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We propose a boundary term to the Einstein-Gauss-Bonnet action for gravity, which uses the Chern-Weil
theorem plus a dimensional continuation process, such that the extremization of the full action yields the
equations of motion when Dirichlet boundary conditions are imposed. When translated into tensorial
language, this boundary term is the generalization to this theory of the Katz boundary term and vector for
general relativity. The boundary term constructed in this paper allows to deal with a general background
and is not equivalent to the Gibbons-Hawking-Myers boundary term. However, we show that they coincide
if one replaces the background of the Katz procedure by a product manifold. As a first application we show
that this Einstein Gauss-Bonnet Katz action yields, without any extra ingredients, the expected mass of the

Boulware-Deser black hole.
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I. INTRODUCTION

The Gibbons-Hawking-York (GHY) boundary term [1,2]
when added to the Einstein-Hilbert action for general
relativity, and its generalization by Myers [3] to the case
of higher-dimensional Gauss-Bonnet and Lovelock theories
of gravity, guarantees a Dirichlet variational principle, that
is, the extremization of the full action yields the Einstein/
Gauss-Bonnet/Lovelock equations of motion when Dirichlet
boundary conditions are imposed (see also Refs. [4—6]).

As is well known, the Myers boundary terms can be
written in the language of differential forms, making use of
the Chern-Weil theorem [7] together with a dimensional
continuation procedure (see, e.g., Refs. [8,9]). The Chern-
Weil theorem basically states that, given two gauge con-
nection one-forms, the difference between two invariants
constructed with their corresponding strength field is an
exact form, i.e., the exterior derivative of an odd-form,
which is called a transgression form. Transgression forms
can be regarded as the generalization of Chern-Simons
(CS) forms [10] by the inclusion of a second gauge field,
and the Gibbons-Hawking-Myers (GHM) terms that define
the Dirichlet problem in Lovelock gravity can be regarded
as dimensional continuations of transgression forms for the
Lorentz symmetry. An essential feature of the procedure to
write the GHM boundary terms in the vielbein formalism is
that the second gauge field must be defined on a product
manifold, which is just an auxiliary manifold whose
boundary has extrinsic curvature that is identically zero
and coincides with the spacetime boundary. Thus, after
using Gaussian coordinates, we recover the known expres-
sion which depends only on dynamical tensors of the
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boundary, and the Dirichlet problem is solved in a back-
ground-independent way."

A problem one has to deal with after having a well-posed
variational principle with the GHM procedure is that the
Dirichlet action and conserved charges obtained after
applying Noether’s theorem usually diverge. In the
Einstein-Hilbert case the action can be regularized by
the Hawking-Horowitz boundary term [15], which just
makes a background2 subtraction in the GHY term. When a
negative cosmological constant is added, a background-
independent regularization can be achieved by subtracting
counterterms that depend on the intrinsic geometry of the
boundary. This method, known as holographic renormal-
ization, becomes technically involved in higher dimensions
and a closed expression for these Dirichlet counterterms
does not exist for a generic Lovelock gravity. Remarkably,
a universal regularization prescription for any Lovelock

"Transgression forms have found physical applications in
different contexts. For example, they were used in Ref. [11] to
show that a four-dimensional gauged Wess-Zumino-Witten
(WZW) Lagrangian arises from a five-dimensional Einstein-
Gauss-Bonnet Lagrangian with special coefficients and that
general relativity is a dynamical sector of this WZW theory
where the symmetry is broken down to Lorentz. On the other
hand, in Refs. [12,13] it was proved that even-dimensional
topological gravity [14] can be obtained from a CS and a
transgression field theory invariant under the Poincaré group.

By background we mean a vacuum solution (usually a
maximally symmetric space) that is connected by a continuous
parameter to the solution under study. We also remark that a
product manifold cannot be a background (e.g., global AdS and
Minkowski).

© 2018 American Physical Society
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theory with anti—de Sitter (AdS) asymptotics was provided
in Refs. [16,17] using boundary terms that depend on the
extrinsic curvature, also known as Kounterterms. This
procedure modifies the boundary conditions, as it is the
extrinsic curvature that is kept fixed at the boundary.
However, as was shown in Ref. [18], these kind of
conditions arise naturally from the asymptotic form of
the fields in the Fefferman-Graham expansion, and thus it is
suitable to deal with the variational problem in a wide set of
gravity theories that support asymptotically AdS solutions.

