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We present and discuss a 4-parameter stationary axisymmetric solution of the Einstein-Maxwell
equations, which is able to describe the exterior field of a rotating magnetized deformed mass. The solution
arises as a system of two overlapping corotating magnetized nonequal black holes or hyperextreme disks,
and we write it in a concise explicit form that is very suitable for concrete applications. An interesting
peculiar feature of this electrovac solution is that it does not develop massless ring singularities outside the
stationary limit surface, its first four electric multipole moments being equal to zero; it also has a nontrivial
extreme limit, which we elaborate completely in terms of four polynomial factors.
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I. INTRODUCTION

During the last decade there has been considerable
interest in the observational confirmation of the nature of
the known black hole (BH) candidates as yet another
possible test of general relativity [1,2]. It is clear that to
be able to recognize a Kerr BH [3] by analyzing the data
obtained in a real astronomical observation, it is also
necessary to know the properties of the non-Kerr space-
times, which could only slightly differ from those of a BH.
Moreover, proposals for the study of the properties of black
holes with electromagnetic radiation [4,5] make desirable
the knowledge of simple models for compact magnetized
objects permitting a clear physical interpretation. Such
models may arise, in particular, from the extended 2-soliton
electrovac solution with equatorial symmetry [6], determin-
ing a large 6-parameter family of the two-body configura-
tions and permitting us to analytically approximate the
exterior fields of compact astrophysical objects. Note that in
order to form a configuration with reflection symmetry, a
two-body system must be composed either of two separated
identical corotating constituents or by two nonequal over-
lapping constituents with a common center and with a
corotation or a counterrotation. While the former type of
two-body system is more habitual for analysis and study, the
systems of the latter type, as a rule, are ignored because their
interpretation may look clumsy from the black hole point
of view. At the same time, the use of overlapping black
holes for modeling compact objects of physical interest
seems very natural; for instance, a pair of superposed
Schwarzschild black holes with a common center could
be a good model of a static deformed mass.1 Similarly, the

double-Reissner-Nordström solution [9] in which the
separation distance R is set equal to zero would describe
a simple model of a charged static deformed mass;
besides, as can be easily checked, in the R ¼ 0 limit,
this solution simplifies considerably and becomes a static
specialization of the solution [6]. In the present paper, we
will further explore the second type of equatorially
symmetric configurations and consider a 4-parameter
electrovac metric for a magnetized rotating deformed
mass, which could also be regarded as representing two
overlapping black hole constituents and which was
identified with the help of a recent paper on the charged
rotating masses [10]. The solution will be shown to have
a simple form, with various distinctive features and
interesting limits, which makes it very suitable for use
in concrete applications.
Our paper is organized as follows. In the next section

we present the 4-parameter electrovac solution, the
corresponding complete metric, and the expression of
the magnetic potential. Here we also analyze the sub-
and hyperextreme cases of the solution and its multi-
pole structure. In Sec. III we consider interesting
specializations of the solution and work out the sol-
ution’s extreme limit. Concluding remarks are given
in Sec. IV.

II. THE 4-PARAMETER ELECTROVAC
SOLUTION AND METRIC FUNCTIONS

Let us begin this section by noting that the general
equatorially symmetric 2-soliton electrovac solution [6]
(henceforth referred to as the MMR solution), obtained
with the aid of Sibgatullin’s integral method [11,12], is
defined by the axis data

1As is well known [7,8], such a superposition with a common
center does not lead to the Schwarzschild spacetime with the
combined mass of the constituents.
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eðzÞ ¼ ðz −m − iaÞðzþ ibÞ þ k
ðzþm − iaÞðzþ ibÞ þ k

;

fðzÞ ¼ qzþ ic
ðzþm − iaÞðzþ ibÞ þ k

; ð1Þ

where eðzÞ and fðzÞ are the expressions of the Ernst
complex potentials E and Φ [13] on the upper part of the
symmetry z axis; the six arbitrary real parameters entering
(1) are m, a, b, k, q, and c.
The 4-parameter specialization of the MMR

solution, which we are going to report in this paper,
is determined by the following simple choice of param-
eters in (1):

b¼ a; k¼m1m2−μ2; q¼ 0; c¼mμ; ð2Þ

the mass parameters m1 and m2 being such that
m1 þm2 ¼ m; the charge parameter q is set equal to
zero because of its irrelevance for astrophysical applica-
tions, and hence the electromagnetic field in this solution
is defined solely by the magnetic dipole parameter μ.
Then, the axis data determining this particular case take
the form

