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We investigate the efficiency of screening mechanisms in the hybrid metric-Palatini gravity. The value of
the field is computed around spherical bodies embedded in a background of constant density. We find a thin
shell condition for the field depending on the background field value. To quantify how the thin shell effect is
relevant, we analyze how it behaves in the neighborhood of different astrophysical objects (planets, moons,
or stars). We find that the condition is very well satisfied except only for some peculiar objects. Furthermore
we establish bounds on the model using data from Solar System experiments such as the spectral deviation
measured by the Cassini mission and the stability of the Earth-Moon system, which gives the best constraint
to date on fðRÞ theories. These bounds contribute to fix the range of viable hybrid gravity models.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe [1,2] brings to cosmology one of the most
remarkable puzzles because standard matter cannot act
as an engine for such a phenomenon. The straightforward
solution is to search for an exotic fluid, dubbed as dark
energy, capable of giving rise to observed cosmic accel-
eration. Another solution is to modify or extend the theory
of general relativity (GR) in order to explain geometrically
the phenomenon. This has been done in recent years and
leads to numerous theories of modified gravity where
curvature or torsion invariants or scalar fields can be
considered as sources into the effective energy-momentum
tensor in the right-hand side of the field equations (see,
e.g., [3–12]).
The main challenge for modified gravity theories is the

measurements of the gravitational strength on Earth and in
the Solar System [13], where the predictions of GR have
been confirmed with great precision. A viable solution to
this issue is to take advantage of the so-called screening

mechanism, which restores GR in the Solar System. In
other words, the effects of any modified gravity have to
start to work at larger (infrared) scales than those where the
weak field limit of GR works very well. Screening
mechanisms [14] are usually triggered by large local matter
density or space-time curvature and lead to a convergence
of the gravitational strength to its value predicted by GR at
local scales. For scalar-tensor gravity several possible
screening mechanisms have been discussed (see, e.g.,
[14–16]). The philosophy essentially consists in consider-
ing scalar-field couplings and self-interaction potentials
that regulate the strength of the gravitational interaction
according to the scale.
Among the various possibilities, fðRÞ gravity is a viable

mechanism to generate the speeding up expansion for
primordial cosmic inflation [17] and late-time acceleration
[18]. The approach consists in the straightforward pos-
sibility to extend GR by considering generic functions of
the Ricci scalar R in the Einstein-Hilbert Lagrangian
instead of only the linear action in R. Two different
variational approaches are usually applied to this class of
extended theories of gravity, namely, the metric and the
Palatini formalisms. In the former case, the connections are
assumed to be the Christoffel symbols and the variation of
the action is taken with respect to the metric, while in the
latter the metric and the affine connections are regarded as
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independent fields, such that the variation is taken with
respect to both. As it is well known, these approaches lead
to different equations of motion, being equivalent only in
the case of a linear action (GR). However, some short-
comings come out in both metric and Palatini approaches,
and none of them are completely free of problems when
addressing the dynamics of the Universe at any extraga-
lactic and cosmological scale [3].
Recently, a new class of extended theories of gravity,