An alternative background-dependent boundary term to
solve both the Dirichlet and regularization problems in
Einstein-Hilbert theory was proposed by Katz [19] (see also
Ref. [20]). There the Dirichlet variational problem was
solved by adding to the covariantized action the divergence
of a vector which is constructed from the metric and the
difference of the Christoffel symbols of the dynamical and
background manifolds. The Katz boundary term ensures
that the variational principle is well defined for Dirichlet
boundary conditions and, together with a background
subtraction, that Noether charges are finite. A nontrivial
problem is finding a suitable Katz vector for each theory.
For example, in Ref. [21] a Katz-like vector for Einstein-
Gauss-Bonnet (EGB) gravity was proposed in such a way
that the expected mass as well as the expected thermody-
namics of the Boulware-Deser black hole [22] and its
rotating generalization (see Ref. [23]) were obtained.
However, it was pointed out that the construction of the
vector giving these results was not unique and that the
proposed vector did not solve the Dirichlet problem.

In this work we follow a new route to propose alternative
boundary terms, whose construction is also based on the
structure of the Chern-Weil theorem. These boundary terms
still guarantee a Dirichlet variational principle and will
allow us to write the Katz [19] boundary term in the
language of vielbeins, thus putting it on a footing similar to
the Gibbons-Hawking-York boundary term.

We will then generalize the construction to the Gauss-
Bonnet theory and it will be shown—in the language of
differential forms—that this proposal solves the Dirichlet
problem. When transposed into tensorial form, this will
provide us with a unique generalization of the Katz vector
for the Gauss-Bonnet action. As a first application, we
compare the obtained Einstein-Gauss-Bonnet-Katz action
to the one proposed in Ref. [21] and show that it yields—
without any extra ingredients—the expected mass and
hence the expected thermodynamics of the Boulware-
Deser black hole [22].

This article is organized as follows. In Sec. II we review
and compare different boundary terms known in the
literature, defining the Dirichlet problem in Einstein grav-
ity. In Sec. III we show how these boundary terms can be
written in the language of differential forms by introducing
a special hybrid spin connection. We also show how these
terms are related with the structure of the terms appearing in

the two-dimensional Chern-Weil theorem. In Sec. IV A we
review the Myers boundary term for Einstein-Gauss-
Bonnet gravity and see that it can be regarded as the
dimensional continuation of the transgression form appear-
ing in the four-dimensional Chern-Weil theorem, when the
second connection is associated with a product manifold.
Then, in Sec. IV B we use the same theorem but with the
hybrid spin connection to show how the Katz-like vector
must be defined. Finally, in Secs. IV C and IV D we show
that our proposal solves the Dirichlet problem and that the
associated Katz vector gives the right mass for the
Boulware-Deser black hole.

II. EINSTEIN GRAVITY WITH DIRICHLET
BOUNDARY TERMS: A RECAP

The Einstein-Hilbert action in D dimensions is

Dy
Iy = 1671/ V/—9gRd"x (2.1)
where Newton’s constant and the speed of light are set
equal to 1, g is the determinant of the components g,, of a
pseudo-Riemannian metric in the coordinate system x* =
{w,x'} (with w being either the time or a “radial”
coordinate, and x’ are coordinates in the boundary M
of dimension d = D — 1), the integral is taken over some
D-dimensional domain of integration (d”x = —edwd“x,
with d%x = dx' - - - dx'e and € being 1 or —1 when w is,
respectively, the “radial” or time coordinate) and R is the
scalar curvature, R = ¢“R,,,, with R, = R’ ,,, being the
Ricci tensor, R*,,, =9,I7; —--- being the Riemann
tensor, and F’,f,, are the Christoffel symbols.
The variation of Ig with respect to the contravariant
components of the metric dg** is’

Sy = — / V=0G,,64"dPx
V |h ij =

__/ IA]K)d

Here G,, = R, — % guwR is the Einstein tensor, € = —1 if
the boundary OM of M is spacelike and € =1 if it is
timelike, # is the determinant of the induced metric on O.M

6h”d‘1

(2.2)

3The calculation of g"OR,, is easily performed a la Landau-
Lifshitz in a locally inertial frame completed by covariantiza-
tion to yield \/=gg*“6R,, = 0,[\/=9(¢*6I, — ¢**617,)]. The
boundary term /=g(g**él), — g"*é17,) is easily computed
using Gaussian coordinates in which the metric reads ds> =
edw? + h;;dx'dx’ and where the components of the extrinsic
curvature are K;; = %awh,-_,..
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with components £;;, and K;; is the extrinsic curvature of

OM and K = hVK; is its trace.