eðzÞ¼ ðz−m1Þðz−m2Þ− iaðm1þm2Þþa2−μ2

ðzþm1Þðzþm2Þþ iaðm1þm2Þþa2−μ2
;

fðzÞ¼ iμðm1þm2Þ
ðzþm1Þðzþm2Þþ iaðm1þm2Þþa2−μ2

; ð3Þ

where the four arbitrary real parameters are m1, m2, a,
and μ. The particular parameter choice (2) occurred to us
when we noticed that the metric for two unequal
counterrotating charged masses [10] becomes, in the
limit R ¼ 0, a member of the MMR solution.

An attractive feature of the data in (3) is that the
algebraic equation

eðzÞ þ ēðzÞ þ 2fðzÞf̄ðzÞ ¼ 0 ð4Þ

(the bars over symbols denote complex conjugation),
which plays an important role in Sibgatullin’s method,
yields, for this case, four very simple roots αn, namely,

α1 ¼ −α2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 − a2 þ μ2
q

≡ σ1;

α3 ¼ −α4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 − a2 þ μ2
q

≡ σ2; ð5Þ

which in turn define the following four functions of the
Weyl-Papapetrou coordinates (ρ, z):

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz� σ1Þ2

q
; r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz� σ2Þ2

q
: ð6Þ

Formulas (3), (5), and (6) permit one to construct, by
purely algebraic manipulations, the Ernst potentials E and
Φ, as well as the corresponding metric functions f, γ, and ω
of the line element

ds2 ¼ f−1½e2γðdρ2þdz2Þþ ρ2dφ2�−fðdt−ωdφÞ2; ð7Þ

using only the determinantal formulas of Ref. [14]. In
our concrete case the desired expressions can also be
worked out from the respective formulas of the
MMR solution.2 As a result, the potentials E and Φ
of the 4-parameter solution can be shown to have the
form

E ¼ A − B
Aþ B

; Φ ¼ C
Aþ B

;

A ¼ σ1σ2½ðm2
1 þm2

2ÞðRþ þ R−Þðrþ þ r−Þ − 4m1m2ðRþR− þ rþr−Þ� − ðm2
2σ

2
1 þm2

1σ
2
2ÞðRþ − R−Þðrþ − r−Þ

þ iaðm2
1 −m2

2Þ½σ1ðRþ þ R−Þðrþ − r−Þ − σ2ðRþ − R−Þðrþ þ r−Þ�;
B ¼ −2ðm2

1 −m2
2Þfσ1σ2½m2ðRþ þ R−Þ −m1ðrþ þ r−Þ� þ ia½m2σ2ðRþ − R−Þ −m1σ1ðrþ − r−Þ�g;

C ¼ 2iμðm2
1 −m2

2Þ½m1σ2ðRþ − R−Þ −m2σ1ðrþ − r−Þ�; ð8Þ

while for the metrical fields f, γ, and ω, one gets the following expressions:

2Unfortunately, the general formulas of Ref. [10] are not helpful for elaborating the R ¼ 0 limit because of the misprints in that paper,
so Eqs. (8) and (9) have been worked out with the aid of our computer codes developed for the MMR solution.
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f ¼ AĀ − BB̄þ CC̄
ðAþ BÞðĀþ B̄Þ ; e2γ ¼ AĀ − BB̄þ CC̄

K0K̄0RþR−rþr−
; ω ¼ −

Im½GðĀþ B̄Þ þ CĪ�
AĀ − BB̄þ CC̄

;

G ¼ −2zBþ ðm2
1 −m2

2Þfσ1ð2m2
2 þ μ2ÞðRþ þ R−Þðrþ − r−Þ − σ2ð2m2

1 þ μ2ÞðRþ − R−Þðrþ þ r−Þ
− 2iaðm2

1 −m2
2ÞðRþ − R−Þðrþ − r−Þ

− 2σ2½2m2σ
2
1 − μ2ðm1 þm2Þ�ðRþ − R−Þ þ 2σ1½2m1σ

2
2 − μ2ðm1 þm2Þ�ðrþ − r−Þ

− 4iaσ1σ2½m2ðRþ þ R−Þ −m1ðrþ þ r−Þ�g;

