
 

Cosmic time and reduced phase space of general relativity

Eyo Eyo Ita III†

Physics Department, United States Naval Academy, 572C Holloway Road, Annapolis, Maryland 21402, USA

Chopin Soo*

Department of Physics, National Cheng Kung University, University Road, Tainan City 701, Taiwan

Hoi-Lai Yu‡

Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

(Received 22 November 2017; published 21 May 2018)

In an ever-expanding spatially closed universe, the fractional change of the volume is the preeminent
intrinsic time interval to describe evolution in general relativity. The expansion of the universe serves as a
subsidiary condition which transforms Einstein’s theory from a first class to a second class constrained
system when the physical degrees of freedom (d.o.f.) are identified with transverse traceless excitations.
The super-Hamiltonian constraint is solved by eliminating the trace of the momentum in terms of the other
variables, and spatial diffeomorphism symmetry is tackled explicitly by imposing transversality. The
theorems of Maskawa-Nishijima appositely relate the reduced phase space to the physical variables in
canonical functional integral and Dirac’s criterion for second class constraints to nonvanishing Faddeev-
Popov determinants in the phase space measures. A reduced physical Hamiltonian for intrinsic time
evolution of the two physical d.o.f. emerges. Freed from the first class Dirac algebra, deformation of the
Hamiltonian constraint is permitted, and natural extension of the Hamiltonian while maintaining spatial
diffeomorphism invariance leads to a theory with Cotton-York term as the ultraviolet completion of
Einstein’s theory.
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I. INTRODUCTION

In this work two complementary perspectives will be
adopted to frame the physical content of Einstein’s theory in
an ever-expanding spatially closed universe: (1) casting
general relativity (GR) as a theory with second class
constraints [1], and (2) studying the physical canonical
phase space functional integral of GR. In the process, we
shall isolate the true d.o.f., solve all constraints, resolve the
problem of time, and construct the corresponding reduced
physical Hamiltonian. Freed from the shackles of the Dirac
algebra and first class constraints, it will also be revealed that
four-covariance is not really needed to capture the physical
content of Einstein’s theory [2–5]; and modifications of GR
are in fact allowed within the same framework. This provides
a rigorous canonical foundation for the consistency of
Horava gravity theories [6] which are obtained by modifying
GR through its physical reduced Hamiltonian.
It is well-known that the canonical action of Einstein’s

general relativity, S ¼ R R
Σðπ̃ij ∂qij∂t − NiHi − NHÞd3xdt,

follows from the Einstein-Hilbert action and Arnowitt-
Deser-Misner decomposition of the metric, ds2 ¼
gμνdxμdxν ¼ −N2dt2 þ qijðdxi þ NidtÞðdxj þ NjdtÞ,
wherein the lapse and shift functions, N and Ni, character-
ize the deformation of the spatial points from one hyper-
surface to the next. In this work the spatial manifold
Σ is assumed to be compact and without boundary to
highlight the “problem of time” and its resolution. The
EOM for the spatial metric, qij, relates the gravitational
conjugate momentum to the extrinsic curvature, Kij ¼
1
2N ð

∂qij
∂t −∇iNj −∇jNiÞ, via π̃ij ¼

ffiffi
q

p
2κ ðKij − qijKÞ. The

super-Hamiltonian and spatial diffeomorphism (or super-
momentum) constraints (respectively H ¼ 0, Hi ¼ 0) form
the first class Dirac algebra,

fHi½Mi�; Hj½M0j�g ¼ Hk½ðLM⃗M⃗
0Þk�;

fHi½Mi�; H½M0�g ¼ H½LM⃗M
0�;

fH½M�; H½M0�g ¼ Hi½qijðM∂jM0 −M0∂jMÞ�; ð1Þ

wherein smearing functions are introduced in the Poisson
brackets (for instance,Hi½Mi� ≔ R

Σ M
iHid3x). Conversely,

it has been shown the Dirac algebra is the hallmark of
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space-time 4-covariance and embeddability of hypersurface
deformations, from which the explicit forms ofHi andH of
Einstein’s theory of geometrodynamics can be regained [7].
In the quantum context, following Dirac’s own pre-

scription, first class constraints can consistently be imposed
to annihilate quantum states; but closure of the quantum
algebra and divergences in Einstein’s theory also need to
be resolved meaningfully. While Hi can rigorously be
interpreted as generators of spatial diffeomorphisms, the
role of H which is quadratic in the momentum is not
as transparent, and the constraints do not generate
4-diffeomorphisms off-shell. What is clear is that these
constraints are needed to capture the physical content of
Einstein’s theory, at least at the classical level. In what
follows we shall recover this physical content from the two
complementary viewpoints of casting Einstein’s GR as a
theory with second class constraints, and from studying the
canonical phase space functional integral of GR.
In geometrodynamics, the fundamental variables,