consisting of the superposition of the metric Einstein-
Hilbert Lagrangian with an fðRÞ term constructed à la
Palatini has been proposed in Refs. [19,20]. Using the
equivalent scalar-tensor representation, it can be shown that
a theory, which can also be formulated in terms of the
quantity X ≡ T þ R, where T and R are the traces of the
energy-momentum and Ricci tensors, respectively, is able
to modify the cosmological large-scale structure without
affecting the Solar System dynamics. Such results have
motivated a number of analyses on this class of theories.
Cosmological consequences of the so-called hybrid metric-
Palatini gravity, including criteria to obtain cosmic accel-
eration [20], dynamical solutions [21], the dark matter
problem [22], among others [23–27], have been inves-
tigated. However, the main conceptual reason for intro-
ducing hybrid gravity is the following. As discussed in
detail in [28], if fðRÞ gravity is represented in the scalar-
tensor form, i.e., in a Brans-Dicke-like representation, one
obtains that the Brans-Dicke parameter is ωBD ¼ 0 for the
metric approach and ωBD ¼ −3=2 for the Palatini approach
(see below). Both of them are incompatible with the Solar
System constraints, so it seems that any straightforward
extension of GR cannot be compared with celestial dynam-
ics because the original Brans-Dicke theory indicates that
ωBD → ∞. The shortcoming is overcome assuming that the
standard GR part of the action, i.e., R, is metric, while the
further degrees of freedom of the gravitational field, i.e.,
fðRÞ, are Palatini. In this sense, the connections acquire a
dynamical role and cure the shortcomings of both metric
and Palatini representations. In fact, the scalar-field repre-
sentation of hybrid gravity, as we will see, can easily be
compared to GR because the scalar field derived from the
Palatini part has a clear dynamical role consisting in kinetic
and potential components. Another important motivation
comes from galactic dynamics. It is well known that the
weak-field limit of any analytic fðRÞ model gives rise to
Yukawa-like corrections into the Newtonian potential. This
result is useful to reproduce the rotation curve of galaxies
and the galactic cluster dynamics without assuming huge
amounts of dark matter [29,30]. Despite this good feature,
the correction parameter is fixed by the theory and it is
difficult to match the observations in a realistic way. As
discussed in [31], the weak field limit of hybrid gravity
allows one to overcome this shortcoming because the
correction parameter is related to the dynamical scalar
field and then depends on the boundary conditions of the

self-gravitating system that one is considering. We refer the
reader to [28] for a review on the motivations for intro-
ducing hybrid gravity.
In this paper, we investigate the efficiency of screening

mechanisms in the hybrid metric-Palatini fðXÞ gravity. We
compute the value of the field around spherical bodies
embedded in a background of constant density and impose
bounds on the model using data from Solar System
experiments, such as the spectral deviation measured by
the Cassini mission and the stability of the Earth-Moon
system. In Sec. II, we sketch the hybrid metric-Palatini
formalism. The scalar-tensor representation of this class of
extended gravity theories is discussed in Sec. III. The thin
shell effect is studied in detail in Sec. IV, where some
numerical values are derived for the Solar System planets
and stars that host exoplanets. The behavior of fðXÞ gravity
in the neighbors of astrophysical bodies is discussed in
Sec. V. Using data from the Cassini mission and the bound
conditions of the Earth-Moon system, we derive stringent
bounds for these classes of models. A summary of the
results and a final discussion are reported in Sec. VI.

II. THE HYBRID METRIC-PALATINI
f(X) GRAVITY

The action of hybrid metric-Palatini gravity can be
written as [19,20]

S ¼ M2
pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðR̂Þ� þ Smðgμν;ΨÞ; ð1Þ

where Smðgμν;ΨÞ is the matter action, Mpl is the Planck
mass, R is the Ricci scalar (in the metric formalism), and
R̂≡ gμνR̂μν is the Ricci curvature scalar in the Palatini
formalism. Such a Ricci curvature tensor is defined in terms
of an independent connection (Γ̂α

μν) as

R̂μν ≡ Γ̂α
μν0α − Γ̂α

μα0ν þ Γ̂α
αλΓ̂λ

μν − Γ̂α
μλΓ̂λ

αν: ð2Þ
Varying the action (1) with respect to the metric, we obtain
the following gravitational field equations:

Gμν þ FðR̂ÞR̂μν −
1

2
fðR̂Þgμν ¼

Tμν

M2
pl

; ð3Þ

where FðR̂Þ ≔ df=dR̂ and the matter energy-momentum
tensor is defined as

Tμν ≡ −
2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp

LmÞ
∂gμν : ð4Þ

Varying the action with respect to the independent con-
nection, Γ̂α

μν, we find that the solution of the equations of
motion is such that Γ̂α

μν is compatible with the metric
ĝμν ¼ FðR̂Þgμν, conformally related to the physical metric
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by a conformal factor FðR̂Þ≡ dfðR̂Þ=dR̂ (see [3] for
details). This implies that