I ¼ −iμðm1 þm2Þ
�
σ1σ2½ðm1 þm2ÞðRþ þ R−Þðrþ þ r−Þ − 4m1RþR− − 4m2rþr−�

− ðm2σ
2
1 þm1σ

2
2ÞðRþ − R−Þðrþ − r−Þ þ iaðm1 −m2Þ½σ1ðRþ þ R−Þðrþ − r−Þ

− σ2ðRþ − R−Þðrþ þ r−Þ� − 2ðm1 −m2Þfσ1σ2½ð2m1 þm2ÞðRþ þ R−Þ

− ðm1 þ 2m2Þðrþ þ r−Þ þ 2m2
1 − 2m2

2� þ iaðm1 þm2Þ½σ2ðRþ − R−Þ − σ1ðrþ − r−Þ�g
�
;

K0 ¼ 4σ1σ2ðm1 −m2Þ2: ð9Þ

It should also be noted that the electric At and magnetic
Aφ components of the electromagnetic 4-potential defined
by the solution (8) have the form

At ¼ −Re
�

C
Aþ B

�
; Aφ ¼ Im

�
I − zC
Aþ B

�
; ð10Þ

and these formulas complement the description of our
particular 4-parameter electrovac spacetime.
Turning now to the discussion of the properties of the

solution (8), we first mention that the form of σ1 and σ2
defined in (5) clearly shows which type of constituents may
form the two-body configurations described by this solution.
In the subextreme case, the quantities σ1 and σ2 are real
valued, which means that both m1 and m2 must fulfill the
inequalities m2

1 > a2 − μ2 and m2
2 > a2 − μ2. Similarly, in

the hyperextreme case both σ1 and σ2 take pure imaginary
values, which means that m2

1 < a2 − μ2 and m2
2 < a2 − μ2.

Since σ1 ≠ σ2 generically, we can suppose, say, that
m1 > m2; then the mixed subextreme-hyperextreme case
arises when m2

2 < a2 − μ2 < m2
1. These three basic types of

two-body configurations described by the solution (8) are
depicted in Fig. 1. The fact that the constituents are over-
lapping can be most easily seen by setting the rotational
parameter a equal to zero in the above formulas and
observing that in this case the solution reduces to the R ¼
0 limit of the asymmetric dihole spacetime considered in [15].
The calculation of the first five Beig-Simon relativistic

multipole moments [16], with the aid of the Hoenselaers-
Perjés procedure [17] rectified by Sotiriou and Apostolatos
[18], yields for the solution (8) the expressions

P0 ¼m1þm2; P1 ¼ iaðm1þm2Þ; P2 ¼−ðm1þm2Þðm1m2þa2 −μ2Þ;

P3 ¼−iaðm1þm2Þðm1m2þa2−μ2Þ; P4 ¼ ðm1þm2Þðm1m2þa2−μ2Þ2þ 1

70
ðm1þm2Þ3ð10m1m2− 7μ2Þ;

Q0 ¼ 0; Q1 ¼ iμðm1þm2Þ; Q2 ¼ 0; Q3 ¼−iμðm1þm2Þðm1m2þa2−μ2Þ; Q4 ¼−
1

10
aμðm1þm2Þ3; ð11Þ

where it follows that the parameters m1 and m2 can be
associated with the individual masses of the first and
second constituents, respectively. Moreover, the expression
of the total angular momentum P1 indicates that the
constituents are corotating with the same angular momen-
tum per unit mass ratio: j1=m1 ¼ j2=m2 ¼ a, with j1 and
j2 being angular momenta of the first and second con-
stituents, respectively. A surprising feature of the electro-
magnetic moments Qn is that the first four electric
multipoles (these are represented by the real parts of the

respective Qn) are zeros, the first nonzero electric moment
being the hexadecapole one. Note also that by setting μ ¼
m1 ¼ 0 (or μ ¼ m2 ¼ 0) in (11), one immediately obtains
the multipoles Pn of the Kerr solution [3], so the latter
important solution is contained in a simple way in our
general formulas (8) and (9).
The singularities of the solution (8) in the cases of both