ðqij; π̃ijÞ, decompose in a manner which singles out the

canonical pair ðln q1
3; π̃Þ which commutes with the remain-

ing unimodular q̄ij ¼ q−
1
3qij, and traceless momentum

variable π̄ij ¼ q
1
3ðπ̃ij − 1

3
qijπ̃Þ. In fact the symplectic poten-

tial can be expressed as
R
π̃ijδqijd3x ¼ R ðπ̄ijδq̄ij þ

π̃δ ln q
1
3Þd3x. For closed manifolds, Hodge decomposition

of the spatial diffeomorphism scalar δ ln q
1
3 ¼ qij

3
δqij or

zero-form yields δ ln q
1
3 ¼ δT þ∇iδyi, wherein the spa-

tially-independent δT is spatial diffeomorphism invariant,
whereas ∇iδyi can be gauged away since the change of
ln q

1
3 under spatial diffeomorphism is the Lie derivative

LN⃗ ln q
1
3 ¼ 2

3
∇iNi. In fact it follows1 that δT ¼ 2

3
δV
V ¼

2
3
δ lnV, wherein V is the spatial volume of our universe

[4,5]. In an ever-expanding spatially closed universe, this
serves as the preeminent and concrete physical time interval
to discuss dynamics and evolution.
Intrinsic time gravity (ITG), or geometrodynamics

with δT intrinsic time interval and its corresponding
Hamiltonian, has been advocated in a series of works
[2–5,8–10] which we shall briefly recap. The main issues
discussed in Ref. [2] were the paradigm shift from full
space-time covariance to spatial diffeomorphism invari-
ance, unitary time development with gauge-invariant
temporal ordering, emergence of classical space-time from
constructive interference, and a priori versus a posteriori
value of the lapse function in GR. A more rigorous proof
of the emergent lapse function was given together with a
discussion of Dyson time-ordering in intrinsic time in
Ref. [5]. The effect on the Hamiltonian structure of

choosing intrinsic time slicings and simplifications in
classical initial data construction were investigated in
Ref. [3], and the resultant generalized Lichnerowicz-
York equation was shown to retain nice existence
and uniqueness properties regardless of the additional
Cotton-York term. In Ref. [4], a main ingredient was
the introduction of Klauder’s momentric variables [11]
with its underlying SUð3Þ group structure at each spatial
point and the expression of the kinetic operator as a
Casimir invariant. Asymptotic intrinsic time behavior of
the theory was analyzed, together with its ground state and
primordial quantum fluctuations. It was also pointed out
that Cotton-York potential dominates at early times when
the universe was small. Reference [8] highlighted the
novel commutation relations introduced in [4], but the
basic variables discussed therein were the eight compo-
nents of the unimodular part of the spatial dreibein (rather
than the five-component unimodular spatial metric) and
the eight SUð3Þ Klauder momentric variables, thus restor-
ing eight components to each set of variables. The
quantum Hamiltonian of intrinsic time gravity was elu-
cidated in Ref. [9]; in particular, heat kernel regularization
was employed to demonstrate that, in addition to a Cotton-
York term, Einstein’s Ricci scalar potential emerged
naturally from the simple positive-definite self-adjoint
Hamiltonian. Consistent with the requirement of spatial
compactness in the intrinsic time formulation, GR waves
in compact k ¼ þ1 cosmological de Sitter spacetine were
studied [10], and possible non-four-covariant Cotton-York
contributions were shown to be negligible for long wave-
lengths at the current size of the universe, but these
contributions can be important at early epochs when
universe was much smaller.
In this work, the physical reduced phase space of GR

will be analyzed within the context of intrinsic time
formulation. With the addition of auxiliary condition for
an ever-expanding closed universe, the total restrictions no
longer form a first class system, but constitute a perfect
set of second class constraints in Dirac’s terminology [1]
when the two physical d.o.f. are identified with transverse-
traceless excitations. The super-Hamiltonian constraint is
solved by eliminating π̃ in terms of the other variables,
and spatial diffeomorphism symmetry is tackled explicitly
by imposing transversality. A true physical Hamiltonian
for intrinsic time evolution emerges; the theorems of
Maskawa-Nishijima [12] appositely relate the reduced
phase space to the physical variables in the canonical
functional integral and Dirac’s criterion for second class
constraints to non-vanishing Faddeev-Popov determinants
[13] in the phase space measures. Within this context, the
further step of generalizing the form of the reduced
Hamiltonian beyond GR is in fact permitted. Natural
extensions of the Hamiltonian while maintaining spatial
diffeomorphism invariance lead to a theory with higher
spatial curvature terms to improve ultraviolet convergence;

1The Hodge decomposition is δ lnq
1
3 ¼ 2

3
ffiffi
q

p δ
ffiffiffi
q

p ¼ δTþ∇iδyi.

