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A strong gravity naked singular region can give important clues toward understanding the classical as
well as spontaneous nature of General Relativity. We propose here a model for energy emission from a
naked singular region in a self-similar dust spacetime by gluing two self-similar dust solutions at the
Cauchy horizon. The energy is defined and evaluated as a surface energy of a null hypersurface, the null
shell. Also included are scenarios of the spontaneous creation or disappearance of a singularity, the end of
inflation, black hole formation, and bubble nucleation. Our examples investigated here explicitly show that
one can model unlimitedly luminous and energetic objects in the framework of General Relativity.
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I. INTRODUCTION

The recent discoveries of gravitational waves [1–5]
have provided us with the opportunity to study strong
gravitational field environments created by coalescing
binary black holes and neutron stars. Having established
General Relativity (GR) as the classical theory in the
strong gravity regime, these discoveries have also opened
new exciting areas of research such as gravitational wave
astronomy and multimessenger astronomy [6]. However,
theoretically, GR predicts that under quite generic initial
conditions continued gravitational collapse should end in
a singularity, i.e., regions of arbitrarily high spacetime
curvature [7–9]. Thus, black holes as a unique end state of
continued gravitational collapse are contingent on an
additional requirement of the cosmic censorship conjec-
ture (CCC) [10]. The essence of this conjecture is that the
singularity should always be safely hidden behind a
horizon. This can be achieved by the formation of trapped
surfaces that form during collapse and surround the
singularity, hiding it from the outside world. One could,
perhaps, also argue that before the mathematical structure
of spacetime breaks down some quantum gravity
effects, due to the breakdown of classical theory, should
prevent singularity formation. However, with no viable
quantum theory for gravity in sight, the physics of such
dense regions in spacetime remains an open question.
Interestingly, GR all by itself does not say anything about

the causal nature of these singularities. Therefore, agree-
ment between GR and strong gravity observations has also
renewed interest in the formation of naked singularities as
an additional possibility of the end state of gravitational
collapse.
The study by Oppenheimer and Snyder (OS) provides a

paradigm for black hole formation in continued gravita-
tional collapse [11]. This simple model of a spherically
symmetric homogeneous dust ball (perfect fluid with no
pressure) elegantly captures salient features characterizing
a black hole, namely, the formation of a central singularity,
an apparent horizon, and an event horizon. The OS model
led to the establishment viewpoint that end state of
continued gravitational collapse leads to the formation of
a black hole (CCC). Numerous counterexamples to the
CCC have also appeared in the studies generalizing the OS
model, i.e., the formation of a singularity that can be seen
by an external observer. Such a naked singularity can form
an end state of a collapsing inhomogeneous dust cloud
[12–16]. There are radial null geodesics starting from the
singularity. With an appropriate choice of initial data, null
geodesics can reach the null infinity, and thus the singu-
larity can be globally naked.
The counterexamples to the censorship hypothesis are

not limited to dust only. Gravitational collapse in matter
models with pressure are investigated as well. The spheri-
cally symmetric self-similar spacetime filled with a perfect
fluid forms a naked singularity if an equation of state is soft
enough [14]. Furthermore, naked singularity also forms
when the assumption of self-similarity is relaxed [17,18]
(see also Ref. [19]). The generalization of geometry to
quasispherical or cylindrical also does not help restore
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the CCC [20]. Thus, the studies so far indicate that
arbitrarily high curvature regions, akin to a naked singu-
larity, can form during the collapse.
The extreme curvature region around the singularity is

expected to give rise to high-energy phenomena. Since
there is virtually no upper limit to energy that can be
achieved due to strong curvatures, highly energetic phe-
nomena in the Universe, such as a gamma-ray burst, can be
from a region around a strong curvature naked singularity.
However, these studies are speculative in nature, and it is a
challenge to create a concrete model that can serve to
explain the origin of high-energy phenomena like a
gamma-ray burst. There are few qualitative [21,22] and
quantitative studies [23–34] in this direction. Classical
gravitational radiation of spacetimes filled with dust matter
was studied in Refs. [35–37].
As mentioned above, a self-similar dust universe with an

appropriate initial matter distribution forms a naked singu-
larity. The fastest of these geodesics from the singular
center defines the Cauchy horizon. In a spherically sym-
metric spacetime geometry, starting from the singular
center, the Cauchy horizon expands radially, and the region
beyond the horizon is by definition undetermined. Since the
Cauchy horizon is a null hypersurface, we use the null
version of junction conditions to replace the inside of
the Cauchy horizon by another well-behaved spacetime,
removing singularity and restoring predictability.
The aim of this paper is to propose various models for

physical processes such as energy emission from singular
regions, the spontaneous creation of a singularity, negative-
mass black holes, the decay of Minkowski spacetime, a
scenario for the end of inflation, and the spontaneous
creation of black holes, using matching across two null
hypersurfaces. The matching across two null hypersurfaces
was pioneered by Israel and collaborators (see Ref. [38] and
references therein). To achieve our goal, we use dust
models that are known to harbor nakedly singular solutions.
The paper is organized as follows. In Sec. II, we give a

brief overview of null-shell formalism describing an
expanding or contracting null surface that partitions a
spacetime into two parts. Section III contains several
examples based on the general formalism. We conclude
with Sec. IV. Units c ¼ G ¼ 1 are adopted throughout
this paper.