gravitational and electromagnetic fields are defined by the
roots of the equation Aþ B ¼ 0. While it is well known
that in the pure vacuum limit (μ ¼ 0) the singularities are
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located on the stationary limit surface (f ¼ 0), it is most
remarkable that even in the case of nonvanishing μ the
singularities of this solution lie on that surface too, as we
have checked numerically for a wide range of values of the
parameters; this is due to the specific property of the
solution (8) according to which its singularities are also
zeros of the function C from the electromagnetic potential
Φ. In the subextreme case, for instance, the massless ring
singularities off the symmetry axis do not appear if m1 and
m2 are positive quantities and the stationary limit surface
consists of two disconnected regions [see Fig. 2(a)].
However, the positiveness of m1 and m2 does not prevent
the appearance of the ring singularity outside the z axis
when the two regions constituting the stationary limit

surface overlap [Fig. 3(a)], and this singularity seems to
correspond to the geometrical singularity determining
the shape of the latter surface. Additionally, in Figs. 2(b)
and 3(b) we have plotted the magnetic lines of force for the
same particular parameter choices that were used for
plotting Figs. 2(a) and 3(a), respectively.
We conclude this section by giving useful and concise

formulas for the nonzero ρ and z components of the
electric and magnetic fields in terms of the Ernst complex
potential Φ:

Eρ þ iBz ¼
ffiffiffi
f

p
e−2γ½ReðΦ;ρÞ þ iImðΦ;zÞ�;

Ez þ iBρ ¼
ffiffiffi
f

p
e−2γ½ReðΦ;zÞ þ iImðΦ;ρÞ�; ð12Þ

which are obtainable from the formulas Eμ ¼ Fμνuν,
Bμ ¼ − 1

2
ϵμν

αβFαβuν, where Fμν is the electromagnetic
field tensor and uν ¼ ð1= ffiffiffi

f
p

; 0; 0; 0Þ [19], and could be
used in concrete applications; it may be noted that their
form is simpler than the one employed, for instance, in
Ref. [20]. Let us also mention that the nonzero component
of the Poynting vector in the stationary axisymmetric case
is defined by a simple formula [21,22],

Sφ ¼
ffiffiffi
f

p
e−2γ

4πρ
ImðΦ̄;ρΦ;zÞ; ð13Þ

where it follows, in particular, that an application of the
duality rotation transformation Φ → eiαΦ, α ¼ const, to
our solution would lead to a spacetime representing, in the
limit a ¼ 0, an electrovac static solution for a mass
endowed with both electric and magnetic dipole moments.

FIG. 2. Plots of the solution’s (a) stationary limit surface and (b) magnetic lines of force for the particular parameter choice m1 ¼ 1.5,
m2 ¼ 0.5, a ¼ 0.125, μ ¼ 0.25.

(a) (b) (c)

FIG. 1. Three different types of systems with overlapping
constituents: (a) subextreme configuration, (b) subextreme-
extreme configuration, and (c) hyperextreme configuration.
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III. PHYSICALLY INTERESTING LIMITS
OF THE SOLUTION

The 4-parameter solution (8) has various physically
interesting limits, which we will briefly consider below.

A. Magnetostatic limit

When a ¼ 0, the solution describes a static deformed
mass endowed with a magnetic dipole moment, and it
coincides, as was already mentioned earlier, with the R ¼ 0

specialization of the asymmetric dihole solution considered
in [15]. In this case σ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ μ2
p

, σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ μ2
p

,
which means that only the subextreme type of overlapping
constituents is possible [see Fig. 1(a)]. An interesting
particular case of this magnetostatic solution is the mag-
netized Schwarzschild metric, which arises by further
setting to zero one of the parameters m1 or m2, and its
explicit form is the following (jCj2 ≡ CC̄):

E¼ A−B
AþB

; Φ¼ C
AþB

; Aφ ¼−μþ 2μI
AþB

; f¼A2−B2þjCj2
ðAþBÞ2 ; e2γ ¼ A2−B2þjCj2

16σ2RþR−rþr−
;

A¼ σðRþþR−Þðrþþ r−Þ−μðRþ−R−Þðrþ− r−Þ; B¼ 2mσðrþþ r−Þ; C¼ 2imμðRþ−R−Þ;

I¼ 2σðRþþmÞðR−þmÞ−mzðRþ−R−Þ; R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz�σÞ2

q
; r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz�μÞ2

q
; σ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þμ2

q
: ð14Þ

By putting μ ¼ 0 in (14), one gets the Schwarzschild solution.