In order to build a Dirichlet variational principle—that is,
in order for the extremization of the action for gravity to
yield the Einstein (vacuum) equations of motion G,, =0
when Dirichlet boundary conditions are imposed, i.e., when
6h'/ = 0 on OM—appropriate boundary terms must be
added to the Einstein-Hilbert action. The two examples we
will concentrate on are as follows:

(1) The Einstein Gibbons-Hawking-York (EGHY)
action [1,2]

Ieguy = Ig + Igny

with Iy = éLM VI Kdx,

which yields a Dirichlet variational principle since, on shell
(that is, when G,, = 0),

(2.3)

61EGHY|onihell 167 / \/|h K Kh 5hijddx7 (24)

which vanishes if Dirichlet boundary conditions (4" = 0
on QM) are imposed. As mentioned in the Introduction, the
finite action is obtained after making a background sub-
traction in the GHY term. Thus, one obtains the Einstein
Hawking-Horowitz (EHH) action [15],

Iepn = Ig + lun
with IHH—i/ N
87 Jom

where K = h'/K; is the trace of the extrinsic curvature of a
background mamfold with metric h on its boundary and
extrinsic curvature K It also ylelds a Dirichlet variational
principle since, on shell,

(2.5)

5IEHH|on shell — 167 / V |h ij = K K l hljdd

(2.6)

(2) The Einstein Katz (EK) action [19,20]

- 1
167 J pq

_ 1 _
and IE——/ v/—gRdPx, (2.7)
167 J 4
where the vector k’é is defined as [19]
—(g¢P AL, — g AL,)  with A, =TI, — l_“,,,], (2.8)

and where l_“’jp are the Christoffel symbols of the back-
ground metric g,,. To understand the origin of this

vector, we recall that the EH Lagrangian density can be

written as /=gR = /=gG + 9,(,/—gv"), where G =
(0,0, = Tls,) and o = ¢TI}, — ¢*Ty,. Then, a
variational principle with no boundary term would be
obtained by just subtracting the divergence d,(/=gv").
However, this leads to an action that is not invariant under
diffeomorphisms. Using 6g,,, = 0 and that the difference of
two Christoffel symbols is a tensor, Katz constructed the
vector kf; as a covariantized version of the vector v* and
showed that adding its divergence to the EH action allows
to obtain a well-posed variational principle for Dirichlet
boundary conditions. Indeed, using Gauss coordinates the
Katz boundary term reads

K / h kwdd
Ie= 167 / [l
1
o[ - do-k |
and thus the on-shell variation of the Einstein Katz action is
€ _ _
5IEK|onshell _F/ \% |h||:(Kij_Kij) _hij<K_K)
T JoM

hij R
+ 5 (W~ hkl)K,dl Shilddx,

(2.9)

(2.10)

which clearly vanishes if Dirichlet boundary conditions are
imposed.

One notes that the boundary terms that define the
Dirichlet actions Iggyy and Igg are not equivalent. The
first difference is that the first one is background indepen-
dent, while the second one is not. On the other hand, the
GHY boundary term /gy is covariant only with respect to
the boundary, and as a consequence its variation cancels
only the variation of the metric derivatives which are
normal to the boundary. Instead, the Katz boundary term
I¥ can be written as a fully covariant expression [Eq. (2.7)]
and is such that its variation cancels the variation of all of
the metric derivatives. Besides, as was shown in Ref. [24],
the Katz procedure is also useful for applying the varia-
tional principle when boundaries are null. However, this is
not the problem we treat in this paper.

Finally, we note that /g reduces to the action Iggyy if
the background is taken to be a product manifold. Indeed,
in that case the line element in Gaussian coordinates is
ds> = edw? + h;;(x")dx'dx/, and thus K;; = 0 because the
metric h;; on the boundary does not depend on w.