On multiplying by
ffiffiffi
q

p
and integrating over closed Σ, the δyi term

drops out, yielding 2
3
δV ¼ ðδTÞV, or δT ¼ 2

3
δ lnV.
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thus this work also provides a firm canonical foundation for
Horava gravity theories.
An ever-expanding spatially closed universe leads to the

natural supplementary condition, which is a spatially
independent δ ln q

1
3 ¼ δT, or equivalenty,

χ ¼ 1

3
ln

�
q
q0

�
− ðT − T0Þ ¼ 0: ð2Þ

The super-Hamiltonian constraint is expressible in an
interesting manner as [2]

H ≔ β2π̃2 − H̄2 ¼ −
ffiffiffi
q

p
2κ

H ¼ 0;

H̄2 ≔ Ḡijklπ̄
ijπ̄kl þ Vðq̄ij; qÞ

¼ 1

2
½q̄ikq̄jl þ q̄ilq̄jk�π̄ijπ̄kl þ VðqijÞ; ð3Þ

wherein Einstein’s GR corresponds to Vðq̄ij; qÞ ¼
− q

ð2κÞ2 ðR − 2ΛeffÞ and β2 ≔ 1
6
. In addition, H̄ðln q1=3;

q̄ij; π̄ijÞ commutes with ln q
1
3; so (2) and (3) lead to a

remarkable consequence,

fχ;Hg ¼ 2β2π̃ ¼ �2βH̄; ð4Þ

on the constraint surface. Via the EOM,

π̃ ∝
ffiffiffi
q

p
K ¼ 3

ffiffiffi
q

p
2N

�∂ln q1
3

∂t −
2

3
∇iNi

�
; ð5Þ

the trace of the extrinsic curvature; moreover, since

limδt→0
δ ln q

1
3

δt ¼ limδt→0
δT
δt þ 1ffiffi

q
p ∂i

ffiffi
q

p
δyi

δt , the latter term can

always be compensated by choosing ∇iNi ¼ 3
2
∇i

∂yi
∂t . Thus

modulo spatial diffeomorphisms, and from a physical point
of view, fχ;Hg is nonvanishing for an ever-expanding
closed universe. This is another motivation for casting GR
as a theory with second class constraints, which we shall
take up in the next section. Later on we shall discuss how to
turn the off-shell value of H̄ into a positive-definite entity.
Some may argue an ever-expanding universe is the

consequence of Einstein’s GR given the distribution of
matter and the effective value of the cosmological constant,
rather than an input. However, current observations do not
preclude the counterargument this work explores: an ever-
expanding closed universe is fundamental to the framework
of our physical universe and the resolution of the problem
of time in classical and quantum GR.

II. SECOND CLASS CONSTRAINTS
AND PHASE SPACE FUNCTIONAL

INTEGRAL OF GR

As explained in Ref. [13], to reduce the phase space of a
system with 2n d.o.f. subject to m constraints to a well-
defined 2ðn −mÞ-dimensional canonical phase space with
(n −m) physical d.o.f., it is necessary to introduce m
additional conditions. These m conditions are often looked
upon as “gauge-fixing”, but this terminology is somewhat
obfuscating as these conditions (the transversality of
physical gauge potentials as an example2) may stem from
restrictions to gauge-invariant parts of natural decomposi-
tions, as well as from physical conditions compatible with
empirical observations of the system. The crucial point is
that the original constraints, supplemented by these extra
restrictions can turn the system into one with 2m second
class constraints and well-defined (n −m) reduced canoni-
cal physical d.o.f. For GR, an ever expanding spatially
compact universe delivers the upshot of χ ¼ 0, which,
together with transversality of the unimodular perturba-
tions, yield not only the correct 2 d.o.f., but also a
nonvanishing physical Hamiltonian generating true (intrin-
sic) time translations.
To wit, we first note that the super-momentum constraint

can be decomposed asHi ¼ Hi − 2
3
∇iπ̃. Moreover, − 2

3
∇iπ̃

and Hi separately, and respectively, generate spatial
diffeomorphisms of ðπ̃; ln q1

3Þ and ðπ̄ij; q̄ijÞ; specifically,R
NiHid3x ¼ R

π̄ijLN⃗ q̄ijd
3x with corresponding algebra,

fHi½Mi�;Hj½M0j�g ¼ Hk½ðLM⃗M⃗
0Þk�: ð6Þ

The explicit additional conditions χi ¼ 0 which will
render fχ;H; ; χi;Hig into a set of second class constraints
will be addressed later; we first note the Poisson brackets
of the set of constraints fχ;H; χi;Hig are as tabulated
below:

f; g χ H χj Hl

χ 0 2β2π̃ 0 0
H −2β2π̃ X Yj Zl

χi 0 −Yi 0 fχi;Hlg
Hk 0 −Zk fHk; χjg fHk;Hlg

The matrix is invertible when fχ;Hg ¼ 2β2π̃ and
det½fχi;Hjg� are both nonvanishing. Consequently, in
Dirac’s terminology, fχ;H; χi;Hig perfectly constitutes a