R̂μν ¼ Rμν þ
3

2

FðR̂Þ0μFðR̂Þ0ν
F2ðR̂Þ −

∇μFðR̂Þ0ν
FðR̂Þ −

gμν∇2FðR̂Þ
2FðR̂Þ :

ð5Þ

Taking the trace of Eq. (3), we find that the relation between
the Ricci curvature scalar R, in metric formalism, and the
curvature R̂, in the Palatini formalism, is given by

FðR̂ÞR̂ − 2fðR̂Þ ¼ Rþ T
M2

pl

≡ X: ð6Þ

Therefore if the form of fðR̂Þ allows analytic solutions,
then R̂ can be expressed algebraically in terms of X. The
variable X quantifies how much the theory deviates from
GR, which gives the trace equation R ¼ −T=M2

pl. Indeed,
the field Eq. (3) can be expressed in terms of the metric and
X as

Gμν ¼ F0ðXÞ∇μX0ν − FðXÞRμν

þ 1

2
½fðXÞ þ F0ðXÞ∇2X þ F00ðXÞð∂XÞ2�gμν

þ
�
F00ðXÞ − 3

2

ðF0ðXÞÞ2
FðXÞ

�
X0μX0ν þ

Tμν

M2
pl

; ð7Þ

whose trace gives

F0ðXÞ∇2X þ
�
F00ðXÞ − ðF0ðXÞÞ2

2FðXÞ
�
ð∂XÞ2

þ X þ 2fðXÞ − FðXÞR
3

¼ 0; ð8Þ

and the relation between R and R̂ finally reduces to

R̂ðXÞ ¼ Rþ 3

2

��
F0ðXÞ
FðXÞ

�
2

− 2
∇2FðXÞ
FðXÞ

�
; ð9Þ

which is obtained by contracting Eq. (5).

III. SCALAR-TENSOR REPRESENTATION

As in the pure metric and Palatini cases [32,33], the
action (1) can be turned into that of a scalar-tensor theory
by introducing an auxiliary field χ. The new action is
given by

S ¼ M2
pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ fðχÞ þ fχðR̂ − χÞ� þ Smðgμν;ΨÞ;

ð10Þ

where the subindex χ denotes the derivative with respect to
the field χ. Varying it with respect to χ, we find that
fχχðR̂ − χÞ ¼ 0, which means that it is equivalent to the
action (1) since R̂ ¼ χ for fχχ ≠ 0. Defining a field as
ϕ≡ fχ and its potential as UðχÞ ¼ χfχ − fðχÞ, the action
(10) becomes

S¼M2
pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþϕR̂−UðχÞÞ þ Smðgμν;ΨÞ: ð11Þ

Varying the above expression with respect to the metric, the
scalar field and the independent connection leads to the
field equations

Rμν þ ϕR̂μν −
1

2
ðRþ ϕR̂ −UðϕÞÞgμν ¼

Tμν

M2
pl

; ð12aÞ

R̂ ¼ dU
dϕ

; ð12bÞ

∇̂αð
ffiffiffiffiffiffi
−g

p
ϕgμνÞ ¼ 0; ð12cÞ

respectively.
The solution of Eq. (12c) implies that the independent

connection is the Levi-Cività connection of a metric ĝμν ¼
ϕgμν. Therefore, the relation (5) can now be rewritten as

R̂μν¼Rμνþ
3

2ϕ2
∂μϕ∂νϕ−

1

ϕ

�
∇μ∇νϕþ

1

2
gμν∇2ϕ

�
; ð13Þ

which can be used in the action (11) to eliminate the
independent connection and obtain the following scalar-
tensor representation (which belongs to the “Algebraic
Family of Scalar-Tensor Theories”) [34]:

