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In this article, we present a study on thermodynamics of a class of regular black holes. Such a class
includes Bardeen and Hayward regular black holes. We obtained thermodynamic quantities like the
Hawking temperature, entropy, and heat capacity for the entire class. As part of an effort to indicate some
physical observable to distinguish regular black holes from singular black holes, we suggest that regular
black holes are colder than singular black holes. Besides, contrary to the Schwarzschild black hole, that
class of regular black holes may be thermodynamically stable. From a generalized uncertainty principle, we
also obtained the quantum-corrected thermodynamics for the studied class. Such quantum corrections
provide a logarithmic term for the quantum-corrected entropy.
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I. INTRODUCTION

Regular black holes (RBHs) are solutions of gravita-
tional field equations without singularities. It is possible to
construct black hole metrics without a physical singularity
even in the general relativity (GR) realm. Then, the problem
of singularities is solved in a classical theory without a
complete quantum theory of gravity. In Ref. [1], one finds
the first RBH defined as a compact object with horizon(s)
and without the physical singularity (see Refs. [2,3] for
reviews). Bardeen’s RBH is consequence of ideas, of
Sakharov and others [4,5], that spacetime inside the event
horizon for regular solutions is de Sitter-like. The RBH of
Bardeen is spherically symmetric and violates the strong
energy condition. The violation of an energy condition is
the origin for the regularity of Bardeen’s black hole. With a
de Sitter core, the internal region of regular geometries
violates one condition of Hawking-Penrose theorems of
singularity [6]. Then, with such a violation, the existence of
a singular point (or a singular ring for axisymmetric
spacetimes) is not a necessary consequence from the
theorems of singularity.
Later, other regular solutions with spherical symmetry

were proposed by Dymnikova [7–9], Bronnikov [10], and
Hayward [11]. In particular, the Hayward RBH [11] was
built to describe both the formation and evaporation of
black holes. Recently, regular solutions with axial sym-
metry, or rotation, have been developed [12–17] as well.

It is shown in Ref. [17] that RBHs with rotation always
violate the weak energy condition. In Ref. [18], in the same
direction, we obtained RBHs with spherical symmetry that
do not obey the weak energy condition. Regular metrics of
black holes were presented in other scenarios, contexts
beyond GR like the brane world context [19–21]. The class
of RBHs investigated in this article was generated by us in
an article dedicated to axial symmetry [17]. However, in
this paper, we shall focus on RBHs endowed with spherical
symmetry.
Thermodynamics of black holes is one of the most

interesting issues in black hole physics today. The notions
of temperature and entropy, for example, are associated to
black holes as well. Classically, black holes do not emit
radiation. However, from a semiclassical point of view,
Hawking [22] showed that black holes emit radiation.
Today, such a phenomenon is called Hawking radiation,
and it is obtained from several approaches. Besides the
original Hawking approach, the tunneling method provides
a black hole radiation. In such an approach, a particle may
cross the event horizon by tunneling. We may indicate two
ways to obtain the tunneling result in the literature: the first
one is the null-geodesic method developed by Ref. [23],
and the second one uses the Hamilton-Jacobi ansatz [24]
(a brief review is found in Refs. [25,26]). The latter will be
used in this work to evaluate the Hawking temperature of a
class of RBHs. Moreover, the black hole temperature is
obtained from the first law of thermodynamics as well.
According to Ref. [27], a corrected first law is necessary to
produce coherent values for the temperature and entropy
for RBHs. We adopt the corrected first law proposed by the
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authors in Ref. [27] to evaluate the temperature of a class of
RBHs in agreement with a first law that incorporates the
so-called Bekenstein-Hawking area law [28], which pro-
vides a simple relation between both the entropy S and
event horizon area A: S ¼ A=4.
Then, with the evaluated temperature, according to