B. Pure vacuum limit

In the absence of the magnetic dipole parameter μ, the solution (8) reduces to the R ¼ 0 special case of the metric for two
unequal counterrotating black holes [23]. Our alternative derivation of the solution [23] permitted us to work out a simple
representation for the R ¼ 0 case, which we give below:

f ¼ AĀ − BB̄
ðAþ BÞðĀþ B̄Þ ; e2γ ¼ AĀ − BB̄

K0K̄0RþR−rþr−
; ω ¼ −

2Im½GðĀþ B̄Þ�
AĀ − BB̄

;

A ¼ ðσ1 þ σ2Þ2ðRþ − R−Þðr− − rþÞ − 4σ1σ2ðRþ − r−ÞðR− − rþÞ; B ¼ 2ðm2
1 −m2

2Þ½σ2ðR− − RþÞ þ σ1ðrþ − r−Þ�;
G ¼ −zBþ ðm2

1 −m2
2Þ½σ1ðRþ þ R−Þðrþ − r−Þ − σ2ðRþ − R−Þðrþ þ r−Þ − 2σ1σ2ðRþ þ R− − rþ − r−Þ�;

R� ¼ m1 ∓ σ1 − ia
m1 ∓ σ1 þ ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� σ1Þ2

q
; r� ¼ m2 ∓ σ2 − ia

m2 ∓ σ2 þ ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� σ2Þ2

q
; σ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 − a2
q

;

σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 − a2
q

; K0 ¼ 4σ1σ2ðm1 −m2Þ2=ðm1m2Þ: ð15Þ

FIG. 3. Plots of the solution’s (a) stationary limit surface and (b) magnetic lines of force for the particular parameter choice m1 ¼ 1.5,
m2 ¼ 1, a ¼ 0.5, μ ¼ 0.25. The ring singularity is located at ρ ≈ 0.433, z ¼ 0.
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Note that the functions R� and r� are defined here in a
slightly different way than in (6). Of course, the above
formulas (15) are fully equivalent to the μ ¼ 0 limit of the
solution in (8) and (9).
We would like to remark that it was precisely Ref. [23]

that motivated us to write this paper after we incidentally
discovered a misprint in the formula (38) of [23] and then
took notice of a rather unusual property of that formula
whose correct form is

J2 ¼ −
J1M2

M1

�
RþM1 −M2

R −M1 þM2

�
; ð16Þ

where Mi and Ji are, respectively, the Komar [24] masses
and angular momenta of the black hole constituents, while
R is the separation distance. Indeed, as it follows from (16),
for all R > jM1 −M2j the two Kerr black holes are
counterrotating; nevertheless, for 0 ≤ R < jM1 −M2j the
black holes become corotating, as the expression in
parentheses on the right-hand side of (16) then takes
negative values. Obviously, the authors of [23] were only
interested in the configurations with R > M1 þM2, when
the counterrotating black holes are separated by a massless
strut, so they discarded other possibilities as unphysical or
uninteresting. However, in our opinion, it is the R ¼ 0 case
that is probably most interesting from the physical point of
view because this is the only case of unequal constituents
with equatorial symmetry, and also because it might
represent a legitimate end (or intermediate) state of two
merging Kerr black holes. It is worth pointing out that the

change from counterrotation to corotation does not occur in
the case of equal black holes [M1 ¼ M2 in (16)], so the
intrinsic inequality of black holes is necessary for the
formation of the final configuration of corotating Kerr
black holes described by (15). The change of the total
angular momentum of the system between its final (R ¼ 0)
state and the initial state of infinitely separated sources
(R ¼ ∞) is given by the simple formula

ΔJ ¼ 2J1M2=M1; ð17Þ

and it would be tempting to speculate that this change of the
total angular momentum, which might be attributed to the
extremely strong frame-dragging effects inside a larger
black hole, could have a relation to the production of
relativistic jets in the centers of galaxies. It would also be
worth noting, in conclusion of this subsection, that
although it was long conjectured [25] that the collision
of two Kerr black holes leads to the formation of another
Kerr black hole of larger mass (the gravitational radiation
being an important part of such a process), the solution (15)
might suggest that this is not necessarily the case for the
head-on collisions of nonequal Kerr black holes when the
gravitational radiation is absent due to axial symmetry.