S ¼ M2
pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
ð1þ ϕÞRþ 3

2ϕ
ð∂ϕÞ2 −UðϕÞ

�

þ Smðgμν;ΨÞ: ð14Þ

Using Eqs. (12a), (12b), and (13), the metric field equations
can be written as

ð1þ ϕÞRμν ¼
1

M2
pl

�
Tμν −

1

2
gμνT

�
þ 1

2
gμν½UðϕÞ þ∇2ϕ�

þ∇μ∇νϕ −
3

2ϕ
∂μϕ∂νϕ; ð15Þ

or, equivalently, as

ð1þ ϕÞGμν ¼
Tμν

M2
pl

þ∇μ∇νϕ − gμν∇2ϕ −
3

2ϕ
∇μϕ∇νϕ

þ 3

4ϕ
ð∇ϕÞ2gμν −

1

2
UðϕÞgμν; ð16Þ
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which clearly show that the spacetime curvature is sourced
by both the matter and the scalar field.
As discussed above, the scalar field equation can be

manipulated in two different ways that illustrate how the
hybrid models combine physical features eliminating the
shortcoming of Brans-Dicke theory in both metric and
Palatini formalism, being ωBD ¼ 0 for the metric approach
and ωBD ¼ −3=2 for the Palatini approach for scalar-tensor
models [28]. First, tracing Eq. (12a) with gμν, we find
−R − ϕR̂þ 2UðϕÞ ¼ T=M2

pl, and using Eq. (12b), it takes
the following form:

X ≡ Rþ T
M2

pl

¼ 2UðϕÞ − ϕ
dU
dϕ

: ð17Þ

Similar to the Palatini (ωBD ¼ −3=2) case, this equation
tells us that the field ϕ can be expressed as an algebraic
function of the scalar X, i.e., ϕ ¼ ϕðXÞ. In the pure Palatini
case, however, ϕ is just a function of T. The right-hand side
of Eq. (15), therefore, besides containing new matter terms
associated with the trace T and its derivatives, also contains
the curvature R and its derivatives. Thus, this theory can be
seen as a higher-derivative theory in both matter and metric
fields. However, such an interpretation can be avoided if R
is replaced in Eq. (17) by the relation

R ¼ R̂þ 3
∇2ϕ

ϕ
−
3

2

�∂ϕ
ϕ

�
2

ð18Þ

together with R̂ ¼ dU=dϕ. One then finds that the scalar
field is governed by the second-order evolution equation
that becomes

−∇2ϕþ 1

2ϕ
ð∂ϕÞ2 þ ϕ

3

�
2UðϕÞ − ð1þ ϕÞ dU

dϕ

�
¼ ϕ

3M2
pl

T;

ð19Þ
which is an effective Klein-Gordon equation. This last
expression shows that, unlike the Palatini (ωBD ¼ −3=2)
case, the scalar field is dynamical. The theory is therefore
not affected by the microscopic instabilities that arise in
Palatini models with infrared corrections [35].
Finally, we can perform a conformal transformation into

the Einstein frame. The conformal rescaling we need is
given by

gμν → g̃μν ¼ A2ðϕÞgμν ¼
gμν

1þ ϕ
; ð20Þ

and the Einstein frame action then becomes

S ¼ M2
pl

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
Rþ 3

2ϕ

g̃αβϕ0αϕ0β
ð1þ ϕÞ2 − VðϕÞ

�
ð21Þ

þSmðA2ðϕÞg̃μν;ΨÞ; ð22Þ

where VðϕÞ ¼ UðϕÞ=A4ðϕÞ. This can be further put into its
canonical form by introducing the rescaled field φ as