thermodynamics, the entropy and heat capacity are
obtained. Moreover, it is possible from quantum correc-
tions to calculate the corrected thermodynamic quantities
by using a generalized uncertainty principle (GUP).1 Such a
generalized principle provides high-energy corrections to
black hole thermodynamics, which come from a supposed
quantum theory of gravity and the idea of a minimum
length. For the class of RBHs studied here, the quantum
correction for entropy is also logarithmic—in agreement
with Kaul and Majumdar in the pioneering work [30]. The
GUP has been applied in several black holes metrics.
Besides the standard black holes in GR [31–33], the GUP
was applied in self-dual black holes [34], brane world
black-holes [35], Horava-Lifshitz black holes [36], and
others.
Thermodynamics of RBHs has been studied in several

articles [37–45]. A thermodynamic observable may provide
a form to distinguish RBHs from singular black holes.
From three different ways—surface gravity, the tunneling
method, and the first law of thermodynamics—we obtained
Hawking temperature of a class of RBHs. The correspond-
ing temperature of the class indicates that regular black
holes are colder than the Schwarzschild black hole.
Moreover, contrary to the Schwarzschild black hole, it is
shown that the class of RBHs may be thermodynamically
stable, i.e., its corresponding heat capacity may be positive.
The structure of this paper is as follows. In Sec. II, we

present the class of black holes developed in Ref. [17],
focusing on spherical solutions. In Sec. III, we show the
thermodynamics of such a class. The quantum-corrected
thermodynamics of RBHs within that class is indicated
using the GUP in Sec. IV. The final remarks are presented in
Sec. V.We adopt Planck units, in which the speed of light in
vacuum c, the gravitational constantG, Boltzmann constant
kB, and the reduced Planck constant ℏ are set equal to 1.

II. CLASS OF REGULAR BLACK HOLES

Considering metrics with spherical symmetry, it is
possible to build, from the general metric in the (t; r; θ;ϕ)
coordinates

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

regular solutions of black holes, or RBHs, by assuming the
following form for the metric term fðrÞ:

fðrÞ ¼ 1 −
2mðrÞ

r
: ð2Þ

The general mass function presented in Ref. [17] is
given by

mðrÞ ¼ M0

½1þ ðr0r Þq�
p
q
; ð3Þ

where M0 and r0 may be interpreted as mass and
length parameters, respectively. The parameter M0 stands
for the Arnowitt-Deser-Misner mass of the Schwarzschild
black hole. The limit of mðrÞ confirms such an interpre-
tation, i.e., limr→∞mðrÞ ¼ M0. Indeed, the metric (1) with
the mass functionmðrÞ is approximately the Schwarzschild
metric for large values of the radial coordinate. On the other
hand, for small scales, r0 may be seen as a microscopical
length. Thus, without such a microscopical length (r0 ¼ 0),
the metric (1) with the mass function given by Eq. (3) is the
Schwarzschild metric. The values of p and q are integer and
positive. To obtain the so-called Bardeen or Hayward
RBHs, one specifies p ¼ 3 and q ¼ 2 or p ¼ q ¼ 3 in
the general mass function, respectively. The existence of
horizon(s) (at most two in Bardeen’s solution, the internal
r− and the external rþ horizons) is provided by r0 < M0.
As we can see, the mass function (3) provides a class
of RBHs.
Then, the basic properties indicated by the mass function

given by Eq. (3) are as follows:
(i) a de Sitter core is generated for small values of r

since p ¼ 3, as indicated in Ref. [17]. Therefore, the
appropriate value of p for generating regular sol-
utions is 3. For p ¼ 3, the metric term at small scales
is fðrÞ ∼ 1 − Cr2, with C playing the role of a
positive cosmological constant, because in these
scales mðrÞ ∼ r3.

(ii) For large values of r in Eq. (3), typically r≳ rþ, the
mass function is almost constant [mðrÞ ≈M0]; then,
we have approximately the Schwarzschild metric. In
particular, independently of r, the Schwarzschild
metric is restored for r0 ¼ 0. Thus, the regular class
with spherical symmetry generated by (3) has its
singular counterpart given by the Schwarzschild
metric.

