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Equilibrium configurations of electrically charged perfect fluid surrounding a central rotating black hole
endowed with a test electric charge and embedded in a large-scale asymptotically uniform magnetic field
are presented. Following our previous studies considering the central black hole to be nonrotating, we show
that in the rotating case conditions for the configurations existence change according to the spin of the black
hole. We focus our attention on the charged fluid in rigid rotation, which can form toroidal configurations
centered in the equatorial plane or the ones hovering above the black hole, along the symmetry axis.
We conclude that a nonzero value of spin changes the existence conditions and the morphology of the
solutions significantly. In the case of fast rotation, the morphology of the structures is close to an oblate
shape.
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I. INTRODUCTION

In active galactic nuclei, accretion of matter from inner
accretion disks leads to intense emission of x rays [1]. The
emerging energetic radiation then irradiates the cooler outer
thick disks, where the temperature drops below the critical
value of the dust sublimation. Dust grains acquire electric
charge due to photoelectric effects and the complex
plasma environment [2,3]. At the same time, the continued
accretion events cause the central black hole to spin up.
Therefore, the effects of fluid charge and rotation of the
central black hole need to be taken into account together.
The thick accretion disks, especially those with negli-

gible loss of mass, can be well modeled by the toroidal
equilibrium configurations (tori) of fluids studied in proper
gravitoelectromagnetic backgrounds. Starting with the
basic Schwarzschild and Kerr ones [4,5], many studies
of neutral perfect fluid tori were realized in more compli-
cated backgrounds [6–12], also with the presence of the
background magnetic fields [13–15]. All of these studies
were performed in the general relativistic framework, but
many others also exist in the Newtonian description
[16,17]. Thus, dozens of scenarios of rotating fluids have
been described by taking many factors into account, some

of them including the self-magnetic fields generated by the
moving charged fluid as well. However, a consideration of
the self-gravitational field of the torus is more or less rare
[18–21]. On the other hand, this self-field can be mostly
safely neglected for low-mass toroidal structures.
The purpose of this paper is an investigation of charged

perfect fluids encircling a rotating black hole endowed
with an electric charge and embedded in a large-scale
asymptotically uniform magnetic field. This background
represents a “rotational” generalization of the static one
considered in our previous paper [14]. Here, the strong
gravity near the considered rotating black hole is described
by the Kerr spacetime, which is combined with the test
external electromagnetic field, describing the test charge of
the black hole and the asymptotically uniform magnetic
field. Let us remind the reader that the test electric charge
itself is likely to converge to a very small value [22,23].
Despite this fact, electric charge distribution emerges
within the surrounding environment; the charges can
separate and play a significant role in the interaction with
the global magnetic field.
Even if the considered gravitational and electromagnetic

background generally plays an important role in the
structure of accretion flows (gravitational fragmentation
[24,25] and thermal stabilization of the flow [26]), our
interest here is the impact of the rotation of the black hole*audrey.trova@zarm.uni-bremen.de
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on the topology of the fluid toroidal structures, comparing
them with the ones in the nonrotating background [14].
According to the forces acting on the system, fluids can
exhibit various types of behavior. Here, we focus our study
on two different types of configurations: the regular ones,
centered in the equatorial plane (toroidal configurations),
and the unique ones, located along the symmetry axis
(polar cloud configurations).
In active galactic nuclei, strong irradiation of a dusty

torus by x rays originates from the central source, and it
leads to charging of grains due to the photoelectric effect
[21,27]. It can be shown that the mechanism of dust
charging helps to levitate grains above the equatorial plane,
thus counteracting the collapsing role of self-gravity in
magnetized disks and tori. The interplay between the
gravitational attraction and the repulsion/attraction of
the electromagnetic effect is important to characterize
the motion of matter. It has been shown [28] that halo
orbits (off-equatorial circular orbits) of electrically charged
particles exist near compact objects. This leads us to study
the equatorial tori which can represent the accretion disk
and the polar clouds that can scatter and polarize light
on the axis [29,30]. While the central black hole dominates
the gravitational field and remains electrically (almost)
neutral, the surrounding material has a non-negligible self-
gravitational effect on the torus structure, and, moreover,
by charging mechanisms, it acquires nonzero electric
charge density. While these influences need to be taken
into account together in order to achieve a self-consistent
picture, in the present paper, we concentrate on the latter
one (charge distribution), which appears to be of primary
role on the structure of equilibrium configurations.
These structures can be constructed within the model

following from the conservation laws and Maxwell equa-
tions, where, along with the basic assumptions of the axial
symmetry and stationarity of the background, other
assumptions are imposed. Especially, we consider the
fluid in pure azimuthal motion and with adherent charges,
thus moving convectively together with the fluid only (zero
conductivity of the fluid—the opposite limit of the ideal
magnetohydrodynamics requirement); the structures are
modeled by the fluid with a nonvanishing electric charge
density, such as an ionized plasma [31–33]. Moreover,
radiation and viscosity of the moving fluid are neglected, as
it is characteristic for the perfect fluids. In order to calculate
the desired pressure profiles, we also need to specify the
angular velocity or the angular momentum profiles of the
circling fluid. Here, we chose the profile of constant
angular velocity (rigid rotation); even if the real disks have
more complicated velocity profiles, the rigid rotation has
the benefit that the problem can be treated analytically.
To close the system of equations, we specify the fluid
obeying a polytropic equation of state. Finally, we neglect
the self-gravitational and self-electromagnetic fields pro-
duced by the circling charged fluid.