2For instance, in electrodynamics, an arbitrary gauge potential
has the decomposition Ai ¼ AT

i þ ∇iα. Transversality of AT
i

leads to ∇2α ¼ ∇iAi; consequently AT
i ¼ Ai −∇i

1
∇2 ∇jAj is

explicitly gauge invariant under Ai ↦ Ai þ ∇iη∀ η. So while
the condition ∇iAphys

i ¼ 0 is often called “gauge-fixing’”, the
solution Aphys

i ¼ AT
i is, as shown, really invariant under gauge

transformations. The Coulomb “gauge” is thus a condition to
extract the gauge invariant physical d.o.f. from the original
configuration space.
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set of “second class constraints” [1]. Maskawa and
Nakajima [12] showed that any set of canonical variables
governed by second class constraints is canonically
equivalent to Qr, Pr;Qα;Pα such that the constraints read
Qα ¼ Pα ¼ 0. Moreover, the Dirac bracket [1] is equal to
the Poisson bracket calculated in terms of the reduced set of
unconstrained variables, i.e., fA;BgDirac¼ ∂A

∂Qr
∂B
∂Pr

− ∂B
∂Qr

∂A
∂Pr

.
Thus all physics and computations become transparent and
simplify greatly if the reduction to true d.o.f. can be
completed and the reduced Hamiltonian constructed
explicitly. In the canonical functional integral one can
view Qα ¼ χ; χi; and with Hα ¼ H;Hi, it follows that

det½fQα;Hβg� ¼ det½∂Hβ

∂Pα
� ≠ 0 allows Hβ ¼ 0 to be solved

in terms of Pα. Since

δðQαÞ det½fQα;Hβg�δðHβðPαÞÞ ¼ δðQαÞδðPαÞ; ð7Þ

our previous factors, det½fχ;Hg� and det½fχi;Hjg�, are
just the required Faddeev-Popov determinants [13] in
det½fQα;Hβg� to enforce the restriction to the true physical
phase space ðQr; PrÞ.
The canonical phase space functional integral is

Z
DμΘð−π̃Þ exp

�
i
ℏ

Z
dt

Z
Σ

�
π̄ij

∂q̄ij
∂t þ π̃

∂ ln q1=3
∂t

�
d3x

�
:

ð8Þ

In the functional integral we have inserted a theta function
to pick out the choice of positive-definite H̄ compatible

with a expanding universe i.e., π̃ ¼ −
ffiffi
q

p
K

κ ¼ − H̄
β , whereas

H ¼ 0 is satisfied by π̃ ¼ � H̄
β. As the total determinant of

the Poisson brackets in the table factorizes, the total
measure will be associated with a direct product
det½fχ;Hg� det½fχi;Hjg�. To wit, including the determi-
nants and constraints, the complete measure is

Dμ ¼ Dμ̄
Y
x

δ ln q
1
3δπ̃ detfχ;HgδðχÞδðHÞ; ð9Þ

with

Dμ̄ ¼
Y
x

ð2πℏÞ3
Y
i;j

δπ̄ijδq̄ij
2πℏ

det½fχi;Hjg�δðχiÞδðHjÞ;

ð10Þ

consistent with the Faddeev-Popov prescription [13]. In
functional integrals, the condition χi ¼ 0 and the Faddeev-
Popov determinant can also be realized by integrating
over auxiliary fields b̃i and complex Grassmannian ghost

fields ðc̄i; ciÞ through R Q
k

Q
x∈Σ

db̃k
2π dc̄

kdck expði R b̃iχi þ
c̄ifχi;HjgcjÞd3x0).

A. Spatial diffeomorphisms

In this subsection we address spatial diffeomorphisms
and the resultant d.o.f. of the theory. Supplementary to
the Hi ¼ 0 constraints and consistent with the gauge-
invariance of transverse fluctuations, we introduce χi ¼
q

1
3∇�jδq̄TTji ¼ 0 with δq̄TTij ¼ q̄ij − q̄�ij, wherein ∇� denotes

covariant derivative with respect to background q�ij ¼ q
1
3q̄�ij.