(iii) Metrics generated by mðrÞ are not vacuum solutions
of Einstein’s field equations (Tμν ≠ 0). But accord-
ing to the shape of mðrÞ, for r > rþ, the class is
described almost by vacuum solutions.

As a good RBH solution, the regular spacetimes gen-
erated by (3) provide bounded scalars. All RBHs of the
studied class have nonsingular scalars. As we said, the
existence of a de Sitter core avoids the appearance of a
singular point, which is translated by the divergence of
scalars in that point. For example, for the studied class, the
Kretschmann scalar KðrÞ, given by Riemann tensor Rμ

ναβ,
has its limit written as1See Ref. [29] for a review on GUP and its applications.
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lim
r→0

KðrÞ ¼ lim
r→0

RμναβRμναβ ¼ 96

�
M0

r30

�
2

ð4Þ

at origin. As we can see, independently of q, the entire class
of black holes given by (3) is regular.
The singularity theorems state the existence of singu-

larities in spacetimes using the concept of geodesics (see
Wald’s book [6], Chap. 9). A solution of Einstein’s field
equations, like Schwarzschild or Friedmann-Lemaître-
Robertson-Walker, presents a singularity if it is geodesi-
cally incomplete. But the standard solutions in GR are
geodesically incomplete and have an unbounded scalar at
same time. For such solutions, unbounded scalars are
primary indications of the existence of singularities. On
the other hand, there are exotic geometries that are not
geodesically incomplete, but such spacetimes have prob-
lems with scalars [46].

III. THERMODYNAMICS

In this section, we study thermodynamic quantities
without quantum corrections. For the class of regular
metrics generated by the mass function (3), we present
its corresponding temperature, entropy, and heat capacity.
For temperature, we show three forms to evaluate it: by
means of surface gravity, κ; the tunneling method; and the
first law of thermodynamics. As we shall see, the first law
of black hole thermodynamics needs a correction for
RBHs. In Ref. [27], such a corrected term is shown, and
we apply it to the class analyzed here. Regarding the
entropy, the corrected first law provides an appropriate
value for the RBHs entropy: A=4, where A is the event
horizon area. Contrary to the Schwarzschild black hole, it is
possible to build thermodynamically stable RBHs; i.e., as
we shall see, it is possible to obtain positive values for the
heat capacity for the class of RBHs considered in this
article.

A. Temperature

The metric given by Eq. (1) is endowed with a timelike
Killing vector ξ ¼ ∂=∂t. Thus, it has a conserved quantity
associated to ξ. It is possible to construct a conserved
quantity by using that Killing vector such that

∇νðξμξμÞ ¼ −2κξν; ð5Þ

where ∇ν is the covariant derivative and κ is constant along
ξ orbits; i.e., the Lie derivative of κ along ξ vanishes:

Lξκ ¼ 0: ð6Þ

In particular, κ is constant over the horizon, and it is called
surface gravity. In the coordinate basis, one reads ξμ ¼
ð1; 0; 0; 0Þ for the timelike Killing vector components, and
the surface gravity for the metric ansatz (1) is written as

κ ¼ f0ðrÞ
2

����
rþ

; ð7Þ

with 0 denoting a derivative with respect to the radial
coordinate. Hawking showed [22] that black holes emit
radiation, and its corresponding temperature—Hawking
temperature—is given by

Tκ ¼
κ

2π
ð8Þ

for stationary spacetimes. Regarding the metric (1) and the
mass function (3), it is straightforward to show that the
above definition provides

Tκ ¼
1

4πrþ

�
1 − 2

�
r0
rþ

�
q
��

1þ
�
r0
rþ

�
q
�
−1

ð9Þ

for the entire class of RBHs. To obtain the temperature (9),
we used the relation