C. Magnetized Kerr solution

By choosing m1 ¼ m, m2 ¼ 0 in (8), we get a
3-parameter variant of the magnetized Kerr spacetime of
the form

E ¼ A−B
AþB

; Φ¼ C
AþB

; Aφ ¼ Im

�
I− zC
AþB

�
; f¼ AĀ−BB̄þCC̄

ðAþBÞðĀþ B̄Þ ;

e2γ ¼ AĀ−BB̄þCC̄
K0K̄0RþR−rþr−

; ω¼−
Im½GðĀþ B̄ÞþCĪ�
AĀ−BB̄þCC̄

;

A¼ σ1σ2ðRþ þR−Þðrþ þ r−Þ− σ22ðRþ −R−Þðrþ− r−Þþ ia½σ1ðRþ þR−Þðrþ− r−Þ− σ2ðRþ −R−Þðrþ þ r−Þ�;
B¼ 2mσ1½σ2ðrþ þ r−Þþ iaðrþ − r−Þ�; C¼ 2imμσ2ðRþ −R−Þ;
G¼−2zBþ σ1μ

2ðRþ þR−Þðrþ − r−Þ− σ2ð2m2þμ2ÞðRþ −R−Þðrþ þ r−Þ
− 2im2aðRþ−R−Þðrþ− r−Þþ 2σ2mμ2ðRþ −R−Þþ 2mσ1ðμ2 − 2a2Þðrþ− r−Þþ 4imaσ1σ2ðrþ þ r−Þ;

I ¼−iμfσ1σ2ðRþ þR−Þðrþ þ r−Þ− σ22ðRþ−R−Þðrþ− r−Þþ ia½σ1ðRþ þR−Þðrþ − r−Þ
− σ2ðRþ−R−Þðrþ þ r−Þ�− 2σ1σ2½2ðRþ þmÞðR−þmÞ−mðrþ þ r−Þ�− 2ima½σ2ðRþ−R−Þ− σ1ðrþ − r−Þ�g;

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz� σ1Þ2

q
; r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz� σ2Þ2

q
; σ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−a2þμ2

q
; σ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −a2

q
; K0 ¼ 4σ1σ2: ð18Þ

This solution is different from the known generalization of the Kerr solution obtained by one of us more than two decades
ago [26]. The difference is clearly seen if one considers the axis data of the solution (18), namely,

eðzÞ ¼ ðz −m − iaÞðzþ iaÞ − μ2

ðzþm − iaÞðzþ iaÞ − μ2
; fðzÞ ¼ imμ

ðzþm − iaÞðzþ iaÞ − μ2
; ð19Þ
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where the magnetic dipole parameter μ enters the expres-
sions of both eðzÞ and fðzÞ, unlike the solution [26] whose
eðzÞ coincides with the axis data of the Kerr metric [3] and
hence is free of the magnetic parameter. However, the
presence of μ on the right-hand side of eðzÞ in (19) is quite
acceptable as it is well known that the magnetic field is able
to distort the stars [27], thus affecting the structure of their
gravitational multipoles. In this respect it is worth noting
that the structure of the mass-quadrupole moment P2 both
in the 4-parameter solution (8) and in its special case (18) is
congruent with the characteristic deformation in the
recently considered models of magnetized neutron stars
[28,29] where the magnetic field induces a prolate con-
tribution. We also mention that our solutions confirm the
effect found by Bocquet et al. [30] consisting in the
increase of the maximum rotational velocity of a neutron
star due to the magnetic field—in the case of the solution
(18) this effect shows itself, for instance, as a positive
contribution of the magnetic dipole μ to the quantity σ1, so
the latter σ1, for a given mass m, takes the extremal zero
value at a larger absolute value of the rotational parameter a
than in the absence of μ. It is also important to point out
that, as was mentioned earlier in Sec. II, the magnetic field
in the solution (8) does not give rise to singularities outside
the stationary limit surface, which makes the solution very
suitable for the analytical approximation of the exterior
field of magnetized neutron stars.