III. EINSTEIN GRAVITY AND BOUNDARY
TERMS IN THE VIELBEIN FORMALISM

Another way to address the variational problem in
Einstein’s gravity is to use the vielbein formalism. Here
one switches from the previous coordinate one-form basis
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of the cotangent spaces (dx*, with d being the exterior
derivative acting on a function f as df = d,fdx* and such
that ddx” = 0) to a tetrad one-form basis (e”) such that the
metric tensor g = g, dx* ® dx” [where ® is the tensorial
product operator and where g(9,,9,) = g, with 9, being
the conjugate coordinate basis of the tangent spaces] is
diagonalized into g = ze* ® ef, where 5,5 is the
Minkowski metric. Hence, A,B=0,1,... are Lorentz
indices which are moved with 745 and its inverse,
@’y is the (torsionless) spin connection, defined by
de? + @5 A eB = 0 where a wedge denotes the exterior
product (that is, the antisymmetrized tensorial product), e45
is the (Lorentz) Levi-Civita index such that &5; = 1, and
finally QA2 = #BCQA ., where Q45 = dw’; + 0’ A 0%
is the curvature two-form. (And similar definitions for the
barred background manifold.)

A convenient starting point is the Chern-Weil (CW)
theorem in two dimensions (see, e.g., Ref. [7]), which states
that

SAB(QAB - QAB) = d(SABéAB)

where 048 = 048 — @8, (3.1)
where @ and @*p are two given spins with curvature
two-forms Q45 and Q4. e45 is the Lorentz Levi-Civita
tensor, and the term inside the exterior derivative &,,0'? is
called the transgression form. This theorem (which can be
seen as an identity in two dimensions) suggests introducing
as a four-dimensional Einstein-Chern-Weil (ECW) action
its dimensional continuation, /gy, defined as

1
IECW = — E'ABCDQAB AN eC AN eD
32 M,

1

_E v d(&'ABCDéAB AN eC AN eD),

(3.2)

where the first term yields the Einstein-Hilbert action (2.1).
The translation uses the following relations:

1
QAB — Eefx‘eBﬂR"ﬁde" A dx?,
A_B _,C_ D __
EABCD€ €y €5 €5 = \/~9Eupo>
dx? A dx? A dx? A dx® = —ePrregiy,

Epot’?" = =288, — SL5L),

(3.3)
where x* = t,r, ¢, @, 5Z is the Kronecker symbol and ¢,,,,,,
is the Levi-Civita symbol with spacetime indices such that
Erpp = L g% = —1. Besides, the possible background
bulk term [ &,50pQ% A €€ A e must be omitted in order

to not spoil the field equations.
Now, as is well known (see, e.g., Ref. [3]) Eq. (3.2)
reproduces the FEinstein Gibbons-Hawking-York action

(2.3) if the spin connection @*? is associated with a

product manifold whose line element in Gaussian coor-
dinates is d5? = edw?® + h;;(x')dx'dx/, where the metric
l_zij on the boundary does not depend on the coordinate
normal to the boundary w. Then, the extrinsic curvature of
the background boundary vanishes, K; ;= 0, and all of the
terms containing barred quantities disappear. In this case,
the translation of Eq. (3.2) to tensorial language can only be
performed using Gaussian coordinates, i.e., if the covari-
ance is reduced to the boundary. Indeed, in Gaussian
coordinates the Lorentz indices are split as A = (n,a)
(where n is, respectively, O or 1 when € is 1 or —1), and for
@ associated with a product manifold we have the follow-
ing properties:

éab:wab_d)abzoy " = —@™ = —eK®,
with K*=ef{K'dx/ and @™ =—-d" = —ee{!K'dx' =0.

(3.4)

Then, using Gauss’ theorem for a three-form Q as
S dQ = —€ [;0, O, the boundary term in Eq. (3.2) reads

—/d(eABCDéAB AeC A eP) = 5/2€acha A el A e

=c / 4WhKdx,  (3.5)
where the last equality is obtained using
Enabe = —€E4pcs gabce?e?ei =V |h|8ijk7
dx'dx/ dxk = —ee*dx, et = —2e8'. (3.6)

On the other hand, a fully covariant translation to tensorial
language of the boundary term in Eq. (3.2) is not possible in
general. The reason is that after using the fetrad postulate,
namely, o'y = (eqelI's, + e40,e%)dx* (and a similar
expression with bars for the second connection), there is
no general way to get rid of the vielbeins to obtain an
expression depending on the metrics and Christoffel symbols
only. However, there is a case that is general enough for
which a covariant translation is possible. To show this, we
first introduce the hybrid spin connection as’

&g = (eg‘egl:‘fﬁ + e40,eB)dx”, (3.7)
where ' is the Christoffel symbol of an a priori
arbitrary background manifold M. Then, the difference
of the connections w*? = nBCwA - and @*8 = nPCa - is
given by