II. SPHERICALLY SYMMETRIC NULL SHELL:
GENERAL FORMALISM

We give a quick overview of the general formalism that
describes an expanding or imploding null hypersurface
with a finite surface energy and pressure in spherically
symmetric spacetimes. Whereas the spherically symmetric
case is discussed in Ref. [39], the analysis and notation
used here are in view of the examples discussed later in the
paper. The formalism models the energy and the pressure as
the quantities defined on the boundary of two matched

spacetimes. The goal here is to calculate the energy that
such a null surface (Σ) would have. The spacetime metrics
on either side of Σ are given by

ds2� ¼ A�ðt�; r�Þdt2� þ B�ðt�; r�Þdr2�
þ C�ðt�; r�Þðdθ2 þ sin2dφ2Þ: ð1Þ

Here, 4πCðt; rÞ is equivalent to the physical surface area of
a sphere at coordinates t and r. We identify spacetimes on
the either side of null hypersurface (Σ) by þ and − signs.
For completeness, we give here the nonzero Christoffel

symbols for the metric above (the � sign is omitted),

Γt
tt¼

_A
2A

; Γt
tr¼

A0

2A
; Γt

rr¼−
_B
2A

; Γt
θθ ¼−

_C
2A

;

Γt
φφ¼−

_C
2A

sin2θ; Γr
rr¼

B0

2B
; Γr

tr¼
_B
2B

; Γr
tt¼−

A0

2B
;

Γr
θθ ¼−

C0

2B
; Γr

φφ¼−
C0

2B
sin2θ; Γθ

tθ ¼
_C
2C

; Γθ
rθ ¼

C0

2C
;

Γθ
φφ¼−sinθcosθ; Γφ

tφ¼
_C
2C

; Γφ
rφ¼ C0

2C
; Γφ

θφ¼ cotθ;

ð2Þ

where · ≔ ∂=∂t and 0 ≔ ∂=∂r.

A. Null hypersurface Σ
As we are interested in emission (absorption) from a

naked singularity, the two spacetimes are matched along
expanding (imploding) null surfaces. The equation describ-
ing such a surface is given by the outgoing (incoming)
radial null geodesics in M�, i.e.,

dt�
dr�

¼ ϵ�

ffiffiffiffiffiffiffiffiffi
B�
jA�j

s
: ð3Þ

Note that A ¼ −jAj for outside of the horizon (if any), and
ϵ� is defined by

ϵþ ≔
�þ1 ∶outgoing
−1 ∶incoming

; ϵ− ≔
�þ1 ∶outgoing
−1 ∶incoming

:

ð4Þ

The sign of ϵ represents null rays to be outgoing or
incoming. One can choose a specific null geodesic in
M�, which characterizes null hypersurfaces Σþ and Σ− in
Mþ and M−, respectively. The hypersurfaces Σþ and Σ−
are identified so that the two spacetimes are glued along
these null hypersurfaces, i.e., Σþ ¼ Σ−≕Σ. In this sense,
the null hypersurface Σ partitions the spacetime into two
regions: the past (M−) and the future (Mþ) of Σ (Fig. 1).
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The two metrics must be the same on Σ, i.e.,
ds2þjΣ ¼ ds2−jΣ, and from Eq. (1), the coefficient of the
angular part gives a relation between Cþ and C−:

CþðtþðrþÞ; rþÞjΣ ¼ C−ðt−ðr−Þ; r−ÞjΣ: ð5Þ

B. Null hypersurface: Intrinsic coordinates

To implement the null-shell formalism, we first consider
a system of coordinates intrinsic to the hypersurface Σ,

yl ¼ ðλ; θ;φÞ;
here, λ is an arbitrary parameter characterizing generators
on the null hypersurface. The hypersurface can be
described as xα� ¼ ðt�ðλÞ; r�ðλÞ; θ;φÞ in terms of coordi-
nates on either side. Thus, the parametric equations for the
null hypersurface Σ, as seen from either side, are

t� ¼ t�ðr�ðλÞÞ; r� ¼ r�ðλÞ; θ ¼ θ; φ ¼ φ:

ð6Þ

The vectors kα, tangent to the null hypersurface on each
side, are given by

kα�∂α ¼
dt�
dr�

����
Σ
r
∘
�∂t þ r

∘
�∂r; ð7Þ

where ∘ ≔ d=dλ. Because a radial null geodesic equation
for Σ is given by Eq. (3), kα� reduces to

kα�∂α ¼ ϵ�

ffiffiffiffiffiffiffiffiffi
B�
jA�j

s
r
∘
�∂t þ r

∘
�∂r: ð8Þ

Vector fields eαðθÞ∂α ¼ ∂θ and eαðφÞ∂α ¼ ∂φ are also tangent

to Σ. Moreover, auxiliary null vector fields Nα
� satisfying

Nα
�kα� ¼ −1,Nα

�Nα� ¼ 0, and Nα
�eα� ¼ 0 are obtained as

N�
α dxα ¼ −

ϵ�
2r
∘
�

ffiffiffiffiffiffiffiffiffi
jA�j
B�

s
dt −

1

2r
∘
�
dr: ð9Þ

Vectors kα, eαðθÞ, e
α
ðφÞ, and Nα complete a basis on Σ [39].