M0 ¼
rþ
2

�
1þ

�
r0
rþ

�
q
�3

q

; ð10Þ

which comes from the metric term equation fðrþÞ ¼ 0. As
we can see, the Schwarzschild temperature is obtained by
making r0 ¼ 0 (TSch ¼ 1=4πrþ, assuming that M0 is the
Schwarzschild mass, i.e., rþ ¼ 2M0).
Another form to calculate the black hole temperature is

given by the tunneling effect. The quantum tunneling effect
allows particles inside the black hole to cross the event
horizon. It is possible to calculate the tunneling probability
of this process, as indicated in Refs. [24–26]. In such an
approach, we are interested in radial trajectories; then, the
metric studied may be considered two dimensional near the
horizon:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ : ð11Þ

Thus, the problem is entirely solved in the t-r plane. The
Klein-Gordon equation for a scalar field ϕ with mass mϕ is

ℏ2gμν∇μ∇νϕ −m2
ϕϕ ¼ 0; ð12Þ

and with the aid of Eq. (11), is written as

−∂2
tϕþ fðrÞ2∂2

rϕþ 1

2
∂rfðrÞ2∂rϕ −

m2
ϕ

ℏ
fðrÞϕ ¼ 0: ð13Þ

Using the Wentzel-Kramers-Brillouin method, one has the
following solution for Eq. (13):

ϕðt; rÞ ¼ exp

�
−
i
ℏ
Iðt; rÞ

�
: ð14Þ
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For the lowest order in ℏ, one has the Hamilton-Jacobi
equation

ð∂tIÞ2 − fðrÞ2ð∂rIÞ2 −m2fðrÞ ¼ 0; ð15Þ

with

Iðt; rÞ ¼ −EtþWðrÞ ð16Þ

playing the role of the action that generates (15) and E the
radiation energy measured, for example, outside the event
horizon. The explicit form for WðrÞ, the spatial part of the
action, reads

W�ðrÞ ¼ �
Z

dr
fðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

ϕfðrÞ
q

: ð17Þ

The functions W�ðrÞ represent outgoing and ingoing
solutions, respectively. Classically, WþðrÞ is forbidden
because it describes solutions that cross the event horizon,
moving away from rþ. Then, to obtain Hawking radiation
outside the event horizon, we shall focus on WþðrÞ.
With the approximation for the function fðrÞ near the

event horizon rþ, i.e.,

fðrÞ ¼ fðrþÞ þ f0ðrþÞðr − rþÞ þ � � � ; ð18Þ

Equation (17) assumes the simple form

WþðrÞ ¼
2πiE
f0ðrþÞ

: ð19Þ

Therefore, for a particle, the tunneling probability of
crossing the event horizon is given by the imaginary part
of (16):

Γ ≃ exp ½−2ImI� ¼ exp

�
−

4πE
f0ðrþÞ

�
: ð20Þ

Comparing Eq. (20) with the Boltzmann factor e−E=T,
Hawking temperature derived by the tunneling method is
written as

Tt ¼
E

2ImI
¼ f0ðrþÞ

4π
¼ Tκ: ð21Þ

As we can see, both the temperature from Hawking’s initial
idea, Tκ, and the temperature by tunneling method, Tt, are
in agreement.
The third form to calculate black hole temperature is

provided by the first law of thermodynamics. For vacuum
spacetimes with spherical symmetry, the first law of black
holes thermodynamics says that

dM ¼ TfdS; ð22Þ

where M and S are the total energy and entropy of the
system, respectively, and Tf is the black hole temperature
provided by the first law. According to Ref. [27], assuming
the area law (S ¼ A=4 ¼ πr2þ) and M ¼ M0, the first law
does not provide a correct form for RBHs temperature.
Explicitly, Eq. (22) leads to