The paper is organized as follows. In Sec. II, we describe
the background of the system. The Kerr spacetime metric
is introduced, and the physical characteristics of the fluid,
such as density, angular momentum, and velocity, are
prescribed. In this section, we also present the basic
equations of the systems. Section III is dedicated to the
integrability conditions of the pressure equations and to the
main assumptions. The general conditions of equilibrium
existence are given in Sec. IVand applied to the polar cloud
configuration and to the equatorial toroidal configurations.
Section V is devoted to the construction of the polar cloud
structures and equatorial tori. Various solutions are pre-
sented as a function of the spin of the black hole. We focus
our attention on two particular cases: a fast rotating and a
slowly rotating black hole. We conclude our work with a
study of two limiting cases: the zero electric charge of the
black hole and the zero strength of the external magnetic
field.
All throughout the paper, for quantities denoted by a bar,

x̄, we use the geometrical system of units. They become
dimensionless, x, when they are scaled by the mass of the
black hole. Finally, for a direct interpretation, we express
them in physical units (SI) and denote them as x̃.

II. FRAMEWORK

A. Gravitational field: Kerr metric

The considered fluid tori have a negligible mass, and
they do not contribute to the gravitational field, which is
generated by the Kerr black hole. The considered Kerr
spacetime is described, in the Boyer-Linquist spheroidal
coordinates ðt; r; θ;ϕÞ, by the axially symmetric metric
tensor gαβ, written in the dimensionless system of units in
the form

gtt ¼ −
�
1 −

2r
Σ

�
;

gtϕ ¼ −
2r
Σ
asin2θ;

grr ¼
r2 − 2rþ a2

Σ
;

gθθ ¼
1

Σ
;

gϕϕ ¼
�
r2 þ a2 þ 2ra2

Σ
sin2θ

�
sin2θ; ð1Þ

where Σ ¼ r2 þ a2 cos2 θ and a is the dimensionless Kerr
spin parameter (0 ≤ a ≤ 1).

B. External electromagnetic field

Along with the gravitational field of the Kerr black
hole, the studied toroidal structures are embedded into
external asymptotically uniform magnetic field. In terms of
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the vector potential, this scenario can be described by
Wald’s test-field solution of the Maxwell equations [22,34]

At ¼
B
2
ðgtϕ þ 2agtt − eðgtt þ 1ÞÞ; ð2aÞ

Aϕ ¼ B
2
ðgϕϕ þ 2agtϕ − egtϕÞ; ð2bÞ

where e ¼ Q=B is the electromagnetic parameter. The
quantities B and Q represent, respectively, the strength
of the external uniform magnetic field and the charge of
the black hole; as the parameters of the test field, they do
not influence the spacetime geometry. The related Faraday
electromagnetic tensor Fαβ

EXT can be then determined from
the general expression

Fαβ
EXT ¼ gαμgβνð∇μAν −∇νAμÞ: ð3Þ

C. Fluid: Density, angular momentum, and velocity

Within our model, the perfect fluid is characterized
by its motion in the ϕ-direction only, described by the
4-velocity Uα ¼ ðUt; 0; 0; UϕÞ, where

ðUtÞ2 ¼
ðωgtϕ þ gttÞ2

P
; ð4Þ

with

P ¼ −ðω2gϕϕ þ 2ωgtϕ þ gttÞ: ð5Þ
We introduce the specific angular momentum, l≡ lðr; θÞ,
and the angular velocity, ω≡ ωðr; θÞ, through the usual
definitions

ω ¼ Uϕ

Ut and l ¼ −
Uϕ

Ut
; ð6Þ

with Ut ¼ ffiffiffiffi
P

p −1. Both quantities are linked to each other
by the relations

ω ¼ −
lgtt þ gtϕ
lgtϕ þ gϕϕ

; l ¼ −
ωgϕϕ þ gtϕ
ωgtϕ þ gtt

: ð7Þ

The quantity ðUtÞ2 provides us with the basic necessary
existence conditions for our circling tori. Since ðUtÞ2 > 0,
then P > 0, and it gives us:

(i) restriction on the radial coordinate r >
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ≡ rH, where rH is the radius of the

outer event horizon,
(ii) restriction on the angular velocity ω (thus, also on

the size of torus), for θ ¼ π=2 shown in Fig. 1.
Note that in the case of θ ¼ 0 the condition P > 0 reduces
to −gtt > 0, which on the symmetry axis coincides with
r > rH. Therefore, in this case, no additional restriction on
ω arises.