C. Surface stress-energy tensor and
transverse curvature

We calculate the surface stress-energy tensor, i.e., a
stress-energy tensor on Σ, which is written as

Tαβ
Σ ¼ ð−kγuγÞ−1SαβδðτÞ; ð10Þ

where

Sαβ ≔ μkαkβ þ pσABeαðAÞe
β
ðBÞ:

Here, μ and p are interpreted as the surface energy density
and the surface pressure on the null hypersurface, respec-
tively. The parameter τ was introduced as the proper time of
an observer who has the 4-velocity uα; it takes a zero value
while crossing Σ. Defining transverse curvature Clm as

Clm ≔ −NαeαðlÞ;βe
β
ðmÞ;

we can write the explicit expressions for the energy density
μ and the pressure p as

8πμ ≔ −σab½Cab�; 8πp ≔ −½Cλλ�: ð11Þ
The indices l andm run through λ, θ, and φ, and a and b run
through θ and ϕ. The standard notation ½A� ≔ AþjΣ − A−jΣ
is used for measuring the jump in scalar qualities at Σ.
The general expressions for the nonzero components of

transverse curvature can be calculated as (hereafter, the �
sign is omitted for clarity)

Cλλ ¼ r
∘
�
ϵ

_BffiffiffiffiffiffiffiffiffijAjBp þ 1

2
ðln jAjÞ0 þ 1

2
ðlnBÞ0

�
; ð12Þ

Cab ¼ −
σab

4Cr
∘
�
−

ϵ _CffiffiffiffiffiffiffiffiffijAjBp þ C0

B

�
; ð13Þ

where σabdxadxb ≔ Cðdθ2 þ sin2 θdφ2Þ.

D. Parameter-independent description for the shell’s
whole energy and relation to its luminosity

We define the integrated energy over a spherical shell,
which would be measured by an observer who is in M−

with a 4-velocity u−α , as

Eshell ≔ 4πCTαβuα−uβ−jΣ: ð14Þ
We should note that the quantity Eshell is actually related to
a luminosity emitted from the system. Luminosity of the
shell can be defined as the area integration of energy
flux that would be measured by a comoving observer at
infinity (which means he/she is a static observer), who has
the 4-velocity uα. In equation form, this is written as

Lshell ≔ 4πCTαβuαnβjΣ; ð15Þ

FIG. 1. Schematic figure for null matching. Null hypersurface
Σ partitions a spacetime into two regions, past (M−) and future
(Mþ), of Σ. The dashed line is the world line of an observer at
fixed spatial coordinates.
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where nβ is one of three spacelike unit basis vectors that
are orthogonal to uα and its component toward to the
direction in which the shell moves:

nα∂α ¼ ∂r; nαnα ¼ 1; uαnα ¼ 0: ð16Þ
By geometrical observation, one identifies the null

vector kα is proportional to uα þ nα: kα ¼ bðuα þ nαÞ with
b ¼ constant. Using all properties for kα, uα, and nα, Eshell
and Lshell reduce to

Eshell ¼ 4πCð−bÞμ; ð17Þ
Lshell ¼ 4πCð−bÞμ: ð18Þ

Thus, we have the relation

Eshell ¼ Lshell: ð19Þ
Eshell (or equivalently Lshell) is derived by junction

conditions, and thus this is a function of the both of the
metrics, gþμν and g−μν. However, since we observe Eshell from
the either side of the two spacetimes, the final description of
physical quantities Eshell must be written in the metric in the
one side. The two metrics are related each other through
Eq. (5). We will denote Eshell by the metric on the − side.
To do so, consider Eq. (5); it relates rþ and r−, say,

rþ ¼ ψðr−Þ: ð20Þ
The explicit functional form of ψ can be determined once
the line elements Mþ and M− are fixed. Since r� is
parametrized by λ, differentiation of Eq. (20) gives

r
∘
þ ¼ dψðr−Þ

dr−
r
∘
−: ð21Þ

Using Eqs. (20) and (21), we can eliminate rþ and r
∘
þ from

the expressions of μ and p. Consequently, the energy Eshell
becomes a function of r− only.

III. EXAMPLES

A. Energy emission from a naked singularity:
Self-similar dust collapse

We consider naked singularity formation in self-similar
dust collapse. We consider two spacetime manifolds Mþ
and M− as two spherically symmetric dust spacetimes of
which the metrics are given by

ds2� ¼ −dt2� þ ðR0
�Þ2dr2� þ R2

�ðdθ2 þ sin2 θdφ2Þ; ð22Þ

where R� ¼ R�ðt�; r�Þ. Or equivalently, from Eq. (1), we
adopt the functions as follows:

A� ¼ −1; B� ¼ ðR0
�Þ2; C� ¼ R2

�; ϵ� ¼ 1:

ð23Þ

Th stress-energy tensor for dust is given by Tαβ
� ¼ ρ�ðt; rÞ

uα�u
β
�, with the comoving 4-velocity of dust uα� ¼ δα0 and

dust energy density ρ�ðt; rÞ. The nontrivial Einstein field
equations derived from the above metric and stress-energy
tensor yield (the � sign is omitted for brevity)

_R2 ¼ FðrÞ
R

; ð24Þ

F0 ¼ 8πρR2R0; ð25Þ

where FðrÞ is an arbitrary function of r. Using the
remaining scaling freedom, we set Rð0; rÞ≕ r, and
Eq. (25) can now be integrated to fix F in terms of the
initial density profile ρð0; rÞ as