ϕ ¼ − tanh2
�

φ

2
ffiffiffi
3

p
�
≃ −

φ2

12
; ð23Þ

and the final action becomes

S ¼ M2
pl

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
1

2
R̃ −

1

2
ð∂̃φÞ2 − VðφÞ

�
ð24Þ

þSmðA2ðψÞg̃μν;ΨÞ: ð25Þ

This is a scalar-tensor theory action with a quadratic
conformal factor

AðφÞ ¼
�
1 − tanh2

�
φ

2
ffiffiffi
3

p
��

−2
≃ 1þ φ2

6
; ð26Þ

which gives the following dynamical equation for the scalar
field:

□
2φ ¼ V 0

effðφÞ; ð27Þ

where the effective potential is given by

VeffðφÞ ¼ VðφÞ − ðAðφÞ − 1ÞT̃: ð28Þ

For a pressureless matter field it becomes

VeffðφÞ ¼ VðφÞ þ ðAðφÞ − 1Þρ ¼ VðφÞ þ φ2

6
ρ: ð29Þ

The vacuum theory then becomes a canonical scalar-tensor
theory with a very specific potential [stemming out from
the original function fðR̂Þ in the Einstein frame].
With these considerations in mind, we can deal with the

screening mechanism for hybrid gravity under the same
standard of scalar-tensor theories.

IV. THE SCREENING MECHANISM

A reliable screening mechanism is certainly one of the
most important features that any modified theory of gravity
has to satisfy to be physically consistent. Such a mecha-
nism ensures that a given model is in accordance with the
local observations, such as the Solar System, exoplanetary
systems, or galaxy bounds [14]. It arises from the fact that
nonminimum couplings between the gravitational scalar
field and the matter fields give rise to fifth force effects
depending on the environment physical properties. In other
words, the screening mechanism is related to the fact that
the Mach principle is fully taken into account but GR must
be recovered to be in agreement with observations (see in
[36] for a discussion).
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A. Spherical solution

Let us consider a spherically dense body that is
embedded in a homogeneous background. Inside this
body, the matter density ρc is also a constant; i.e., ρðrÞ
is given by

ρðrÞ ¼
�
ρc; r < R

ρb; r > R
; ð30Þ

where R indicates the physical radius of the body.
In spherical coordinates, the dynamical equation (27)
reduces to

1

r2
d
dr

�
r2
dφ
dr

�
¼ V 0ðφÞ þ ρ

3
φ: ð31Þ

In the inner region (r < R), the density is much higher than
the derivative of the potential (ρc ≫ V 0), i.e.,

1

r2
d
dr

�
r2

dφ
dr

�
≃
ρc
3
φ; ð32Þ

whose solution is

φðr < RÞ
φb

¼ A
R
r
sinhmcr; ð33Þ

wherem2
c ¼ ρc=3, A is a constant, and φb is the background

value of φ. We also have used that R̂≡ R at the minimum
of the potential. In the outer region (r > R) we expand the
potential around the minimum

1

r2
d
dr

�
r2
dφ
dr

�
≃m2

bðφ − φbÞ; ð34Þ

where m2
b ¼ V 00

effðφbÞ ≈ −fR=3fRR is the background
mass. The solution is

φðr > RÞ
φb

¼ 1 − B
R
r
e−mbðr−RÞ; ð35Þ

where B is a constant. Imposing that φðr ¼ R−Þ ¼
φðr ¼ RþÞ and φ0ðr ¼ R−Þ ¼ φ0ðr ¼ RþÞ as boundary
conditions we find the values of A and B

A ¼ 1þmbR
ðmcRÞ coshðmcRÞ þ ðmbRÞ sinhðmcRÞ ; ð36aÞ

B ¼ ðmcRÞ coshðmcRÞ − sinhðmcRÞ
ðmcRÞ coshðmcRÞ þ ðmbRÞ sinhðmcRÞ : ð36bÞ

Writing the solution for ϕ ≃ −φ2=12 we finally get the
solution

ϕðr > RÞ ≃ ϕb

�
1 − 2B

R
r
e−mbðr−RÞ

�
: ð37Þ

B. The thin shell effect

The screening mechanism works well when the fifth
force is suppressed by a physical mechanism, which means
that the field turns null in desirable conditions (of density or
scale, for instance). The potential for a typical massive
scalar field is a Yukawa potential, where the amplitude and
the range depend on the environment properties. The thin
shell effect takes place when the amplitude tends to zero in
the neighbors of a compact object. It may happen in typical
chameleon fields, whose solution around a sphere of
constant density is

