitational memory effect: hTT takes
different values at early and late times and we have

FIG. 1. Black hole trajectories for a ¼ 0. Trajectories are
illustrated for equal-mass black holes and various impact param-
eters. In red we have plotted a head-on (b ¼ 0) collision. The blue
solid line corresponds to a slightly below-critical collision:
b ¼ 0.999bcrit ¼ 2.36366M, and the black dashed line to a
slightly above-critical scattering: b ¼ 1.01bcrit ¼ 2.38969M.
We set up the two near-critical collisions with otherwise identical

initial conditions. Recall that bcrit ¼ 3þ ffiffi
3

p
2

M ≈ 2.36603M.

1Here, the Yl
m are the spherical harmonics normalized such

that
R
Yl

mȲl0
m0dΩ ¼ δl;l0δm;m0 .
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ΔhTT ¼
ffiffiffi
2

p
μv2∞
r

ðe−2iϕf
12 − e−2iϕ

i
12ÞêR þ c:c:; ð22Þ

where ϕi
12 and ϕf

12 are the respective initial and final
angular separations. For coalescing orbits at late times (13)
we recover

hTTcoalescing ¼
160

ffiffiffi
2

p
μM4ðM − 2μÞ2
rt6v4∞

e−2iϕ12 êR þ c:c:; ð23Þ

and we note that, at late times of a coalescence, the
t-dependence of ϕ12 is too small to appear at this order
in hTT . Note also the t−6 fall-off, characteristic of Einstein-
Maxwell theory. As we shall see in the next section, this
becomes very different in the presence of a dilaton.

The hTTþ signatures can be seen in Fig. 2, where we have
plotted the numerically calculated signatures for orbits with
impact parameters b ¼ 0, b ¼ 0.999bcrit, and b ¼ 1.01bcrit.
In Sec. IVB we shall plot the logarithm of the numerically
calculated wavefront for a head-on and a near-critical
merger and include the early- and late-time analytic
expressions for comparison purposes; the analytic predic-
tions are followed closely.

IV. COUPLING TO A DILATON

Let us now consider the following generalization of the
Einstein-Maxwell theory [21,22]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð−Rþ 2ð∇ϕÞ2 þ e−2aϕF2Þ; ð24Þ

with ϕ a dilatonic scalar field and a the corresponding
coupling constant. This action describes a broad range of
fundamental theories: a ¼ 0 yields Einstein-Maxwell
theory, a ¼ 1 gives the low energy action of string theory,
and a ¼ ffiffiffi

3
p

corresponds to Kaluza-Klein theory. The
corresponding static multi–black hole solution [23] is
given by

ds2 ¼ −ψ
− 2

1þa2
a dt2 þ ψ

2

1þa2
a dx⃗ · dx⃗;

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p ψ−1
a dt; e−2aϕ ¼ ψ

2a2

1þa2
a ; ð25Þ

where

ψa ¼ 1þ ð1þ a2Þ
Xn
i¼1

mi

ri
; ð26Þ

and reduces to the MP solution (3) for a ¼ 0.
The dilatonic multi–black hole solutions are smooth in

the conformal frame2 with metric g̃ab ¼ e−2aϕgab but are
singular at the horizon in the Einstein frame with metric gab
in (25), a point noted previously [24]. However, in the
Einstein frame both the moduli space approximation [25]
and an effective field theory [26] can be fully worked out
for general a. These approximations are valid provided the
black holes are sufficiently separated [Eq. (6)]; within this
context the singular behavior at the horizons does not affect
the motion of these extremal objects.
In order to find the quadrupole moment for this metric,

we need to perform an expansion of gtt, similar to (15),
obtaining in general a-dependent coefficients of expansion.

FIG. 2. Gravitational wave signatures for a ¼ 0. We have
plotted the hTTþ wavefronts for the three different orbits depicted
in Fig. 1. The top graph illustrates the wavefront emitted upon the
head-on (b ¼ 0) merger, the middle graph the wavefront emitted
upon the below-critical coalescence, and the bottom graph the
wavefront emitted upon the scattering interaction.