FðrÞ ¼ 8π

Z
ρð0; rÞr2dr: ð26Þ

Hence, F is twice the mass interior of a sphere of radius r.
Equations (24) and (25) can be solved simultaneously for

the unknown metric function R,

R3=2 ¼ r3=2 −
3

2

ffiffiffiffi
F

p
t: ð27Þ

This solution is known as the marginally bound Lemaître-
Tolman-Bondi (LTB) solution. If one takes the linear mass
function, i.e., F ¼ 2κr, we have (with recovering the� sign)

R3=2
� ¼ r3=2�

�
1 − a�

t�
r�

�
; ð28Þ

where a� ≔ 3
ffiffiffiffiffiffiffiffi
2κ�

p
=2 and κ� is assumed to be a non-

negative constant. Minkowski spacetime is recovered for
κ� ¼ 0. We also note here that the spacetime of Eq. (22)
with the metric function of the form Eq. (28) admits self-
similarity [40]. To maintain simplicity and clarity in further
discussion, the attention is restricted to the self-similar
solution. However, with some difficulty, the discussion
can be extended to the non-self-similar case also.
In this well-studied setup, the singularity forms first at

the symmetry center ðt; rÞ ¼ ð0; 0Þ, and this can be globally
naked for a range of values of parameter κ, characterizing
the strength of gravity [41]. The actual value of the
parameter range is not important, and from now on, the
discussion assumes spacetime with the presence of a naked
singularity. Considering radial null geodesics emanating
from the singularity at the center, the Cauchy horizon is
defined as the fastest null ray coming out of the singularity.
To identify the equation of the Cauchy horizon, we first
identify the family of singular outgoing radial null geo-
desics. From Eq. (22), the outgoing radial null geodesics
obey the equation dt=dr ¼ R0 (we omit the � sign from
expressions for brevity), which is explicitly written as
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dt
dr

¼ 3r − at

3r2=3ðr − atÞ1=3 : ð29Þ

The condition for the existence of outgoing radial null rays,
meeting central singularity ðt; rÞ ¼ ð0; 0Þ in their past with
a positive finite slope, can be reduced to a finite nonzero
positive value of the limit

lim
t→0;r→0

t
r
¼ lim

t→0;r→0

dt
dr

¼ z; ð30Þ

where z takes a constant value. The first equality in the
equation above holds due to l’Hôpital’s rule. Then, Eq. (29)
reduces to a quartic equation (restoring the � sign):

fðz�Þ ≔ a�z4� −
�
1þ a3�

27

�
z3� þ a2�

3
z2� − a�z� þ 1 ¼ 0:

ð31Þ
Using properties of quartic equations, in Eq. (31), some
information on the nature of roots can be determined from
discriminant D ¼ ð−4a6� þ 2808a3� − 729Þ=27. If D < 0,
the quartic has two real roots, and for D ¼ 0, there is one
real root. D is negative when 0 ≤ a� < a� ≔ 3=ð2ð26þ
15

ffiffiffi
3

p ÞÞ1=3 ¼ 0.638014 and vanishes when a� ¼ a�.
1 The

range of a� implies 0 ≤ κ� ≤ κ� ≔ 0.0904583. In the self-
similar dust solution, Eqs. (22) and (28), the Cauchy
horizon takes the form

t� ¼ z�chr�; ð32Þ
where zþch and z−ch are the positive constants in Mþ and
M−, respectively. These are the smallest positive values of
the solution to Eq. (31).
We consider matching two self-similar dust spacetimes at

their Cauchy horizons, which are given by Eq. (32). So, the
Cauchy surface is that null hypersurface Σ that partitions the
spacetime into two regions: the past and the future of Σ.
The matching procedure imposes restrictions on the metric
function and its first derivative, respectively, the first and the
second fundamental forms.
We start with the identification of outgoing null geodesics

in two spacetimes. Recall, from Eq. (22), the outgoing radial
null geodesics are

dt�
dr�

¼ R0
�: ð33Þ

The matching of the first fundamental form, equivalent to
condition (5), implies that metrics are the same on Σ,
yielding RþjΣ ¼ R−jΣ, i.e.,

ð1 − aþzþchÞ2=3rþjΣ ¼ ð1 − a−z−chÞ2=3r−jΣ: ð34Þ

Here, we have used the equation t�=r� ¼ z�ch on Σ.
Equation (34) is our first fundamental form, and this gives
a relation between rþ and r− on Σ.
The null hypersurface in parametric form can be

written as

t� ¼ z�chr�ðλÞ; r� ¼ r�ðλÞ; θ ¼ θ; φ ¼ φ:

ð35Þ

We now construct the explicit set of basis vectors for the
self-similar case under consideration to implement the
null-shell formalism. From Eq. (8), the tangent null vector
kα� is given by

kα�∂α ¼ z�chr
∘
�∂t þ r

∘
�∂r: ð36Þ

The spatial unit tangents to a sphere are given by eα�ðθÞ∂α ¼
∂θ and eα�ðφÞ∂α ¼ ∂φ. The auxiliary null vector Nα

� is written

by Eq. (9) as

Nα
�∂α ¼ −

1

2z�chr
∘
�
∂t −

1

2ðz�chÞ2r
∘
�
∂r: ð37Þ

Now that we have explicit expressions for the basis vectors
above, we have the tools to implement the junction
conditions for matching two null hypersurfaces. The non-
zero components of the transverse curvature, Eqs. (12)
and (13), are