ϕðr > RÞ ¼ ϕb þ ðϕc − ϕbÞ
R
r
e−mbðr−RÞ; ð38Þ

which is identical to the solution found in the previous
section, if one defines ϕc ¼ ϕbð1þ 2BÞ. It means that we
can also define a thin shell parameter in the fðXÞ case as

ΔR
R

¼ ϕg − ϕc

6ΦS
¼ −

B
3ΦS

ϕg: ð39Þ

Therefore,

ϕðrÞ ¼ ϕb þ
3

4π

ΔR
R

Mc

r
e−mbðr−RÞ: ð40Þ

The required condition,ΔR=R ≪ 1, is satisfied for B ≪ 1.
According to the solution, it happens when mcR ≪ 1, and
the amplitude may be approximated as

B ≃
1

3
m2

cR2 ¼ 1

9
ρcR2; ð41Þ

which no longer depends on mb. Thus,

B
3ΦS

¼ 1

fR

ΔR
R

¼ 1

36π
∼ 10−2; ð42Þ

TABLE I. The thin shell parameters for the Solar System planets.

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

jεj 1.6 × 10−5 9.9 × 10−5 2.9 × 10−4 3 × 10−3 1.9 × 10−5 4.6 × 10−2 1.2 × 10−2 8 × 10−3
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which means that, for enough compact objects, the thin
shell can be approximated by the condition

ΔR
R

≃
fR
36π

: ð43Þ

In other words, this amounts to say that the screening
depends only upon the value of the field in the background.
Using the values of the Sun (ρ⊙ ¼ 1.408 g · cm−3,
M ¼ 1 M⊙, and R ¼ 1R⊙), we find a value much closer
to the predicted one, that is,

ε⊙ ¼ 1 −
36π

fR⊙

ΔR⊙

R⊙
≃ 1.3 × 10−3: ð44Þ

Table I shows the values of ε for the Solar System planets.
In Fig. 1 we show how ε is distributed (a) for the Solar
System moons1 and (b) for stars that host exoplanets.2 We
can see that the screening conditions are satisfied in most of
those objects, except for a very small fraction. It means that
the previous assumptions, spherical symmetry and constant
density, may not be valid or that the thin shell effect does
not work. Therefore, these objects are very important in the
study of modified gravity theories. Notably, the Solar
System moons are the most promising cases, due to their
proximity.
In the next section we find some bounds for the back-

ground value of the field through the analysis of the thin
shell effect in the Earth-Moon system.

V. ASTROPHYSICAL TESTS

To test the viability of the fðXÞ theory we analyze how it
behaves in the neighbors of astrophysical bodies, such as
planets, moons, and stars. The field generated by these
bodies can be described as small perturbations on the
background value, which means that we can use the weak-
field approximation. The perturbed metric, in the Jordan
frame, is given by

ds2¼−½1−2AðrÞ�dt2þ½1þ2BðrÞ�ðdr2þ r2dΩ2Þ; ð45Þ

where A and B are functions of r. The post-Newtonian
parameter γ ¼ AðrÞ=BðrÞ, in this context, is approxi-
mated to

γ ≃
1 − ΔR=R
1þ ΔR=R

; ð46Þ

provided that mbr ≪ 1, which is well satisfied in the fðXÞ
case. Here the mass of the field, mb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijfRbj=3fRb
p

, is
much smaller than in a metric fðRÞ, mb ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
3fRb

p
,

since fRb ≪ 1.