D. Pressure equation

Pressure equations describing a rotating perfect fluid
equilibrium configuration can be derived from the follow-
ing conservation laws and Maxwell equations,

∇βTαβ ¼ 0 ð8aÞ
∇βFαβ ¼ 4πJα; ð8bÞ

where Jα is the 4-current density which is linked to the 4-
velocity Uα, charge density q, and electrical conductivity σ
through the Ohm law,

Jα ¼ qUα þ σFαβUβ: ð9Þ
Our assumption of zero conductivity (σ ¼ 0) leads to
Jα ¼ qUα. Moreover, in our scenario of the fluid circu-
lation in the azimuthal direction only, the 4-current has the
only nonvanishing components

Jϕ ¼ qUϕ and Jt ¼ qUt: ð10Þ
The total electromagnetic tensor Fαβ can be split into

two terms,

Fαβ ¼ Fαβ
EXT þ Fαβ

INT; ð11Þ

FIG. 1. The shaded region represents the area where the
condition P > 0 is satisfied in the equatorial plane (θ ¼ π=2).
The condition is plotted for four values of the spin a. An effect of
frame dragging can be seen in the shown plots. The mirror
symmetry along ω ¼ 0 is broken for nonvanishing spin values,
and close to the black hole horizon, higher absolute values for ω
are allowed in the corotating case. This effect becomes larger the
bigger the value of a is.
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where Fαβ
INT describes the electromagnetic self-field pro-

duced by the charged fluid. According to our assumption of
a test-charged fluid, this self-electromagnetic field (as well
as the self-gravitational field) generated by the fluid itself
are neglected in comparison with the external one, i.e.,
Fαβ
EXT ≫ Fαβ

INT; thus, we can write Fαβ ≈ Fαβ
EXT.

The stress-energy tensor Tαβ can be also split into two
parts,

Tαβ ¼ Tαβ
MAT þ Tαβ

EM; ð12Þ

where Tαβ
MAT is the matter part and is given by

Tαβ
MAT ¼ ðϵþ pÞUαUβ þ pgαβ; ð13Þ

where p is the pressure of the fluid and ϵ is the energy
density. The electromagnetic part Tαβ

EM can be expressed as

Tαβ
EM ¼ 1

4π

�
Fα

γFβγ −
1

4
FγδFγδgαβ

�
: ð14Þ

From the continuity law (8a), Maxwell equations (8b),
and the stress-energy tensor decomposition, we get the
following equation [35],

∇βT
αβ
MAT ¼ Fαβ

EXTJβ; ð15Þ

where Jβ is the 4-current density (10) produced by the
charged fluid. Equation (15) can be decomposed, and this
provides us with two differential pressure equations:

∂rp ¼ −ðpþ ϵÞ
�
∂r ln jUtj −

ω∂rl
1 − ωl

�

þ qðUt∂rAt þ Uϕ∂rAϕÞ;

∂θp ¼ −ðpþ ϵÞ
�
∂θ ln jUtj −

ω∂θl
1 − ωl

�

þ qðUt∂θAt þ Uϕ∂θAϕÞ: ð16Þ

E. Transformation of the pressure equations

To simplify the pressure equations (16) and to avoid a
numerical integration, we transform the two nonlinear
pressure equations to linear ones through the same process
as in Ref. [14]. For this purpose, we assume that the fluid
is described by a polytropic equation of state,

p ¼ κρΓ; ð17Þ

with Γ and κ being the polytropic exponent and coefficient,
respectively, and ρ being the rest-mass density of the fluid;
moreover, we assume that for low temperatures (p ≪ ρ) the
fluid energy density can be approximated as

ϵ ≃ ρ; ð18Þ

consequently, ϵþ p ∼ ρ. Then, we set

K ¼ q
ϵþ p

≃
q
ρ

ð19Þ

and introduce the function h satisfying the relations

∂rh ¼ Γ − 1

Γ
∂rp
pþ ϵ

≃
Γ − 1
Γ

∂rp
ρ

;

∂θh ¼ Γ − 1

Γ
∂θp
pþ ϵ

≃
Γ − 1
Γ

∂θp
ρ

: ð20Þ

Here, K is the so-called correction function, and it
determines the charge density distribution. A proper form
of this function ensures the integrability of the pressure
equations (16), which can now be written as

∂rh¼−
Γ−1

Γ

�
∂r ln jUtj−

ω∂rl
1−ωl

−KðUt∂rAtþUϕ∂rAϕÞ
�
;

∂θh¼−
Γ−1

Γ

�
∂θ ln jUtj−

ω∂θl
1−ωl

−KðUt∂θAtþUϕ∂θAϕÞ
�
:

ð21Þ

III. INTEGRABILITY CONDITIONS AND
PHYSICAL CHARACTERISTICS

A. Correction function

The next step is to integrate the Eqs. (21) and obtain the
h-function. This set of equations is not in general integrable
and depends on parameters, such as the spin parameter a,
magnetic field strength B, electromagnetic parameter e,
correction function K (linked to the charge density profile
q), and the specific angular momentum l or angular
velocity ω. The function K can be constrained by the
integrability conditions of the two partial differential
equations (21). This is given as

∂θ∂rh ¼ ∂r∂θh: ð22Þ

Equation (22) is automatically satisfied for q ¼ 0, i.e.,
for a rotating uncharged perfect fluid [4,5]. For q ≠ 0, the
integrability condition is not automatically fulfilled for a
given q and ω or l. Thus, in a charged case, the following
equation has to be satisfied:

∂θ½KðUt∂rAt þ Uϕ∂rAϕÞ� ¼ ∂r½KðUt∂θAt þUϕ∂θAϕÞ�:
ð23Þ

To find an analytical solution for K, ω can be set to a
constant, meaning that the fluid rotates rigidly. This
assumption leads to the equation
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∂θðKUtÞ∂rðAt þ ωAϕÞ ¼ ∂rðKUtÞ∂θðAt þ ωAϕÞ; ð24Þ

which is satisfied for

KUt ¼ fðSÞ with S ¼ At þ ωAϕ: ð25Þ

Here, fðSÞ is an arbitrary function that determines the
charge density distribution of the rigidly rotating tori [see
also Ref. [36] for an alternative solution of Eq. (24)]. The
two partial differential equations (21) can be rewritten as

∂rh ¼ −
Γ − 1

Γ

�
∂r ln jUtj −

ω∂rl
1 − ωl

− fðSÞ∂rS

�
;

∂θh ¼ −
Γ − 1

Γ

�
∂θ ln jUtj −

ω∂θl
1 − ωl

− fðSÞ∂θS

�
ð26Þ

and integrated with the h-function expressed as

h ¼ Γ − 1

Γ

�
− ln jUtj − ln j1 − ωlj þ

Z
fðSÞdSþ h0

�
:

ð27Þ

Here, h0 is a constant of integration, which determines the
size of the torus (i.e., its boundary).

B. Physical characteristics

From Eqs. (17)–(20) and (27), we can determine the rest-
mass density and the specific charge distributions:

ρ ¼
�
h
κ

� 1
Γ−1
; ð28Þ

qs ¼
q
ρ
¼ K: ð29Þ

The boundary of the torus is then determined by the
0-surface of p, ρ, or h.

IV. EXISTENCE CONDITIONS

A. General conditions

We investigate the existence of rotating charged con-
figurations which are centered at the coordinates (rc,θc),
corresponding to the maxima of the h-function. The
necessary conditions for a maximum read

∂rhjr¼rc;θ¼θc
¼ 0; ð30aÞ

∂θhjr¼rc;θ¼θc
¼ 0; ð30bÞ

while the sufficient ones require in addition

∂2
rrhjr¼rc;θ¼θc

< 0; ð31aÞ

detHjr¼rc;θ¼θc
> 0; ð31bÞ

where H is the Hessian matrix,

H ¼
� ∂2

rrh ∂2
rθh

∂2
θrh ∂2

θθh

�
: ð32Þ

Particularly, in this work, we are interested in two
configurations:

(i) structures centered on the polar axis named “polar
clouds” (θc ¼ 0),

(ii) equatorial tori centered in the equatorial plane
(θc ¼ π=2).

In both cases, the cross-derivatives vanish; thus, the
condition (31b) reduces to

∂2
θθhjr¼rc;θ¼θc

< 0: ð33Þ

The construction of equilibrium configurations depends
on the following free parameters: rc, a, B, e, ω, and the
function fðSÞ. As for the fðSÞ-function, we use the same
forms as in Ref. [14], fðSÞ ¼ kSn, where k is a constant and
n ¼ 1 or n ¼ −2, mainly because we know solutions can be
found for these choices. Another advantage is that we can
establish a comparison between the case of a nonrotating
black hole and our case with rotation.