C�
λλ ¼ r

∘
�

2a2�z
�
ch

9r�ð1 − a�z�chÞ4=3
; ð38Þ

C�
ab ¼ −

1

r
∘
�

σab
2z�chR

�
Σ

�
2a�

3ð1 − a�z�chÞ1=3
þ 1

�
; ð39Þ

where σabdxadxb ≔ R2ðdθ2 þ sin2 θdφ2Þ.
Consequently, μ and p can be written as

8πμ ¼ 1

zþchR
þ
Σ r
∘
þ

�
2aþ

3ð1 − aþzþchÞ1=3
þ 1

�

−
1

z−chR
−
Σr
∘
−

�
2a−

3ð1 − a−z−chÞ1=3
þ 1

�
; ð40Þ

8πp ¼ −r∘þ
2a2þz

þ
ch

9rþð1 − aþzþchÞ4=3
þ r

∘
−

2a2−z−ch
9r−ð1 − a−z−chÞ4=3

:

ð41Þ

As can be seen from expressions (40) and (41), the surface
energy and the surface pressure are determined by fixing

1In fact, the condition D < 0 gives two possible ranges for a,
0 ≤ a < a� ¼ 0.638 or a > a� ¼ 8.886. However, the larger
range of a� is unphysical because outgoing radial null geodesics
form after the shell focusing singularity [42].
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the initial data, namely, the parameter κþ and κ−. The r
∘
þ,

in the equations above, is related to r
∘
− through Eq. (34).

Clearly, no surface energy and pressure are carried if
aþ ¼ a− (or equivalently κþ ¼ κ−); i.e., the initial profile
κ is the same in Mþ and M−. If a− < aþ, Eshell > 0, and
for Eshell < 0, a− > aþ.
From Eq. (14), the energy of the null shell Eshell that is

measured by an observer in the past of Σ [we see Σ from the
(−) side] with the 4-velocity uα− is

Eshell ¼ 4πR2Tαβu−αu−β jτ¼0
: ð42Þ

For a comoving observer choosing the 4-velocity to be
uα−∂α ¼ ∂t, the expression for energy (42) takes the form

Eshell ¼ 4πR2
Σð−kγ−u−γ Þμ: ð43Þ

One calculates −kγ−u−γ ¼ r
∘
−R0

−, and hence Eq. (43)
reduces to

Eshell ¼
RΣ

2

�ð1− aþzþchÞ2=3z−ch
ð1− a−z−chÞ2=3zþch

�
2aþ
3

ð1− aþzþchÞ−1=3 þ 1

�

−
�
2a−
3

ð1− a−z−chÞ−1=3 þ 1

��
: ð44Þ

One can see that Eshell is a linear function of RΣ. The
numerical plot for Eshell=RΣ in Eq. (44) is shown in Fig. 2.
Figure 2 describes the variation of the ratio Eshell=RΣ

with aþ, the energy density parameter of the matched
spacetime, for fixed values of a−. The parameters, aþ and
a−, take values in the following range: 0 ≤ aþ ≤ a− ≤ a�.
For a fixed value of a−, the ratio E=R decreases with
the increase in aþ and vanishes for aþ ¼ a− due to the
positivity of energy emitted. The maximum emission for a
given a− lies at aþ ¼ 0, which corresponds to Minkowski
spacetime in the matched region. Physically, this implies
all the energy in M− is emitted along the null shell. For the

largest allowed value of a− ¼ a�, beyond which M−
evolves into a black hole spacetime geometry, Eshell=RΣ
is the largest for aþ ¼ 0.
Both in the dust case (the model given in the present

paper) and in the Vaidya case (Jhingan et al.’s model [44]),
the surface energy μ is proportional to r−1. This fact implies
that the whole energy of the null shell, Eshell, grows in
proportion to r (or equivalently RΣ) and hence diverges at
spatial infinity. This blowup feature is essentially due to the
self-similarity of spacetimes. The reason is the following:
regardless of whether spacetime is self-similar or not, the
surface energy μ has a dimension of 1=ðlengthÞ. When we
restrict our attention to self-similar spacetime, then the
description of μmust be of the form FðzÞ=r, where z ≔ t=r.
Because z is constant on the Cauchy horizon (and also on
the event horizon) in the self-similar metric, F becomes
FðzchÞ, which is definitely constant. Thus, Eshell ∝
4πðRjΣÞ2μ [where RjΣ ¼ rjΣð1 − azchÞ2=3 in our dust
model and RjΣ ¼ rjΣ in the Vaidya model] must be
proportional to r (or equivalently RΣ) under the self-similar
assumption.
We give a physical interpretation of the increasing

energy of the null shell. Take the conservation law for
the null shell, which is given by Poisson’s book [39] as

p
d
dλ

δSþ ½Tαβkαkβ�δS ¼ 0; ð45Þ

where δS ≔ C sin2 θdθdφ is an element of cross sectional
area on the shell. The first term on the left-hand side of
Eq. (45) is the work done by the shell’s expansion, while
the second term is the energy absorbed into the shell from
its surrounding. Physical interpretation for the growing of
the shell energy 4πR2μ is that the null shell expands in an
imploding dust region while absorbing the energy of the
surrounding dust.