Tf ¼ dM
dS

¼ 1

2πrþ

dM0

drþ

¼ 1

4πrþ

�
1 − 2

�
r0
rþ

�
q
��

1þ
�
r0
rþ

�
q
�3−q

q

; ð23Þ

using the mass function (3). Then, as we can see, Tκ and Tf,
given by Eqs. (9) and (23), respectively, are not in agree-
ment. That is, the first law given by (22) is not appropriate
for calculating the correct black hole temperature for
RBHs. But, as we said, solutions generated by mðrÞ are
not vacuum solutions. In Ref. [45], in which the thermo-
dynamics of Bardeen RBH was studied, the indicated
alternative was to add an extra term in Eq. (22), given
by the supposed electromagnetic origin of Bardeen’s
solution (see in Ref. [47] Ayon-Beato and Garcia’s inter-
pretation of a Bardeen RBH as a solution of GR coupled to
nonlinear electrodynamics). Then, the first law is written as

dM ¼ TdSþΦde; ð24Þ

with e ¼ r0 playing the role of a magnetic monopole in the
interpretation of the Bardeen RBH suggested in Ref. [47],
M ¼ M0, and the potential Φ given by

Φ ¼ ∂M
∂e

����
r¼rþ

: ð25Þ

However, from T ¼ Tκ, or Hawking temperature calculated
by surface gravity, the authors [45] do not obtain the correct
form for the entropy, or area law, using the first law (24).
We saw two different methods to calculate the black hole

temperature that provide the same result: by means of the
surface gravity and tunneling. However, using the first law
(22), the same result is not obtained. On the other hand, the
first law (24) assumes the correct result for temperature but
does not provide the area law for entropy. Thus, in our
perspective, the third way is not correct for RBHs, and an
adjustment is necessary. Then, following Ref. [27] and
assuming the validity of the area law, we find a corrected
first law of thermodynamics that fixes the temperature for
the entire class of RBHs studied in this article. The corrected
temperature is obtained from the following first law:

Fðrþ; r0ÞdM0 ¼ T 0
fdS: ð26Þ

The factor Fðrþ; r0Þ, which depends on the terms of mass
function (3), fixes the first law for RBHs for several classes
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(not only for the class presented here). Among the RBHs
included by the corrected first law, our class and the
noncommutative RBHs [48] are present. According to
Ref. [27], the correction is defined as

Fðrþ; r0Þ ¼ 1þ 4π

Z
∞

rþ
r2

∂T0
0

∂M0

dr: ð27Þ

T0
0 is the energy-momentum component that corresponds to

the energy density. For metrics in which the energy density
does not depend on the mass, the correction vanishes. Using
our class of RBHs, one has its explicit form,

Fðrþ; r0Þ ¼
�
1þ

�
r0
rþ

�
q
�
−3
q

; ð28Þ

which is just the factor that defines the mass function (3).
From the correctionFðrþ; r0Þ, it is straightforward to obtain
a corrected form for temperature (T 0

f) using (26), which is in
agreement with the other two different approaches:

T 0
f ¼ Tκ ¼ Tt ¼ Fðrþ; r0ÞTf: ð29Þ

Thus, with a correct first law, we have both the correct
temperature and entropy.
With a reliable form for the temperature of the RBHs

class, it is interesting to compare the Schwarzschild
temperature with the corresponding thermodynamic quan-
tity for RBHs. It is more convenient to write the mass
function for large values of r (r0=r ≪ 1, i.e., for r≳ rþ) as

mðrÞ ≈M0

�
1 −

3

q

�
r0
r

�
q
�
: ð30Þ

This approximation leads to a simplified result for Hawking
temperature and, consequently, a clear comparison to the
Schwarzschild black hole. Using any method illustrated
above to evaluate the temperature, one has an approximate
temperature using the mass function (30),

Tapp ≈ TSch

�
1 −

3ð1þ qÞ
q

�
r0
rþ

�
q
�
; ð31Þ

assuming that rþ is approximately the Schwarzschild
radius. As we can see, the approximate temperature is
the temperature of the Schwarzschild black hole minus a
positive term from the regular metric. That is, for the class
studied in this work, RBHs are colder than the
Schwarzschild black hole. This interesting feature of
RBHs may be considered an observational discrepancy
between regular and singular black holes. Recently, several
authors have proposed ways to distinguish RBHs from
observations [49–58]. For us, Hawking temperature may be
a form to achieve such an observational test (even knowing
that Hawking temperature is tiny for large black holes).