“The geometric properties and the proof that @*? does trans-
form as a spin connection under local Lorentz transformations
can be found in Ref. [25].
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018 = "B — B = efeBO™, (3.8)
where 0" = " — @ with
O = P = T
and " = ¢, ', = f‘gadx/’. (3.9)

If we use the hybrid connection (3.7) in the ECW action
(3.2), then this action can be translated [using the properties
given in Eq. (3.3)] into a fully covariant coordinate basis,
namely,

~ 1
IECW = — EABCDQAB AN EC VAN eD
32 My

1 ~
—% ' d(eABCDQAB A €C A eD) (310)
=3 / V=9€upe 2 A dxXP A dx°
(3.11)

d(v/=ge,,,,0" A dx’ A dx°),
32” M, ( gg;wpﬁ )

with Q' = g**Q¥, and &, = IR*,5,dx’ A dx”. Hence,
the use of the hybrid connection (3.7) provides a way to
translate the boundary term in the ECW action (3.10) into a
fully covariant coordinate basis (3.11).

These remarks pave the way to write the Einstein-Katz
action in the vielbein language. First, we notice that the
definitions given in Egs. (3.8) and (3.9) lead to 6*F =
epel g Ay, dxf, where Aj =T} —T7% is the tensor
appearing in the definition of the Katz vector (2.8).
Hence, the Katz vector is related to the exterior derivative
of the boundary term in Eq. (3.10) as’

=20, (\/—gkiy)d*x

Therefore, the ECW action (3.10) reproduces the Einstein
Katz action (2.7), namely, Izx = Igcw-

Interestingly, if T is associated with a product manifold,
then the relation (3.12) still holds and the action (3.10)
represents a fully covariant way to write the EGHY action
(2.3). Indeed, showing the equality of the boundary terms
in Egs. (3.10) and (2.3), that is, that

—d(\/—geﬂypgé"”/\dx”/\dx") (3.12)

V=0Eup® A A dx® = 4\/[HKdx,  (3.13)

5Consistency between the fully covariant versions of the Katz
action (2.7) and (3.10)—(3.12) and its expression in Gaussian
coordinates (2.9) is obtained by taking into account that, with
our conventions, the Gauss’ theorems for a vector A* and a three-

form Q are given, respectively, by |[ s Gl /—gAM)d*x =
€f0M4 |h|n,A*d*x and fM4 dQ = —¢ f6M4 0

is easily done using Gaussian coordinates: ds*> = edw? +
h;;dx'dx’ and ds* = edw* + h;;(x')dx'dx/. In these coor-
dinates I'}; = —eK;; and I'},, = K7, where K;; = $9,,h;; is
the extrinsic curvature of M, K! = hYK;; and K;; = 0.
Hence the indices p and ¢ on the lhs of Eq. (3.13) reduce to
J and k. We also used the relations e,y = —&p,jx = —€&;ji
and dx’ Adx/ Adxk=—ee*dx, as well as &), =28,

The fact that Eq. (3.10) also represents a fully covariant
way to write the EGHY action if the background is taken to
be a product manifold is completely consistent with the fact
that the Katz action (2.9) leads to the GHY action (2.3)
under the same condition. Thus, the use of the hybrid
connection (3.7) allows us to construct Ipcw, which
reproduces a) the EK action when I is associated with
an arbitrary background, and b) the EGHY action when I" is
associated with a product manifold.

The expressions (3.10)—(3.13) are the first results of this
paper, which bridge the gap between the Gibbons-
Hawking-York and Katz boundary terms. Additionally,
one can easily check that the Hawking-Horowitz (HH)
action (2.5) can be written using differential forms as
Eq. (3.11) if one replaces @* by @ = g"*@*,; but then,
that action cannot be written in the vielbein language as
Eq. (3.10), and thus the HH action does not correspond to a
translation of the ECW action for any given pair of spin
connections. This shows that the HH action is not related to
a fundamental geometrical object, such as a transgression
[as defined in Eq. (3.1)]. This is probably why no
generalization of the HH action is known so far in the
literature for the Gauss-Bonnet and Lovelock cases.