1. Instant singularity

For an interesting example of our model, one can
consider an exclusive situation, say, “a singularity in an
instant": a singularity disappears immediately after its
occurrence. To describe this, let us take 0 < κ− ≤ κ� in the
past of Σ. Then, a singularity forms in a finite time.
In the (þ) side, we take κþ ¼ 0 ðaþ ¼ 0Þ, the minimum
value of κ. Vanishing κ represents the Minkowski space-
time. Since Mþ is defined as the future of Σ, the above
setup describes an instant presence of a singularity.
The singularity exists only at the point ðt; rÞ ¼ ð0; 0Þ.
For a ¼ 0, we have zch ¼ 1 from Eq. (31). Thus, in this
scenario, the energy of the shell that appeared from the
point ðt; rÞ ¼ ð0; 0Þ reduces to

Eshell ¼
RΣ

6

�
3z−ch

ð1− a−z−chÞ2=3
− ð2a−ð1− a−z−chÞ−1=3 þ 3Þ

�
:

ð46Þ

0.1 0.2 0.3 0.4 0.5 0.6 0.7
a0.0

0.2

0.4

0.6

0.8

1.0

Eshell

R

a 0.3

a 0.4

a 0.5

a 0.6

a 0.63

a 0.638014

FIG. 2. Eshell=RΣ versus aþ. The vertical solid line is at aþ ¼
a� ¼ 0.638014. Eshell=RΣ is positive only for 0 ≤ aþ < a− ≤ a�.
The more the gap between a− and aþ increases, the more
Eshell=RΣ is.
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For simplicity, let us take a− ¼ a� ⇔ κ− ¼ κ�, the maxi-
mum value of κ. For a ¼ a� ¼ 0.638014, zch is solved as
zchða�Þ ¼ 1.25992. By putting these values into Eq. (46),
we have Eshell ¼ RΣ.
According to this scenario, a region of the dust matter is

pushed away from the center by the motion of outgoing
null shell.

B. Energy emission from a naked singularity:
Negative-mass Schwarzschild solution

We have considered an isotropic emission of radiation
from a naked singularity by modeling two self-similar LTB
spacetimes with different density profiles in the first
example. Here, we consider another emission scenario that
describes a null emission from a singularity after dust
collapse in which the final singularity has negative mass.
This situation is modeled by taking M− as the LTB
solution, while Mþ is a negative-mass Schwarzschild
solution,

A− ¼ −1; B− ¼ ðR0ðtþ; rþÞÞ2; C− ¼ Rðtþ; rþÞ2;

Aþ ¼ −f; Bþ ¼ f−1; Cþ ¼ r2þ; f ≔ 1þ 2jMj
rþ

;

ϵ� ¼ 1; ð47Þ

where M is a negative constant.
In M−, the fastest outgoing null geodesic emanating

from the center ðt−; r−Þ ¼ ð0; 0Þmakes the Cauchy surface,
and it is the same equation in the previous example: t− ¼
zchr−. zch is the smallest solution to Eq. (31). Also, other
quantities relevant to our calculation are the same.
In Mþ, the outgoing null geodesic is given by

dtþ
drþ

¼ rþ
rþ þ 2jMj : ð48Þ

Especially, the null emitted from the center is explicitly
given by integrating Eq. (48):

tþ ¼ rþ − 2jMj ln
�

rþ
2jMj þ 1

�
: ð49Þ

The condition for the both metrics to be same at Σ, Eq. (5),
takes the form R−jΣ ¼ rþjΣ, i.e.,

ð1 − azchÞ2=3r−ðλÞjΣ ¼ rþðλÞjΣ: ð50Þ

The parametric equation in Mþ is

tþ ¼ rþðλÞ − 2jMj ln
�
rþðλÞ
2jMj þ 1

�
; rþ ¼ rþðλÞ;

θ ¼ θ; φ ¼ φ: ð51Þ

Basis vectors on Σ are

kαþ∂α ¼ r
∘
þf−1∂tþ r

∘
þ∂r; Nþ

α dxα ¼−
f

2r
∘
þ
dtþ−

1

2r
∘
þ
drþ;

eαðθÞ∂α ¼ ∂θ; eαðφÞ∂α ¼ ∂φ: ð52Þ

Transverse curvature Cþ
lm is calculated as

Cþ
λλ ¼ 0; Cþ

ab ¼ −
f

2rþr
∘
þ
σþab; ð53Þ

where σþabdx
adxb ≔ r2þðdθ2 þ sin2 θdφ2Þ. Then, we have μ

and p as

8πμ ¼ f

rþr
∘
þ
−

1

zchRΣr
∘
−

�
2a

3ð1 − azchÞ1=3
þ 1

�
; ð54Þ

8πp ¼ r
∘
−

2a2zch
9r−ð1 − azchÞ4=3

: ð55Þ

For calculation of Eshell, the same as in the previous
example, we adopt the 4-velocity of a comoving observer.
Then, the final form for the shell energy is written by

Eshell ¼
zchjMj

ð1 − azchÞ2=3
þ RΣ

2

�
zch

ð1 − azchÞ2=3

−
2a

3ð1 − azchÞ1=3
− 1

�
: ð56Þ

In Eq. (56), the first term is constant, while the second term
is linear in terms of RΣ. Because the coefficient of the
second term is positive [43], the energy increases mono-
tonically as the null surface with RΣ expands.
Comparing Eq. (56) with the previous case, Eq. (44), the

first term on the right does not have RΣ dependence. This
term corresponds to the energy distribution of the negative
mass Schwarzschild solution that is pointlike. Note here
that in this example the null shell carries energy of the
collapsing dust matter as well as energy relevant to the
remnant negative mass.
In the next subsection, Sec. III C, we discuss the

appearance of a negative-mass Schwarzschild solution
(naked singularity) from a Minkowski spacetime by spon-
taneous emission of radiation. We can recover this case in
the a → 0 limit of Eq. (56). In this limit, we have zch → 1,
from Eq. (31), and Eshell → jMj.
The numerical plot of typical parameters for Eshell in