But it is interesting to consider that a thermodynamic
quantity may be able to provide some information on the
interior region of black holes, in this case, the absence or
presence of a physical singularity.

B. Entropy

As we said, the area law is assumed and satisfied in this
article; i.e., for the entire class of RBHs, entropy is
S ¼ A=4. With the corrected first law given by Eq. (26),
we have the verification of the area law,

S ¼
Z

Fðrþ; r0Þ
T 0
f

dM0 ¼ πr2þ ¼ A
4
; ð32Þ

which is straightforward using Eqs. (9), (10), and (28).

C. Heat capacity

The heat capacity gives the information on the thermo-
dynamic stability of a system. Negative heat capacity
indicates an unstable system. It is known that the
Schwarzschild black hole is unstable from thermodynamic
considerations. In Schwarzschild, the heat capacity at
constant volume is CvðSchÞ ¼ −2πr2þ. According to Wald
[59], the reason for the instability is in the infinite thermal
bath of Schwarzschild’s system. But for the class of RBHs
given by the mass function (3), it is possible to obtain
thermodynamically stable black holes from a suitable
choice of parameters. The heat capacity at constant volume
is defined as

Cv ¼ T
∂S
∂T ¼ T

∂S
∂rþ

� ∂T
∂rþ

�
−1
; ð33Þ

where T is the temperature given by any method illustrated
above. For the class studied here, it is written as

Cv ¼ −2πr2þ

�
1þ

3qðr0rþÞq
1 − ð1þ 3qÞðr0rþÞq − 2ðr0rþÞ2q

�
: ð34Þ

As we can see, when r0 ¼ 0, Eq. (34) is just the heat
capacity of the Schwarzschild black hole CvðSchÞ ¼ −2πr2þ.
However, positive values for Cv are possible when

0
BB@−1 − 3qþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 6q

9
þ 1

q
4

1
CCA

1
q

rþ < r0 <
rþ
2

1
q

: ð35Þ

For this range of values for the length parameter r0, the heat
capacity is positive (see Fig. 1), and the entire class of
RBHs is thermodynamically stable. Besides stability, the
horizon structure is possible within this range of values;
i.e., as we said, the existence of horizons (r− and rþ) is
assured by r0 < M0. According to Ref. [44], where
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Bardeen and Hayward geometries were studied, the dis-
continuity in the heat capacity for RBHs is interpreted as a
phase transition.

IV. QUANTUM CORRECTIONS
TO RBHS THERMODYNAMICS

To obtain the quantum corrections for the thermody-
namic quantities shown above, we shall consider a GUP
applied to the tunneling formalism. This procedure has
been used to calculate the quantum corrections for the
temperature, entropy, and heat capacity for different types
of black holes [31–36]. In this approach, the quadratic GUP
is written as

△x△p ≥ ℏ

�
1þ λ2l2p

ℏ2
△p2

�
; ð36Þ

where λ is the so-called dimensionless quantum gravity

parameter and lp ¼
ffiffiffiffiffi
ℏG
c3

q
≈ 10−35 m is the Planck length.

We can rewrite the GUP (36) as

△p ≥
ℏ△x
2λ2l2p

0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4λ2l2p
△x2

s 1
CA; ð37Þ

and considering lp=△x ≪ 1, we apply Taylor expansion
such that

△p ≥
1

△x

�
1þ 2λ2l2p

△x2
þ � � �

�
; ð38Þ

where ℏ was set equal to 1, according to Planck units.
Using the saturated form of the uncertainty principle,

namely, E△x ≥ 1, the energy correction reads

EGUP ≥ E

�
1þ 2λ2l2p

△x2

�
; ð39Þ

up to second order in lp. Therefore, according to Eq. (20),
for particles with corrected energy EGUP, the tunneling
probability of crossing the event horizon is

Γ ≃ exp

�
−
4πEGUP

f0ðrþÞ
�
¼ exp

�
−
EGUP

Tκ

�
: ð40Þ

Thus, comparing Eq. (40) with the Boltzmann distribution
e−E=T , we found the quantum-corrected Hawking temper-
ature,