D. Extreme limit

The extreme limit of the solution (8) corresponds to the
case of equal overlapping constituents, whenM1 ¼ M2 and
σ1 ¼ σ2, and the application of the L’Hôpital rule to
formulas (8) and (9) is then required. By introducing the
spheroidal coordinates x and y via the relations

x ¼ 1

2σ
ðrþ þ r−Þ; y ¼ 1

2σ
ðrþ − r−Þ;

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz� σÞ2

q
; σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 þ μ2

q
; ð20Þ

it is possible to write down the resulting expressions in
terms of four polynomials: λ, ν, κ, and χ. Thus, for the
potentials E, Φ, and Aφ we get

E ¼ A − B
Aþ B

; Φ ¼ C
Aþ B

; Aφ ¼ Im

�
I

Aþ B

�
;

A ¼ λ2 þ 2m2½λþ 2iaσxyð1 − y2Þ�;
B ¼ 2m½ðσxþ iayÞλþ 2im2ayð1 − y2Þ�;
C ¼ 2iμmyλ;

I ¼ i
2
μð1 − y2Þ½κ þ 4m2ðσxþm − iayÞ2�; ð21Þ

while the metrical fields f, γ, and ω are defined by the
expressions

f ¼ N
D
; e2γ ¼ N

σ8ðx2 − y2Þ4 ; ω ¼ ðy2 − 1ÞW
N

;

N ¼ λ4 − σ2ðx2 − 1Þð1 − y2Þν2;
D ¼ N þ λ2κ þ ð1 − y2Þνχ; W ¼ σ2ðx2 − 1Þνκ þ λ2χ;

λ ¼ σ2ðx2 − y2Þ −m2ð1 − y2Þ; ν ¼ 4m2ay2;

κ ¼ 4m½σ2ðσxþ 2mÞðx2 − y2Þ þm2σxðy2 þ 1Þ
þmð2m2 þ μ2Þy2�;

χ ¼ 4ma½σ2ðσxþ 2mÞðx2 − y2Þ þm2σxð1 − y2Þ�: ð22Þ

Note that in the literature on exact solutions the poly-
nomials λ, ν, κ, and χ have previously been used exclu-
sively in applications to the metric functions f, γ, and ω
[31,32], so our paper actually pioneers the use of these
polynomials for getting a concise form of the Ernst
potentials E and Φ too. We also note that the magnetic
potential Aφ can be written alternatively in the form

Aφ ¼
2μðy2−1ÞF

D
;

F¼ λ

�
1

4
κþm2ðσxþmÞ2−m2a2y2

�
½λþ2mðσxþmÞ�

−4m3a2y2ðσxþmÞ½λþ2mðσxþmÞð1−y2Þ�: ð23Þ

Remarkably, the vacuum (μ ¼ 0) limit of the solution
(21) differs from the well-known Tomimatsu-Sato [33] and
Kinnersley-Chitre [34] solutions. This was surprising since
our initial intention was only to see how this limit is
contained in the Kinnersley-Chitre 5-parameter family of
solutions. In view of the potential interest the new vacuum
solution might represent, below we write it out explicitly:

ξ¼ 1−E
1þE

¼ 2m½ðσxþ iayÞλþ 2im2ayð1− y2Þ�
λ2þ 2m2½λþ 2iaσxyð1− y2Þ� ;

λ¼m2ðx2− 1Þ−a2ðx2− y2Þ; σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2−a2

p
: ð24Þ

The corresponding metric functions are easily obtainable
from (22).

IV. CONCLUDING REMARKS

We believe that the 4-parameter electrovacuum solution
considered in the present paper, as well as some of its
particular limits, provides interesting new opportunities for
modeling the exterior gravitational and electromagnetic
fields of rotating bodies and enlarges our knowledge about
possible final states of two interacting black holes. The
solution has a clear physical interpretation since it arises
within a legitimate binary system of counterrotating non-
equal black holes, and the corotation of its constituents,
though unexpected at first glance but still natural, should be
attributed to strong dragging effects that involve a smaller
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black hole in corotation with the larger one. We have shown
that the overlapping constituents in the case of two Kerr
black holes have a larger total angular momentum than at
infinite separation, the increase being defined by for-
mula (17), and the latter formula also holds in the presence
of the electromagnetic field. In future research it would be
interesting to clarify whether the aforementioned change of
the angular momentum could be related to the mechanisms
that are responsible for the production of relativistic jets at
the galactic nuclei [35–37].
As a final remark we would like to mention that the

4-parameter solution considered in this paper can be
trivially generalized to include an additional parameter

of electric dipole moment ε by the substitution iμ → εþ iμ,
μ2 → ε2 þ μ2, but we have not found any physical justi-
fication to do it here.
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