It follows from π̄ij ≔ q
1
3½π̃ij − qij

3
π̃� that the Poisson brack-

ets for the barred variables are,

fq̄ijðxÞ; q̄klðyÞg ¼ 0; fq̄klðxÞ; π̄ijðyÞg ¼ Pij
klδ

3ðx − yÞ;

fπ̄ijðxÞ; π̄klðyÞg ¼ 1

3
ðq̄klπ̄ij − q̄ijπ̄klÞδ3ðx − yÞ; ð11Þ

with Pij
kl ≔

1
2
ðδikδjl þ δilδ

j
kÞ − 1

3
q̄ijq̄kl denoting the traceless

projection operator.
Under spatial diffeomorphisms, the unimodular metric

variable changes by

Lξ⃗q̄ij ¼ ξk∂kq̄ij þ q̄ik∂jξ
k þ q̄kj∂iξ

k −
2

3
q̄ij∂kξ

k

¼ q−
1
3

�
∇iξj þ∇jξi −

2

3
qij∇kξk

�

¼ 2q−
1
3Plk

ij∇lξk ≕Lk
ðijÞξk ð12Þ

wherein ∇ is the Levi–Civita connection of the spatial
metric.
We may introduce the positive-definite block-diagonal

metricGIJ ¼ ½Ḡijkl

0
0

qmn� wherein I ¼ ððijÞ; mÞ, J ¼ ððklÞ; nÞ,
and Ḡijkl ¼ 1

2
ðq̄ikq̄jl þ q̄ilq̄jkÞ. This allows the definition a

positive-definite inner product

hU1; U2i ≔
Z

ḠIJUIU0
J

ffiffiffi
q

p
d3x

¼
Z

Ḡijklδq̄1ijδq̄
2
kl

ffiffiffi
q

p
d3xþ

Z
qmnξ1mξ

2
n

ffiffiffi
q

p
d3x

ð13Þ

for any pair U1;2
I ¼ ½δq̄

1;2
ij

ξ1;2k
�. And associated with spatial

diffeomorphisms is the operation LI
JξJ ¼ ½0

1

Lm
ðijÞ
0
� · ½ 0ξm� ¼

½Lξ⃗q̄ij
0
�. To demonstrate that the determinant of the relevant

Poisson bracket is almost generically nonvanishing for an
arbitrary background, we note that
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�Z
ζmχm

ffiffiffi
q

p
d3x;

Z
ξnHnd3y

�
¼

�Z
ζm

ffiffiffi
q

p
q

1
3∇�nðq̄mn − q̄�mnÞd3x;

Z
ðLξ⃗q̄ijÞ�π̄ijd3y

�

¼ −
1

2

Z ffiffiffi
q

p
q

1
3

�
∇�iζj þ∇�jζi −

2

3
qij∇�

kζ
k

�
ðLξ⃗q̄ijÞ�d3y

¼ −
1

2

Z
Ḡ�ijklðLm

ðijÞζmÞ�ðLn
ðklÞξnÞ�

ffiffiffi
q

p
d3y

¼ −
1

2

Z
Ḡ�IJðL�K

I ζKÞðL�L
J ξLÞ

ffiffiffi
q

p
d3y ¼ −

1

2
hL�ζ;L�ξi

¼ −
1

2
hζ;L�†L�ξi; ð14Þ

which means that the determinant of fχm;Hng is that of
a negative semidefinite operator. It follows that a zero
mode is present iff L�k

ðijÞξk ¼ 0, equivalently ξi must be a

conformal Killing vector which obeys Lξ⃗q
�
ij ¼ 2

3
q�ij∇�

kξ
k.

Changes due to spatial diffeomorphisms are orthogonal to
transverse-traceless physical excitations since

Z
Ḡijklδq̄TTkl ðLξ⃗q̄ijÞ

ffiffiffi
q

p
d3x

¼
Z

Ḡijklδq̄TTkl q
−1
3

�
∇iξj þ∇jξi −

2

3
qij∇mξm

� ffiffiffi
q

p
d3x

¼ 0 ð15Þ

after integrating by parts and invoking ∇kδq̄TTkl ¼ 0. The
orthogonal decomposition into physical and gauge
changes δq̄ij ¼ δq̄TTij þ Lξ⃗q̄ij does not fix ξ⃗ uniquely if

one or more zero modes, ξ⃗oα, exist; but even then the
physical δq̄TTij is unaffected since these conformal Killing
vectors satisfy Lξ⃗oα

q̄ij ¼ 0. This parallels the arguments
given by York [14] for the decomposition of the momentum
variable which we shall briefly recap. To wit, any arbitrary
momentum can be expressed as

π̃ij ¼ π̃ijTT þ qij

3
π̃ þ ffiffiffi

q
p ðLWÞij;

ðLWÞij ≔ ∇iWj þ∇jWi −
2qij

3
∇kWk; ð16Þ

and the requirement

ð△LWÞj ≔ ∇iðLWÞij ¼ 1ffiffiffi
q

p ∇i

�
π̃ij −

qij

3
π̃

�
ð17Þ

follows from ∇iπ̃
ij
TT ¼ 0. Thus Wi depends only on the

traceless part of π̃ij; moreover, ðLWÞij is also traceless. The
operator △L is strongly elliptic and its kernel consists of
those Wi

oα which satisfy ðLWoαÞij ¼ 0. The general sol-
ution, Wi ¼ Wi

p þ
P

αc
αWi

oα, is a linear combination of

the particular solution and elements of the kernel. But
ðLWÞij ¼ ðLWpÞij, so the presence of a nontrivial kernel

does not affect the physical mode π̄ijTT and the uniqueness
of the decomposition (16). By the same arguments,
the presence of zero modes in (14) does not disturb
δq̄TTij . Note that the full diffeomorphism constraint Hi ≔
−2qik∇jπ̃

jk
phys ¼ 0 is actually satisfied by π̃ijphys ¼ π̃ijTT.