Eq. (56) is shown in Fig. 3.
In Fig. 3, the energy of the shell is plotted for different

values of initial density parameters. The mass of the
negative of the Schwarzschild solution can be arbitrary.
The first curve (a ¼ 0) corresponds to Minkowski space-
time matching to a negative-mass Schwarzschild solution.
As expected, the energy carried by the shell is equal to jMj.
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The subsequent curves have additional energy correspond-
ing to the LTB of the collapsing dust.
The situation in this example is similar to the previous

example, but the future of Σ is replaced with the negative-
mass Schwarzschild solution. By operating junction con-
ditions, we get Eq. (56) for the energy of the expanding null
shell. As in the previous example, the shell’s whole energy
is a monotonically increasing function of R, and it diverges
at infinity. At the same time the singularity forms, the null
shell expands outward as the previous case does. However,
the remnant singularity is much more serious than that of
previous example due to the negative gravitational mass.
Instant singularity, a special case mentioned earlier, can
also be recovered in this example by taking the param-
eter M ¼ 0.

C. Spontaneous decay of Minkowski, the end
of inflation, and black hole formation

We consider several scenarios that denote the sponta-
neous decay of Minkowski, the end of inflation, and black
hole formation. We can describe all of such scenarios under
Schwarzschild–(anti-)de Sitter (AdS) solution in both
spacetimes:

A� ¼ −f�; B� ¼ f−1� ; C� ¼ r2�;

f� ≔ 1 −
2m�
r�

−
Λ�
3

r2�; ϵþ ¼ ϵ−≕ ϵ: ð57Þ

The condition that the two metrics are same on null
hypersurface, Eq. (5), now yields just a simple relation,

rþðλÞjΣ ¼ r−ðλÞjΣ; ð58Þ

and consequently r
∘
þ ¼ r

∘
−. kα� and N�

α are given by

kα�∂α� ¼ ϵ�r
∘
�f−1� ∂�

t þ r
∘
�∂�

r ; ð59Þ

N�
α dxα ¼ −

ϵ�f�
2r
∘
�

dt −
1

2r
∘
�
dr: ð60Þ

Transverse curvature on the both sides is now given by

C�
λλ ¼ 0 and C�

ab ¼ −
f�σ�ab
2r�r

∘
�
: ð61Þ

μ and p are written as

8πμ ¼ 1

rr
∘
�
2

r
ðm− −mþÞ þ

r2

3
ðΛ− − ΛþÞ

�
; ð62Þ

p ¼ 0; ð63Þ

where we defined r ≔ rþðλÞjΣ ¼ r−ðλÞjΣ. When one
adopts an observer who sticks in the coordinates in M−,
a 4-velocity takes the form uα−∂α ¼ ∂t, and hence Eshell can
be evaluated as

Eshell ¼ ϵ

�
ðm− −mþÞ þ

r3

6
ðΛ− − ΛþÞ

�
: ð64Þ

Equation (64) describes the general result of shell energy
seen by a distant observer. We find Eq. (64) is a quartic
function of r. If the gap of the cosmological constant is
zero, ½Λ� ¼ 0, the distant observer will measure a constant
energy (luminosity). Otherwise, the energy is a function of
r3 that diverges at infinity.
Below, we investigate the models of a spontaneous decay

of Minkowski, the end of inflation, and black hole
formation as a consequence of contraction/expansion of
the null shell. We consider these scenarios as special cases
of Eq. (64).

1. Spontaneous decay of Minkowski

We consider a case of the Minkowski solution in M−

and the negative-mass Schwarzschild solution in Mþ.
Then, we take parameters as follows:

m− ¼ 0; mþ ¼ −jmþj; Λ� ¼ 0; ϵ ¼ þ1:

ð65Þ

This choice of geometries describes a spontaneous decay
of Minkowski, a sudden appearance of a naked singularity
that has a negative mass. In this case, the null energy
emitted from the singularity is evaluated as

μ ¼ jmþj
4πr2r

∘ ; Eshell ¼ jmþj: ð66Þ

Since a negative-mass Schwarzschild spacetime describes
a naked singularity, an appearance of a naked singularity
occurs in a flat spacetime after a null explosion having a
positive energy.
One can consider another spontaneous decay model that

shows more violent behavior than the previous one.

0.5 1.0 1.5 2.0 2.5
R

1

2

3

4

5
Eshell

a 0

a 0.5

a 0.63

a 0.638

FIG. 3. Values of Eshell in Eq. (56) for each a. We fixedM, say,
jMj ¼ 1.
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Suppose that the null shell starts to expand from the center
in Minkowski spacetime, and also suppose that the inside
of the null shell is AdS spacetime. Then, this is the situation
that also describes a spontaneous decay of Minkowski, the
instability of Minkowski spacetime. In this scenario, the
past of Σ, i.e., M−, is Minkowski, and the future of Σ, i.e.,
Mþ, is AdS spacetime:

m� ¼ 0; Λ− ¼ 0; Λþ ¼ −jΛj; ϵ ¼ þ1:

ð67Þ

Then, we have

μ ¼ jΛjr
24πr

∘ ; Eshell ¼
jΛj
6

r3; ð68Þ

which is a monotonically increasing function of r.