B. Polar cloud case

Our first interest is to focus on structures centered on the
polar axis. Before we proceed to analyze the necessary
and sufficient conditions for the existence, we have a look
at the symmetry of these structures. On the axis θ ¼ 0; π,
the only nonvanishing component of the electromagnetic
field tensor is

Frtjθ¼0;π ¼
ðQ − 2aBÞðr2 − a2Þ

ðr2 þ a2Þ2 : ð34Þ

This implies that on the polar axis an observer does not
see a magnetic field but only a radial electric field [22].
Therefore, it is clear that the polar cloud structures we are
looking for are symmetric with respect to the equatorial
plane.
Now, we search for maxima at the coordinates

(rc, θc ¼ 0). We set

fðSÞ ¼ −
2k0
eB

S; ð35Þ

where k0 is a constant that has to be chosen and which
represents the effect due to the fluid’s charge. The second
necessary condition (30b) is automatically fulfilled for
θc ¼ 0. Using Eqs. (35), (26), and the definitions of Ut
and l, the first necessary condition (30a) implies
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k0 ¼
1

2B
eða2 þ r2cÞ2

ðe − 2aÞða3 þ ar2c þ erc − 2arcÞða2 þ r2c − 2rcÞ
:

ð36Þ

By choosing the same electromagnetic parameter as in
Ref. [14], i.e., e ¼ 4.17 (meaning the same B and Q for
comparison with the previous paper), we plot Bk0 for
various values of a (see Fig. 2); the case of a ¼ 0 has been
fully studied in the article cited above. The validity of the
first sufficient condition (31a) is plotted in Fig. 3 and
summarized in Table I, depending on the value of the spin
a. We note that for a ¼ 0.9, with the same distribution of
charge [i.e., the same fðSÞ-function] and the same value of
e, equilibrium configurations can exist only relatively far
away from the black hole. The second sufficient condition
(33) leads to constraints on the angular velocity ω, which
are presented in Fig. 4. We note that this second sufficient
condition gives us another point of view of the ω value.
Note that values of ω are also restricted by the condition
P > 0 (see Fig. 1).

C. Equatorial torus case

Our second interest is to focus on structures in the
equatorial plane. Thus, we search for maxima of hðr; θÞ at
the coordinates ðrc; θc ¼ π=2). Here, we set

fðSÞ ¼ k0
4
S−2: ð37Þ

The second necessary condition (30b) is automatically
fulfilled for θc ¼ π=2. The first necessary condition (30a),
as above, gives us a relation for k0 ¼ k0ðrc; a; e;ω; BÞ,
which is now also dependent onω. The sufficient conditions
(31a) and (33) for the existence of equatorial tori and the
basic necessary condition P > 0 are displayed in Fig. 5. We
note that for large spin (a ¼ 0.5 and a ¼ 0.9) only corotating
tori (ω > 0) are possible. For small rc, we can see that there
is no solution within the ergosphere.

FIG. 2. Behavior of Bk0ðrc; a; eÞ in function of rc for four
values of the spin a ¼ 0, 0.2, 0.5, 0.9 and for e ¼ 4.17.

TABLE I. Summary of the validity of the sufficient condition
(30a), for e ¼ 4.17

a ∂2
rrhðrc; 0Þ < 0 if

0 rc > 4
0.2 rc > 4.47
0.5 rc > 5.80
0.9 rc > 16.65

FIG. 3. Behavior of the function ∂2
rrhðrc; 0; a; eÞ for four values

of the spin a ¼ 0, 0.2, 0.5, 0.9, for e ¼ 4.17 and fðSÞ given by
relation (35). The inserted graph represents a zoom of the case
a ¼ 0.9.

FIG. 4. The shaded region represents ω-values allowed by the
sufficient condition (33) for e ¼ 4.17, fðSÞ given by Eq. (35), and
four values of the spin.
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We note that there is a clear difference between the
conditions of existence for the case of nonrotating black
holes and the rotating ones.
Of course, both the represented cases are dependent

on the function fðSÞ and the value of e. If we change one
of these parameters, the conditions of existence will be
different.

V. CONSTRUCTION OF EQUILIBRIUM
CONFIGURATIONS

Once the conditions of existence are known, meaning
that we can choose the right values of ω and k0 satisfying
conditions (30)—(31), we can construct the equilibrium
configurations. As said in Ref. [14], the configurations
highly depend on the values of B and Q. The electromag-
netic field has to be strong enough to compete with the
gravitational field of the black hole. Second, to fulfill
the assumed test-field approximation, Q and B have to be
higher than the total charge and the magnetic field
produced by the torus itself. As our uniform magnetic test
field is assumed to be produced by a distant magnetic source
with a dipole field, the maximum strength is B̃ ≃ 106 T,
corresponding to B ≃ 10−11. To check our weak self-field
approximation, we can calculate the total charge of the torus,
determined by the following equation,

FIG. 5. Union of the conditions (31a) and (33) together with the
condition P > 0. The shaded region represents the area where all
conditions are valid, meaning that the value of ω allows a
solution. They are shown for four values of a ¼ 0, 0.2, 0.5, 0.9.