TGUP ¼ Tκ

�
1þ λ2l2p

2r2þ

�−1
; ð41Þ

where Tκ is given by Eq. (9) and, according to Ref. [60], the
uncertainty in x for events near the event horizon is
△x ≃ 2rþ. The quantum correction for the black hole
entropy is straightforwardly obtained by the relation

SGUP ¼
Z

Fðrþ; r0Þ
TGUP

dM0; ð42Þ

where the integral leads to

SGUP ¼ πðr2þ þ λ2l2p ln rþÞ: ð43Þ

As we can see, the quantum correction for entropy presents
the so-called logarithmic term, as indicated by Kaul and
Majumdar [30]. But such a term is very tiny using the GUP
(36). According to recent studies [61,62], the upper
bound for the quantum gravity parameter is λ ∼ 1010.
Then, adopting that upper bound, we have a factor 10−50

multiplying the logarithmic term.
Using the quantum-corrected temperature and entropy,

the correction to the heat capacity, which is defined in (33),
is given by

ðCvÞGUP ¼ TGUP
∂SGUP
∂TGUP

: ð44Þ

Then, for the entire class of RBHs, one has

0.0 0.2 0.4 0.6 0.8 1.0

40

20

0

20

40

r0 M0

C
v

M
0

q 3

q 2

q 1

FIG. 1. Heat capacity at constant volume, Cv. The figure
illustrates possible positive values for Cv for members of the
class of RBHs. Positive values of the heat capacity indicate
thermodynamic stability. q ¼ 2 and q ¼ 3 describe the so-called
Bardeen andHayward black holes, respectively. The discontinuity
indicates phase transition. In this graphic,M0 ¼ 1, and we assume
r0 < M0 to obtain a structure of horizons for the regular metrics.
For r0 ¼ 0, the heat capacity assumes the corresponding value for
Schwarzschild’s black hole, CvðSchÞ ¼ −2πr2þ ¼ −8πM2

0, which
in this graphic is approximately −25.1.
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ðCvÞGUP ¼
πð2r2þ þ λ2l2pÞ2½1þ ðr0rþÞq�½−1þ 2ðr0rþÞq�

2r2þ − λ2l2p − ½2ð1þ 3qÞr2þ þ λ2l2pð−1þ 3qÞ�ðr0rþÞq − 2ð2r2þ − λ2l2pÞðr0rþÞ2q
: ð45Þ

Note that when λ → 0 we recover the previous result,

lim
λ→0

ðCvÞGUP ¼ Cv; ð46Þ

where Cv is given by Eq. (34). And then assuming
r0 → 0, we have the heat capacity of the Schwarzschild
black hole.

V. FINAL REMARKS

In this article, we presented a study on thermodynamics
of a class of regular black holes. The class contains, for
example, the so-called Bardeen and Hayward RBHs.
Hawking temperature was obtained from three forms.
Following Ref. [27], from the first law of thermodynamics,
we needed to assume a term that corrects such a law and
provides a correct result for temperature and, consequently,
assures a first law in agreement with the entropy, or
Bekenstein-Hawking area law. Then, from the correct
results for the temperature and entropy, the heat capacity
at a constant volume was obtained, indicating the thermo-
dynamic phase transition and stability for the class of

RBHs. That is, regarding stability, contrary to the
Schwarzschild black hole, it is possible to build stable
thermodynamic solutions within that class of RBHs.
It is worth it to emphasize another difference between

the class of RBHs and the Schwarzschild black hole. The
temperature of RBHs indicates that the members of the
studied class are colder than the Schwarzschild black hole.
This may be argued as an observable difference between
both regular and singular black holes.
Lastly, quantum corrections to thermodynamic quantities

were analyzed. In particular, quantum corrections from a
generalized uncertainty principle provided a tiny logarith-
mic correction to the entropy of the class of RBHs in
agreement with several works.
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