2. End of inflation

Let us take the Minkowski solution in M− and the de
Sitter solution inMþ. This case is an example of the end of
inflation and realized by taking parameters as follows:

m� ¼ 0; Λþ ¼ 0; Λ− > 0; ϵ ¼ þ1: ð69Þ

Then, the energy is given by

μ ¼ Λ−r

24πr
∘ ; Eshell ¼

Λ−

6
r3: ð70Þ

Another example of the end of inflation is given by
taking the parameters as

m� ¼ 0; Λ− > Λþ; ϵ ¼ þ1: ð71Þ
Then, the energy is given by

μ ¼ ðΛ− − ΛþÞr
24πr

∘ ; Eshell ¼
ðΛ− − ΛþÞ

6
r3: ð72Þ

3. Black hole formation

An imploding null shell can result in black hole
formation. We take such an example by considering the
choice of the Minkowski solution inM− and positive-mass
Schwarzschild solution in Mþ, i.e.,

m− ¼ 0; mþ > 0; Λ� ¼ 0; ϵ ¼ −1: ð73Þ

Then, the energy is given by

μ ¼ mþ
4πr2ð−r∘Þ

; Eshell ¼ mþ; ð74Þ

which is positive definite. Here, μ is positive because of

shrink of the shell, i.e., r
∘
< 0.

4. Bubble nucleation

One can consider the phenomenological model of
nucleation of the bubble, which is caused by transition
of the false vacuum. Let us take parameters as follows:

m� ¼ 0; Λ− > Λþ; ϵ ¼ þ1: ð75Þ

Then, the energy is given by

μ ¼ ðΛ− − ΛþÞr
24πr

∘ ; Eshell ¼
ðΛ− − ΛþÞ

6
r3: ð76Þ

In our case, the bubble propagates as the speed of light.
The spacetime before the shell passes is de Sitter, and the
spacetime after passing through the shell can be de Sitter
(Λþ > 0), Minkowski (Λþ ¼ 0), and AdS (Λ− < 0).

IV. CONCLUSION

We developed models of a radiation emitted from regions
with extremely high curvature. For this purpose, we derived
a general formula that describes an imploding or exploding
null shell in general spherically symmetric spacetime. The
energy is defined and evaluated as a surface energy of a null
hypersurface, the null shell.
In general relativity, since one does not have predict-

ability on the evolution of a spacetime after a Cauchy
horizon is formed, the future of spacetimes made by
matching on Cauchy horizons is not a unique specification.
Thus, we have investigated examples of filling the space-
time inside of the Cauchy horizon and showed possibilities
on the future evolution of a singularity formation. We have
proposed several models that can describe dynamical
processes of radiating energy, followed by the gravitational
collapse of a star.
In the first example, we constructed a model of energy

emission by matching two self-similar marginally bound
LTB spacetimes at their Cauchy horizons. Since the
equation of the Cauchy horizon in the self-similar dust
is well known, we can operate the explicit calculation for
the matching. Our model describes an isotropic energy
emission from the singularity. Because of the construction
of this model, a null shell starts expanding from the position
of the singularity and carries certain energy that propagates
along the Cauchy horizon. If we assume positive definite-
ness of the propagating energy, a condition a− > aþ must
hold. We also derived an equation for the surface pressure
that is defined on Σ. We found the surface energy μ is
caused by the difference between the initial profiles κþ and
κ− in the two dust spacetimes. Such a structure is
qualitatively the same as a model presented by Jhingan
et al. [44]. They analyzed a model of matching the two
Vaidya spacetimes at their Cauchy horizons and found the
surface energy is obtained as the difference between the
mass function in the (þ) side and in the (−) side.
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We also proposed various examples focused on static
spherically symmetric models. In most examples, Eshell, or
equivalently the absolute value of luminosity, is propor-
tional to the power of r. It is clear from Eq. (64) that
luminosity is constant if and only if the both cosmological
constants are identical. Thus, the increasing property of
luminosity in Eqs. (68), (70), (72), and (76) is caused by the
presence of difference between Λþ and Λ−. Since the
cosmological constant can be interpreted as cosmological
fluid, such an increasing shell’s energy should be supplied
by the fluid, which is similar to the previous example
treating dust spacetime in which increasing luminosity is
caused by infalling dust fluid.
Constant energy or luminosity, such as in the case of

spontaneous decay of Minkowski, occurs only if Λþ ¼ Λ−.
Since there is no energy supply, constant energy is taken to
be the pure energy emitted from the central singularity.
We stress that the origin of emitted energyEshell is divided

into two parts: energy itself from singularity and energy
supply from the fluid around the shell. Expanding null shell
must increase its energy by absorbing the energy of the
neighboring fluid. In some parts of the paper, we investigated
the behavior of expanding null shells in spacetime filled with
fluid (self-similar LTB or cosmological fluid). In such

situations, dust/cosmological fluid spreads to spatial infinity
as a simple example in calculation. In this case, due to the
constant energy supply to the shell from the fluid, a distant
observer would measure a violently energetic and luminous
shell. On the other hand, the shell propagates having constant
energy/luminosity in the case without fluid.
Lastly, we note that in the astrophysical situation a fluid

spreads to a certain radius, so the energy supply is cut off
at the radius, and after the null shell passes through that
radius, the shell’s energy/luminosity should become a
constant. Thus, such energy emission models created from
higher curvature regions could be one of the possible
candidates playing the role of high-energy phenomena in
the Universe.
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