FIG. 6. Poloidal sections of equipressure surfaces for a slowly rotating black hole on the left (a ¼ 0.01) and a fast rotating black hole
on the right (a ¼ 0.9). The thick curves mark, where the h-function becomes zero (i.e., zero pressure and zero density). The tiny clouds
are centered on the z axis at (r ¼ 5, θ ¼ 0) (on the left) and at (r ¼ 18, θ ¼ 0) (on the right). The dashed line represents the equipotential
leading to a cusp point (cannot be resolved on the right graphic due to the chosen scale). The gray region represents the ergosphere.
In the plot at the left, the ergosphere cannot be seen, since it is nearly completely swallowed by the black hole horizon.
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Q ¼
Z
V
qdV; ð38Þ

and the magnetic field generated by the torus itself. We
approximate the torus by an infinitely thin ring centered in
r ¼ rc. The strength of the self-B field close to the outer
edge of the torus can be approximated by [14]

B̃ ¼ μ̃0 Q̃ ω̃

4πðr̃out − r̃cÞ
; ð39Þ

where rout is the outer edge radius and μ0 the vacuum
permeability.

A. Polar cloud configuration

In this section, we are going through the construction of
the polar cloud configurations. We show solutions for two

different values of the black hole spin, a ¼ 0.01 (slow
rotation) and a ¼ 0.9 (fast rotating black hole). In the first
case, we set the following parameters: B ¼ 10−11 (corre-
sponding to B̃ ≐ 2.3 × 106 T), e ¼ Q=B ¼ 4.17 (corre-
sponding to Q ¼ 4.17 × 10−11 and Q̃ ≐ 7.17 × 109 C),
fðSÞ given by Eq. (35), rc ¼ 5, and ω ¼ −1=1000.
According to these values and Eq. (36), k0 has to be set
to k0B ≐ 0.9976 in order to find a solution. The integration
constant is set to h0 ≐ −0.03549, which defines the

FIG. 7. Mass (on the left) and specific (on the right) charge density profile of the polar clouds. The top panels correspond to the case of
slow rotation (a ¼ 0.01) from the configuration shown on the left side of Fig. 6. The bottom panels are for the case of fast rotation
(a ¼ 0.9), as shown on the right side of Fig. 6.

TABLE II. Maximal values of the physical characteristics
corresponding to the polar cloud described in Fig. 7 (top).

ρmax ≃ 10−20 ρ̃max ≃ 10 kg · m−3

pmax ≃ 10−25 p̃max ≃ 1012 Pa
qmax ≃ 1010
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boundary of the torus (see Fig. 6). By using the h-function,
through Eqs. (20), (17), (28), and (29), we can determine
the physical characteristics of the torus, such as the pressure,
the mass density, and the charge density. In our case, we set
Γ ¼ 5=3 and κ ¼ 107, which leads to the mass density and
the specific charge distributions shown in Fig. 7 (top).
Their maximal values are summarized in Table II. We can
also compute the total charge of the torus, Q ≃ 10−13

(corresponding to Q̃ ≃ 108 C), which is almost two orders
lower than the charge of the black hole. This gives us the
strength of the magnetic field B ≃ 10−16 (corresponding to
B̃ ≃ 1 T) close to the outer edge. Thus, we can conclude that
our weak self-field approximation is valid in this case.
As we can see in Fig. 7 the morphology of the solution

is basically the same as in the nonrotating case, with an
ellipsoidal shape and a tiny cross section (rin ≐ 4.959,
rout ≐ 5.041).
We turn now to the second case of a fast, rotating black

hole (a ¼ 0.9). In this configuration, according to Fig. 3,
the center of the torus has to be located farther away from

the black hole than in the previous case. We set rc ¼ 18

and take the same values as before for B, e, and ω, which
leads to a new value of k0B ≐ 0.9601. Furthermore, h0 is
set to h0 ≐ 0.0745. The chosen parameters involve the
configuration presented in Fig. 6 (right). As before, setting
Γ ¼ 5=3 and κ ¼ 106, we obtain the mass and specific
charge density profiles described in Fig. 7 (bottom). We can
see the resulting configuration is different as compared to
the first case, as it is now close to an oblate ellipsoid.
The maximal values of its physical characteristics are given
in Table III. Again, we have to check the validity of the
weak self-field approximation. The total charge of the
rotating polar cloud, Q ≃ 10−12 (corresponding to Q̃ ≃ 108

C), is again almost two orders lower than the charge of
the black hole. The associated magnetic field B ≃ 10−17

(corresponding to B̃ ≃ 0.12 T) is sufficiently weak to
validate our assumption.

B. Equatorial tori configuration

The second interesting case we will have a look at is
about tori configurations in the equatorial plane. We
perform a study similar to the one made for the polar
clouds and analyze solutions for the case of a slowly
(a ¼ 0.01) and a fast rotating black hole (a ¼ 0.9). In the
case of a slowly rotating black hole, we set the parameters
of choice as follows: rc ¼ 8,B ¼ 8.78 × 10−11 (correspond-
ing to B̃ ¼ 2.35 × 104 T), e ¼ −1=8.78 (corresponding to

TABLE III. Maximal values of the physical characteristics of
the torus corresponding to the polar cloud described in Fig. 7
(bottom).