2Such a conformal frame is different from the Jordan frame
considered typically in string theory for a ¼ 1, which would be
obtained by gðsÞab ¼ e2aϕgab. Contrary to the extremal electrically
charged multi–black hole solutions [23] that are regular in the
frame g̃ab, the extremal magnetically charged multi–black hole
solutions [22] are regular in the string frame.
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The structures of Eqs. (25) and (26) ensure that the
quadrupole moment is a-independent and is still given
by (15).
Let us now promote the static metric to a dynamical

setting, using the MSA approximation. The corresponding
moduli space metric for general a [25] yields a description
of the motion of two black holes via the Lagrangian (4)
where now3

γaðr12Þ ¼ 1þM

�
3 − a2

4π

�Z
d3x

�
ψ

2ð1−a2Þ
1þa2
a

�
r⃗1 · r⃗2
r31r

3
2

; ð27Þ

and is nontrivial to integrate for generic a. Of course, for
a ¼ 0 we obtain (5). For the Kaluza–Klein case, a ¼ ffiffiffi

3
p

,
the moduli space metric vanishes, and there is no inter-
action between the black holes at this order of expansion—
to get nontrivial results one would have to go to a higher
order in velocities.
In what follows, we focus on two cases where we can

perform analytically the integration in (27): the string-
theoretic case a ¼ 1, for which [25]

γa¼1 ¼ 1þ 2M
r12

; ð28Þ

and the case a ¼ 1ffiffi
3

p , where we find

γa¼ 1ffiffi
3

p ¼ 1þ 8

3

�
M
r12

þ 2M2

3r212

�
: ð29Þ

Note that these are both independent of μ, in contrast to
what happens in the Einstein-Maxwell case. In other words,
in our approximation and for these two special cases the
gravitational wave signature will depend only on the total
mass of the system, not on the binary mass ratio.

A. String theory black holes: a = 1

When a ¼ 1, ψ does not contribute at all to the integral
in (27). Interestingly, there is no value of b for which the
black holes merge. At least within the MSA, all trajectories
are scattering, including the head-on collision [25]
(although it is not unreasonable to suspect that mergers
could happen when the approximation is taken to higher
order in v2). As such, no oscillatory waveforms exist, and
we only observe a memory effect, according to

ϕ12 early=late ¼ −
b
v∞t

þ…; ð30Þ

r12 early=late ¼ ∓v∞t −M log ð∓ v∞tÞ þ…; ð31Þ

and so

hTTearly=late ¼
ffiffiffi
2

p
μv2∞
r

�
1� M

v∞t

�
e−2iϕ12 êR þ c:c: ð32Þ

The memory effect can be seen in Fig. 3.

B. Intermediate coupling: a = 1ffiffi
3

p

For a ¼ 1ffiffi
3

p the μ-independence of γðr12Þ in (29) implies

that wavefronts emitted by binary pairs of arbitrary mass
ratio yield the same gravitational wave signature, albeit
rescaled by μ; this is not true for a ¼ 0, for which the
equations of motion explicitly depend on μ. The critical
impact parameter bcrit is bcrit ¼ 4

3
M.

Using (29) to solve (8) yields

r12 early=late ¼ ∓v∞t −
4M
3

log ð∓ v∞tÞ þ…; ð33Þ

ϕ12 early=late ¼ −
b
v∞t

þ…; ð34Þ

for the separation at early and late times, when r12 ≫ M.
Hence

hTTearly=late ¼
ffiffiffi
2

p
μv2∞
r

�
1� 4

3

M
v∞t

�
e−2iϕ12 êR þ c:c: ð35Þ

For coalescing orbits at late times we find

r12 coalescing ¼ r0 exp

�
−
3q
16

v∞t
M

�
; ð36Þ

FIG. 3. The memory effect for a ¼ 1. For this case there are no
merging orbits and no oscillatory behavior in hTT . However, we
do see very clearly a memory effect.