Substituting the decomposition of π̃ij into the symplectic
potential and integrating by parts terms with Wi reveal that

Z
π̃ijδqijd3x ¼

Z
ðπ̄ijTTδq̄ij − 2Wjq

1
3∇iδq̄ij þ πδ lnq

1
3Þd3x;

π̄ijTT ≔ πijTTq
1
3: ð18Þ

When restricted to the physical subspace with∇iδq̄physij ¼ 0,
i.e., to traceless-transverse excitations δq̄TTij , the symplectic

potential reduces to
R ðπ̄ijTTδq̄TTij þ πδ ln q

1
3Þ yielding two

physical TT degrees of freedom, and an extra pair ðln q1
3; πÞ

to feature in intrinsic time and Hamiltonian density.
For perturbations about any background q�ij ¼ qij − δqij,

the linearized physical spatial metric modes δq̄physij ¼
ðPkl

ijÞ�δqkl are traceless (q�ijδq̄physij ¼ 0) and transverse

(∇�iδq̄physij ¼ 0Þ with respect to q�ij, correctly accounting
for the perturbative graviton degrees of freedom.
In electrodynamics, the physical d.o.f. is the transverse

projection AT
i ¼ ðδji −∇i

1
∇2 ∇jÞAj which is gauge invari-

ant under Ai ↦ Ai þ∇iη∀ η. The GR analogy can be

made concrete: Eq. (15) implies L† · ½δq̄TTij
0
� vanishes. By

decomposing δq̄ij ¼ δq̄TTij þ Lη⃗q̄ij, or equivalently, ½δq̄ij0 � ¼
½δq̄TTij

0
� þ L · ½ 0ηk�, and acting with L† on the equation, it

follows that ½ 0ηk� ¼ ðL†LÞ−1 · L† · ½δq̄ij
0
�. Substituting this

back into the decomposition yields the physical ½δq̄TTij
0
� ¼

ðI − L · ðL†LÞ−1 · L†Þ · ½δq̄ij
0
�, which is explicitly invariant

under spatial diffeomorphisms ½δq̄ij
0
� ↦ ½δq̄ij

0
� þ L · ½ 0ξk�∀ ξk.
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A similar decomposition and projection can be carried out
for π̄ijTT. These true d.o.f. are physical observables.

B. Physical Hamiltonian, and generalization
beyond Einstein’s theory

Reduction of the canonical functional integral to the
unconstrained physical phase space can now be completed.
Taking (2) and (4) into account, (8) leads, upon integrating
over Dμ of (9), to

Z
Dμ̄ exp

�
i
ℏ

Z Z
Σ

�
π̄ij

∂q̄ij
∂T −

H̄ðqðTÞ; q̄ij; π̄ijÞ
β

�
d3xdT

�
;

ð19Þ

with the emergence of a Hamiltonian generating
T-translations. Further integration over Dμ̄ of (10) yields
the true physical functional integral,

R
Dμ̄phys expð iℏ SphysÞ,

with

Sphys ¼
Z �Z

Σ
π̄ijTT

∂q̄TTij
∂T d3x

�
dT −

Z
HphysdT; ð20Þ

Dμ̄phys ¼
Y
x∈Σ

Y
i;j

δπ̄ijTTðxÞδq̄TTij ðxÞ
2πℏ

; ð21Þ

and corresponding emergent physical Hamiltonian,

Hphys ¼
1

β

Z
Σ
H̄ðln q1=3ðTÞ; q̄TTij ; π̄ijTTÞd3x: ð22Þ

A crucial point to note is that the precise form of X; Yi; Zi
play no role in total determinant of the Poisson brackets of
the constraints discussed earlier, and in the above derivation
of the physical Hamiltonian; so changes in the precise form
of V are in fact allowed within this framework. Einstein’s
general relativity (with β ¼ 1ffiffi

6
p and V ¼ − q

ð2κÞ2 ½R − 2Λeff �)
is thus a particular realization of this wider class of
theories which is compatible with spatial diffeomorphism
symmetry and an ever-expanding closed universe [2,3,5].
Generalization of H ¼ β2π̃2 − H̄2 to other cases with

H̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π̄ijḠijklπ̄

kl þ V½qij�
q

; ð23Þ

wherein Vðq; q̄ijÞ is a spatial scalar density of weight

two is allowed [2]. In particular, the advantages of H̄ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂†i

j Q̂
j
i þ qK

q
with positive coupling K have been elab-

orated elsewhere [2,4,9]. This also completes the earlier
nonvanishing requirement of fχ;Hg ¼ 2β2π̃ ¼ −2βH̄.
In the quantum context, this Hamiltonian density is

self-adjoint. Explicit spatial diffeomorphism invariance
is achieved by introducing the interactions through

Q̂i
j ≔ eWT ˆ̄πije

−WT with WT being a combination of the
Einstein-Hilbert action, WEH, and the Chern-Simons func-
tional, WCS, in three spatial dimensions i.e.,

WT ¼ WCS þWEH

¼ g
4

Z
ϵ̃ijk

�
Γl
im∂jΓm

kl þ
2

3
Γl
imΓm

jnΓn
kl

�
d3x

− α

Z ffiffiffi
q

p
Rd3x: ð24Þ

As demonstrated in Ref. [9] the final Hamiltonian in the
limit of regulator removal is

Hphys ¼
Z

H̄ðxÞ
β

d3x; H̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂†i

j Q̂
j
i þ qK

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π̄†ij π̄

j
i þ ℏ2g2C̃i

jC̃
j
i −

q
ð2κÞ2 ðR − 2ΛeffÞ

r
: ð25Þ

wherein C̃ij ¼ δWCS
δqij

is the Cotton-York tensor (density).

Associated with the dimensionless coupling constant g2 in
(25), the Cotton-York term (which contains up to six spatial
derivatives) modifies the propagator of Einstein’s theory
and ensures ultraviolet convergence [6].
The Cotton-York extension in (25) is analogous to the

Yang-Mills magnetic field contribution in the Hamiltonian
density, qij

2
ð ˆ̃πiaA ˆ̃πjaA þ ℏ2B̃iaB̃jaÞ ¼ qij

2
Q̂† iaQ̂ja, with Q̂ia ¼

eWCS ˆ̃πiaA e
−WCS ¼ ˆ̃πiaA þ iℏB̃ia; wherein ˆ̃πiaA ¼ ℏ

i
δ

δAia
is the

conjugate momentum to the gauge potential, and the
magnetic field B̃ia ¼ δWCS

δAia
is the functional derivative of

the Chern-Simons functional of the Yang-Mills connection
Aia. In the case of Yang-Mills, there is no analog of the
Einstein-Hilbert action term,

R ffiffiffi
q

p
Rd3x, which can be

added to WT .

III. FURTHER REMARKS ON EXTRINSIC,
INTRINSIC, AND SCALAR FIELD TIME

In the extrinsic time formulation [15], constancy of
p≔ π̃ffiffi

q
p is invoked, and the Hamiltonian constraint H¼ 0

translates into the Lichnerowicz-York equation [16],
p2− q

β2
H̄2ðπ̄ij; q̄ij;qÞ¼ 0. This determines q uniquely, thus

eliminating the d.o.f. ðln q1
3; π̃Þ in terms of ðπ̄ij; q̄ij; pÞ.

However, the reduced Hamiltonian (from
RR

π̃ ∂ lnq13
∂t dtd3x¼

−2
3

R ðR ffiffiffi
q

p
d3xÞdpÞ is then proportional to the spatial

volume, wherein qðπ̄ij; q̄ij; pÞ is known only implicitly
and non-locally from the Lichnerowicz-York equation.
In contradistinction, intrinsic time gravity utilizes
d ln q

1
3 ¼ dT as the universal time interval compatible

with an expanding spatially closed universe, together
with Hamiltonian constraint, βπ̃ ¼ −H̄. The resultant
Hamiltonian is both explicit, and of the remarkable
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relativistic form,Hphys¼ 1
β

R
H̄d3x¼ 1

β

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ḡijklπ̄

ijπ̄klþV
q

×

d3x. Einstein’s theory corresponds to β ¼ 1ffiffi
6

p and

V ¼ − q
ð2κÞ2 ½R − 2Λeff �, but, as explained, the scheme per-

mits additional terms in the potential to improve ultraviolet
convergence [6], while infrared divergence is completely
curbed by spatial compactness.
A scheme which uses a real scalar field as “time” would

correspond to χ ¼ ϕ − k ¼ 0 and H¼β2π̃2−H̄2 −
1
2κ ½

π̃2ϕ
2
þ 1

2
qqij∇iϕ∇jϕþVðϕÞ�¼0, with resultant fχ;Hg¼

− 1
2κ π̃ϕ≈∓ 1ffiffiffiffi

2κ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðβ2π̃2− Ḡijklπ̄

ijπ̄kl−V½qij�Þ− 1
2κVjϕ¼k

q
on

the constraint surface. Among other potential problems, the
negative-(semi)definite entity −Ḡijklπ̄

ijπ̄kl compromises
the reality of π̃ϕ, and this carries over to the reduced

Hamiltonian term,
R R

π̃ϕ
dϕ
dt dtd

3x ¼ R ðR π̃ϕd3xÞdk, in the
action. Moreover, unlike both the extrinsic and intrinsic
time formulations above, it fails to eliminate the ðln q1