ρmax ≃ 10−20 ρ̃max ≃ 10 kg · m−3

pmax ≃ 10−27 p̃max ≃ 1011 Pa
qmax ≃ 1010

FIG. 8. Equatorial tori configurations for a slowly rotating black hole at the left (a ¼ 0.01) and a fast rotating black hole (a ¼ 0.9). The
thick curves mark where the h-function becomes zero (i.e., zero pressure and zero density). The tiny tori are located at (r ¼ 8, θ ¼ π=2)
for both configurations. The dashed line represents the equipotential leading to a cusp point (cannot be resolved on the right graphic due
to the chosen scale). The gray region represents the ergosphere. In the plot at the left, the ergosphere cannot be seen, since it is nearly
completely swallowed by the black hole horizon.
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Q ¼ −10−11 and Q̃ ¼ −1.72 × 109 C), and ω ¼ 1=100.
According to these parameters and the existence conditions,
we get k0 ≐ 0.10819B. Finally, we set h0 ≐ −0.025995.
The corresponding equatorial torus is represented in Fig. 8.
As before, to obtain the mass density and the specific charge
profile, we set the polytropic index to Γ ¼ 5=3 and the
polytropic coefficient to κ ¼ 108. This is shown in Fig. 9.
The physical characteristics are given in Table IV. We note
that in the case of a slow rotation of the central mass the

morphology of the solution does not change. We obtain a
rotating torus with a tiny equatorial cross section (rin ≐
7.9174, rout ≐ 8.0836). In the final step, we check the weak
self-field approximation again: the total charge of the torus,
Q ≃ 10−13 (corresponding to Q̃ ≃ 107 C) is two orders lower
than the charge of the black hole, and the magnetic field
generated by the torus is approximately B ≃ 10−14 (corre-
sponding to B̃ ≃ 102 T).
In case of a fast rotating central mass, according to

Fig. 5, we choose the center of the torus to be at rc ¼ 8
again. If we take the same values as above for B and e,
according to Fig. 5, we can choose ω ¼ 0.03, which leads
to k0 ≐ 0.007329B for the given set of parameters. The
equatorial torus corresponding to these parameters is shown
in Fig. 8 (right). Using Γ ¼ 5=3 and κ ¼ 107, the associated
mass and the specific charge density are shown in Fig. 9
(bottom). The maximal values are given in Table V. As in

FIG. 9. Mass (on the left) and specific (on the right) charge density profile of the polar clouds. The top panels correspond to the case of
slow rotation (a ¼ 0.01) from the configuration shown on the left side of Fig. 9. The bottom panels are for the case of fast rotation
(a ¼ 0.9), as shown on the right side of Fig. 9.

TABLE IV. Maximal values of the physical characteristics of
the torus corresponding to the polar cloud described at the top
of Fig. 8.

ρmax ≃ 10−21 ρ̃max ≃ 1 kg · m−3

pmax ≃ 10−27 p̃max ≃ 1010 Pa
qmax ≃ 109
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the previous polar cloud configuration, the torus has an
oblate spheroidal shape. The total charge of the torus,
Q ≃ 10−14 (corresponding to Q̃ ≃ 106 C), is three orders
lower than the charge of the black hole, and the magnetic
field generated by the torus is approximately B ≃ 10−13

(corresponding to B̃ ≃ 102 T).

VI. LIMITING CASES

After a general study, we focus our attention on two
limiting cases: (i) Q ¼ 0, B ≠ 0 and (ii) B ¼ 0, Q ≠ 0. In
this part, our interest is only on the condition of existence of
polar clouds. In Ref. [14], with a nonrotating central object
and a charged perfect fluid in permanent rigid rotation, no
polar cloud was found. By contrast, this is now possible for
a certain choice of fðSÞ and certain sets of parameters.

A. Q= 0, B ≠ 0

After some tests of f-functions, we set fðSÞ ¼ −k0=S2.
The first necessary condition of existence (30a) implies the
following condition on k0ðrc; a; BÞ:

k0 ¼ −
1

2
B
aðr2c þ a2 − 2rcÞ

r2c þ a2
: ð40Þ

As in the general case in Sec. IV B, the second necessary
condition of existence (30b) is automatically fulfilled. The
second sufficient condition leads to constraints on the choice
of ω, which has to be ω ∈ ½1=a; 2arc=ðr2c þ a2Þ2�. Finally,
the first sufficient condition (31a) implies

−
2ðr2c þ a2Þ2

ðr2c þ a2 − 2rcÞðr2c þ a2Þ < 0; ð41Þ

which is always true if r2c þ a2 − 2rc > 0, i.e. if rc > rh,
which is always the case. This condition is satisfied by the
conditions P > 0 analyzed in Sec. II C. Thus, polar clouds
can exist with an uncharged rotating compact object.