3Note that this reduces to equation (IV.9) in Ref. [13] for the
weak field ψa → 1 approximation.
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ϕ12 coalescing ¼
9

16

bv∞t
M2

þ…; ð37Þ

where r0 is the separation at some t0, and we abbreviated
q≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16 − 9b2=M2
p

; in particular, note that _ϕ12 is no
longer small at late times. This implies an exponentially
decaying signature:

hTTcoalescence ¼
9

64

μ
ffiffiffi
2

p
r20v

2
∞

rM4
ð8M2 − 9b2 þ 3ibMqÞ

× exp

�
−
3

8

v∞t
M2

ðMqþ 3ibÞ
�
êR þ c:c: ð38Þ

We plot the results in Figs. 4 and 5. We show the
logarithm of the wavefront of coalescing orbits for different
values of b in Fig. 5(b), where the b-dependence of the fall-
off is seen. The exponential fall-off behavior is also clearly
shown, in contrast to the t−6 behavior evident in Fig. 5(a)
for the Einstein-Maxwell case. Note that the electromag-
netic radiation would also be expected to have an

exponential fall-off, as it takes a similar form as gravita-
tional radiation (see [17]).

V. CONCLUSION

The presence of a dilaton can make a significant imprint
on the gravitational waveforms emitted in black hole
collisions and scattering events. By analytically computing
expressions for the gravitational wavefronts emitted by the
collision of two extremally charged dilatonic black holes,
we have been able to compare the general relativistic

FIG. 4. Gravitational wave signatures for a ¼ 1ffiffi
3

p . We plot here
graphs analagous to those in Fig. 2. The top graph illustrates the
wavefront emitted upon a head-on collision (b ¼ 0), the middle a
subcritical case (b ¼ 0.999bcrit ¼ 1.332M), and the bottom a
scattering event (b ¼ 1.01bcrit ¼ 1.34667M). The inset in the
middle depicts near-critical coalescence to make the exponen-
tially decaying behavior more explicit. FIG. 5. Comparison of analytic expressions with numerical

results for a ¼ 0. Above we have plotted the behavior logðjhTTþ jÞ
as a function of time for head-on and below-critical collisions,
with the numerically calculated solution in red and the analytical
predictions for large and small m

r12
in black; (a) is for a ¼ 0 and

(b) is for a ¼ 1ffiffi
3

p . We notice a number of things on the log plot that

are difficult to see on the previous graphs: the t−6 for a ¼ 0
behavior can be directly contrasted with the e−t behavior for
a ¼ 1ffiffi

3
p . We also notice the lack of b-dependence for the a ¼ 0

case, as predicted, and the obvious b-dependence for a ¼ 1ffiffi
3

p .

MCCARTHY, KUBIZŇÁK, and MANN PHYS. REV. D 97, 104025 (2018)

104025-6



(Einstein-Maxwell) wavefronts with those occurring in a
string-theoretic case (a ¼ 1) and a more general dilatonic
theory (a ¼ 1=

ffiffiffi
3

p
). In the latter case the gravitational

waveforms are exponentially suppressed in time, whereas
in general relativity the wavefronts decay with t−6.
However the gravitational memory effect for scattering is
the same for all values of a, including the a ¼ 0 Einstein-
Maxwell case.
Our results complement those of recent studies of

dilatonic black hole mergers [12,13], and illustrate a
qualitative difference between cases with and without a
dilaton.
It would be interesting to develop this technique to

spacetimes with general coupling constant a between the
dilaton and the Maxwell field, as we have only been able to
do this so far for the specific values of a ¼ 0, 1ffiffi

3
p , 1,

ffiffiffi
3

p
; we

leave this question for future study. Likewise, more
detailed studies of nonextremal dilatonic black holes over
a broad range of parameter space need to be carried out
to see where the most interesting phenomenological
possibilities lie.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada and by the
Perimeter Institute for Theoretical Physics. Research at
Perimeter Institute is supported by the Government of
Canada through the Department of Innovation, Science,
and Economic Development Canada and by the Province of
Ontario through the Ministry of Research, Innovation, and
Science.

[1] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 118, 221101 (2017).

[4] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 119, 141101 (2017).

[5] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Astrophys. J. 851, L35 (2017).

[6] B. Abbott et al. (Virgo and LIGO Scientific Collaborations),
Phys. Rev. Lett. 119, 161101 (2017).

[7] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[8] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[9] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.

Zlochower, Phys. Rev. Lett. 96, 111101 (2006).
[10] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. Lett. 96, 111102 (2006).
[11] L. Lehner and F. Pretorius, Annu. Rev. Astron. Astrophys.

52, 661 (2014).
[12] E.W. Hirschmann, L. Lehner, S. L. Liebling, and C.

Palenzuela, Phys. Rev. D 97, 064032 (2018).
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