3; π̃Þ
d.o.f., so while the total number of d.o.f. modulo con-
straints and subsidiary conditions is preserved, there are
nevertheless 3 (and not 2) remaining gravitational d.o.f..
Incorporating Yang-Mills and matter (both scalar and
fermionic) fields into the theory changes the total
Hamiltonian constraint to

H ¼ β2π̃2 − H̄2 −HmatterþYM ¼ 0: ð26Þ

But no couplings to π̃ appear in the usual HmatterþYM, so
the Poisson bracket in (4) with the new H is unaffected. It
follows H̄ is modified to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H̄2 þHmatterþYM

p
in the

reduced physical Hamiltonian of Eq. (22). The super-
momentum will now include the generator of spatial
diffeomorphisms D̃i for these additional fields i.e.,
HGRþmatter

i ¼ −2qik∇jπ̃
jk þ D̃i. The decomposition (16)

of the generic momentum, π̃ij ¼ π̃ijTT þ qij

3
π̃ þ ffiffiffi

q
p ðLWÞij,

is still valid. The solution of the diffeomorphism
constraint HGRþmatter

i ¼ 0 is then π̃ijphys ¼ π̃ijTT þffiffiffi
q

p ðLWphysÞij, with the particular solution Wi
phys com-

pletely determined by3 ð△LWphysÞi¼ 1
2
ffiffi
q

p D̃i. This changes

the explicit particular solution but does not disturb π̃ijTT
at all (in pure GR, D̃i ¼ 0, yielding Wi

phys ¼ 0 and

π̃ijphys ¼ π̃ijTT). Thus inclusion of matter and Yang-Mills
content does not alter the salient fact the unconstrained
gravitational initial data lie in the transverse-traceless
part of the momentum. In this reduction scheme, π̃ijphys is
traceless even when Wi

phys is non-trivial in the presence

of non-gravitational fields, while the freedom in the trace
is eliminated by solving the Hamiltonian constraint
as π̃ ¼ − 1

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H̄2 þHmatterþYM

p
. That Hphys is ultimately

T-dependent may be disconcerting at first, but this
feature also occurs in the York formulation whereinffiffiffi
q

p
depends on the extrinsic time parameter p, and k too

appears in the potential of the scalar field Hamiltonian.
This time-dependence of the Hamiltonian is the conse-
quence of an internal clock which arose from a d.o.f. of
the theory.
While consistent extension of the physical reduced

Hamiltonian of GR is a significant aspect of this work,
other approaches to resolve the problem of time and extract
the physical d.o.f. have been tried before. Reference [17]
starts with a Baierlein-Sharp-Wheeler action [18] (in
Ref. [2] this is also discussed within the context of intrinsic
time gravity); and the main distinction is that instead of
using ln q

1
3 as time and solving the Hamiltonian constraint

though the elimination of π̃, an extra λ time parameter
is introduced with resultant constraint in the form of the
Lichnerowicz-York equation. In Ref. [19], transverse-
traceless physical decomposition was carried out with
Minkowski background for the spatially noncompact case,
while York’s method was discussed for spatially compact
manifolds. Our work demonstrates explicit transverse-
traceless decomposition for generic backgrounds and we
also compared the reduced Hamiltonians of extrinsic and
intrinsic time formulations earlier. Functional path integral
for the gravitational field has been developed earlier by
Teitelboim by analogy with the quantum mechanics of
covariant relativistic point particle [20], whereas our work
formulates GR without general covariance. In Refs. [21,22]
additional relativistic dust matter was invoked. Besides
current observational conformity with cold, rather than
relativistic, dark matter, the relative sign difference with the
π̃2 term in (26) is, as discussed in scalar field time, a
potential problem in guaranteeing the reality of the square-
root in the reduced Hamiltonian. This may be curbed by
imposing suitable energy conditions; whereas the use of
York extrinsic time or our intrinsic time variable is an
alternative strategy which exploits the sign difference to
overcome the problem.
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3The analog in electrodynamics is Ei
phys ¼ Ei

T −∇iϕphys,
with ϕphys satisfying the Poisson equation ∇2ϕphys ¼ −4πρ;
consequently, ∇iEi

phys ¼ 4πρ. In the absence of sources the
physical electric field is purely transverse.
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