B. B= 0, Q ≠ 0

Setting fðSÞ ¼ −2k0S, Eq. (30a) gives us k0ðrc; a;QÞ,

k0 ¼ −
1

2Q2

ðr2c þ a2Þ2
ðr2c þ a2 − 2rcÞrc

: ð42Þ

The second necessary condition of existence (30b) is auto-
matically satisfied. The second sufficient condition (33)

implies ω ∈ ½0; 2arc=ðr2c þ a2Þ2�. Finally, the first suffi-
cient condition (31a) is represented in Fig. 10 for various
values of the spin parameter. We conclude that also in this
second limit equilibrium polar clouds can be found. Thus, it
seems that the rotation of the compact object plays an
important role in the existence of such structures.

VII. CONCLUSION

In this paper, we presented the model of equilibrium
configurations of electrically charged perfect fluids encir-
cling a rotating (Kerr) black hole endowed with test charge
and embedded into a large-scale asymptotically uniform
magnetic field. The introduced work can be compared to
the preceding one [14], where the central black hole is
considered nonrotating and, as well as here, the structures
like polar clouds and equatorial tori are discussed.
We started our study by analyzing the conditions of

existence of both the types of configurations for various
values of the black hole spin. As the study depends on
many parameters, such as the black hole charge, the
strength of the uniform magnetic field, the black hole
spin, the angular velocity, and the distribution of charge
throughout the torus, we decided to fix the latter one and
used the conditions of existence to constrain the others.
The most important conclusion that can be drawn is that for
both the configurations, the polar clouds and the equatorial
tori, the addition of a nonzero spin seriously changes the
existence conditions and the morphology of the solution.
In the case of polar clouds, and for a fast rotating black hole
(high spin), solutions can only be found relatively far away
from the black hole, which is not the case for slow rotation
(small spin). The same result was found for the equatorial
tori, where we can see that the range of possible solutions
substantially changes with the spin value. We have to note
that the conditions plotted in Sec. IV are valid only for the
distribution of charge we chose. They will be different if
another distribution is used.

5 10 15 20 25
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FIG. 10. Behavior of ∂2
rrhðrc; 0Þ for four values of the spin

a ¼ 0.01, 0.2, 0.5, 0.9, for Q ≠ 0, B ¼ 0 and fðSÞ ¼ −2k0S.

TABLE V. Maximal values of the physical characteristics of
the torus corresponding to the polar cloud described at the bottom
of Fig. 8.

ρmax ≃ 10−21 ρ̃max ≃ 2 kg · m−3

pmax ≃ 10−27 p̃max ≃ 1010 Pa
qmax ≃ 108 q̃max≃
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In the second part of our study, Sec. V, we focused on the
constructionof polar clouds andequatorial tori.Wediscussed
in details two different cases: the one for a slowly rotating
black hole and the one for a fast rotating black hole. Each of
these cases was tested for both the considered types of
configurations. We showed that the density, the pressure
profile, and the morphology highly depend on the strength
of the magnetic field but also on the spin of the black hole.
We also found that for both the types of configurations, for
a selected set of parameters, in the case of fast rotation, the
morphology of the structures is close to an oblate shape.
Finally, by analyzing two limiting cases, i.e., the zero test

electric charge of the black hole and the zero magnetic field
strength, respectively, we can say that the rotation plays
a very important role in the possibility of the presence of
the equilibrium polar configurations. In the case of a non-
rotating black hole, the existence of polar clouds needs both
the external magnetic field and the test electric charge of
the black hole. The situation changes for a rotating central
black hole, which allows for the existence of polar clouds
also when one of the background parameters, i.e., the black
hole charge or magnetic field strength, is set to zero.
Considering following studies of the charged fluid

equilibrium configurations, along with the more detailed

discussion of the possible morphologies in dependence on
the chosen charge density distributions, we can see a
challenge for an addition of the self-fields (gravitational
and magnetic) in our model. In this respect, for now, the
constructed configurations must have been kept with a very
small cross section. The consideration of the self-fields
could allow us to obtain more extended solutions imitating
real accretion disks.
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[28] J. Kovář, O. Kopáček, V. Karas, and Z. Stuchlík, Classical
Quantum Gravity 27, 135006 (2010).

[29] R. Antonucci, Annu. Rev. Astron. Astrophys. 31, 473
(1993).

[30] A. Martocchia and G. Matt, Mon. Not. R. Astron. Soc. 282,
L53 (1996).

[31] M. Wardle and C. Ng, Mon. Not. R. Astron. Soc. 303, 239
(1999).

[32] T. Inoue and S.-i. Inutsuka, Astrophys. J. 687, 303 (2008).

[33] B. P. Pandey and M. Wardle, Mon. Not. R. Astron. Soc. 385,
2269 (2008).

[34] M. Stuchlík and Z. Kološ, Eur. Phys. J. C 76, 32 (2016).
[35] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Wheeler, San Francisco, 1973).
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