A. Solar System constraints

The most direct bound that one can impose on fðXÞ
theories comes from the existence of the Earth atmosphere.
The idea is that it can exist in a fðXÞ gravity only if the thin
shell is smaller than the ratio between the atmosphere
height and the Earth radius, i.e.,

ΔRatm

Ratm
<

hatm
R⊕

: ð47Þ

Using hatm ∼ 102 km and R⊕ ≃ 6.3 × 103 km we find that
ΔRatm=Ratm < 1.6 × 10−2 and, therefore,

jfRgj < 1.8: ð48Þ

We also find very similar bounds using exoplanets data.
Following the method proposed in [37] we find that
jfRgj < 2.6.
Currently, the most restrictive measure of the deviations

from the general relativity is the one found by the Cassini
Mission [38]. This mission provides data of light spectral
deviation from gravity. The observed value indicates that
gravity, inside the Solar System, is in good agreement
with the general relativity. The measured PPN parameter

FIG. 1. Frequency of the thin shell parameter for the (a) Solar System moons and (b) stars that host planets.

1https://www.wolframalpha.com/examples/SolarSystem.html.
2http://exoplanets.org/.
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is jγ⊙ − 1j < 2.3 × 10−5, which gives the following con-
straints for the thin shell parameter:

ΔR⊙

R⊙
< 1.15 × 10−5: ð49Þ

Therefore,

jfRgj < 1.3 × 10−3: ð50Þ

Finally, we find that the most stringent bounds come
from the imposition that the Earth-Moon system must
remain bounded; these are the best constraints in a thin shell
which we can reach so it should give the best constraints on
the background scalar field too. Such conditions can be
expressed by the following inequality:

η ¼ 2
jamoon − a⊕j
amoon þ a⊕

< 10−13; ð51Þ

where amoon and a⊕ stand for the Moon and Earth
accelerations, respectively [see [39] for a discussion in
the case of fðRÞ gravity]. In a fðXÞ gravity scenario they
depend directly on the Earth thin shell parameter, i.e.,

a⊕ ≃
GM⊙

r2

�
1þ 3

�
ΔR⊕

R⊕

�
2Φ⊕

Φ⊙

�
; ð52aÞ

amoon ≃
GM⊙

r2

�
1þ 3

�
ΔR⊕

R⊕

�
2 Φ2

⊕

Φ⊙Φmoon

�
; ð52bÞ

which gives the following value for the thin shell parameter
ΔR⊕
R⊕

< 2 × 10−6 or, equivalently, jfRgj < 2.3 × 10−4.

VI. CONCLUSIONS

The hybrid metric-Palatini fðXÞ approach consists of the
superposition of the metric Einstein-Hilbert action with an
fðR̂Þ term constructed à la Palatini [19,20,28]. In this work
we have investigated the efficiency of the screening
mechanism for this class of extended gravity theories.
We have computed the value of the field around spherical
bodies embedded in a background of constant density and

found that, under such conditions, the field is given by
Eq. (37), whose solution depends only on the value of the
field at the background for most of the spherical self-
gravitating objects, i.e., ΔR=R ≈ fRb=36π.
The viability of the model has been evaluated comparing

how the thin shell factor behaves in the neighborhood of
different astrophysical objects, such as planets and moons,
such as the Sun and other stars that host planets. We find
that the condition is very well satisfied except only for
some peculiar objects, which may be important for future
studies, mainly the ones close to us such as the Solar
System moons.
We have also derived some bounds on the model using

data from the Solar System, such as the spectral deviation
measured by the Cassini mission [38,40]. The most
stringent constraints come from the condition (51), which
is necessary to keep the Earth-Moon as a bounded system.
It requires that the value of the field at the Galaxy
background (fRg) must be less than 2.3 × 10−4. We
emphasize that the kind of analysis presented here helps
in understanding some additional properties of this class of
theories out of the cosmological context, where they seem
to provide viable alternatives to GR scenarios driven by the
dark matter and dark energy fields.
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