IV. THE GAUSS-BONNET-KATZ ACTION
AND VECTOR

A. The Gauss-Bonnet-Myers action: A recap

(1) In tensorial language:
The Gauss-Bonnet action is [6,26,27]

1
Igg = T6n / V=9(R*"R,, ., —4R*"R,,+R*)d"x

1671/ \/—gRMP° P/M,(,d x with
aﬂys = 2Ry 955 T 2Ry 95)0 + RYafy Gl

=i | IR RO s,

Pops=
(4.1)

where indices are raised by means of the inverse metric g**,
brackets denote antisymmetrization, and &';>;*5" is the
generalized Kronecker symbol, that is, the determinant of
the 4 x 4 matrix built from the ordinary Kronecker sym-
bols, with the first row being 6“:, 6;2‘ etc. Its variation is
obtained using the technology outlined in footnote 3 and
is [3-6,21]
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1
5IGB:—/ \/—gHm,ﬁg’”’de
167 M

[ B 5h”— \/WQGB x, (4-2)

+ €
167 OM
where
HY = 2(R”“ﬂ7Rmﬁy - 2R“ﬂR”a,,ﬂ —2RMR, 5 + RRY )

1
- E %(Raﬁy&Ra[)’yﬁ - 4RaﬁRa/3 + Rz)
1
— DRMPYS P, 5 — = 5/; RoBré Paﬁya

5/‘0’10’2“‘0’4Rﬂ1ﬂ2 wa, RPPs
e

P23 azay» (43)

and where

1 e
Qan = 40110K) (3R, - K20
= 4(J - 2G),KY),

1 .. € .
jj1J2J3 L ZRRkia T gl g3
B 5”11213 K]l (2 ijzj3 30

=2(3J] =5, —2P] . K*),

2 2
Wlth €‘]ij:_§KilKlprj+§KKilK§'

1
3K (KK, ~ K2). (4.4)
G?; and P}y, are the Einstein and P tensors built with the

boundary -induced metric h;;, and K;; is the extrinsic
curvature.
Note that in Eq. (4.2) we omitted the divergence of a

four-dimensional vector density in the boundary term

al(\/m W'), which is irrelevant since it was evaluated
on the closed boundary 9 M and studied in Ref. [28]. (Note
too that HY vanishes identically in dimension less than five,
as first seen by Bach [29] and as its Lovelock expression in
terms of the rank-five generalized Kronecker symbol makes
obvious.)

As in Einstein gravity, appropriate boundary terms must
be added to the Gauss-Bonnet action in order for the
variation of the full action to vanish on shell when Dirichlet
boundary conditions (54" = 0 on JM) are imposed. The
Gauss-Bonnet-Myers action [3], which generalizes the
Einstein Gibbons-Hawking-York one, is

lj’

) €
Iggm = Igg + I with IM:E/HM\/WQGBWX,
(4.5)

with Qgg given in Eq. (4.4). It yields a Dirichlet variational
principle since (that is, when H,, = 0),

£ / VIh|Bshiiddx, (4.6
167 oM

which vanishes for sh/ = 0.

(2) In the language of forms:

To rewrite the previous expressions in the vielbein
language we start again with the Chern-Weil theorem, this
time in four dimensions (see Refs. [7,25]):

6lgem |0n shell —

eapcn(QF AQCD — QB A QCP)

_ _ 1_- 1 _ _
=d |:28ABCD9AB AN <QCD+5D9CD+§]7EF9[CE] /\G[FD]>:| s

(4.7)
where 048 = @8 — @B,
QAB — d(b[AB] + nCD(Z)[AC] A &)[DB]’
DOABl — d9lAB] ”CD@[AC] A 0IPB
+ nep@BCN A QAP (4.8)

and where the expression inside the exterior derivative
on the rhs of Eq. (4.7) is the transgression form.
Antisymmetrization is not needed in these equations if
@*B is antisymmetric.’

The theorem (or identity) (4.7) again suggests introduc-
ing as a Gauss-Bonnet-Chern-Weil (GBCW) action its
dimensional continuation, Iggcw, defined as (we limit
ourselves to five dimensions for notational simplicity)

1
_ AB cD E
Igeew = 647 /o, eapcpeS¥™” AN QY A e
5

1 _
—@d/MS €ABCDE‘9AB

- 1_- 1 - _
A (gw 43 DI 4 Ly B e[FDJ> A e,
(4.9)

where the first term gives back the Gauss-Bonnet action
(4.1), as it can be easily checked using the properties
given in Eq. (3.3) but adapted to a five-dimensional
manifold Ms. Again, the possible background bulk term
[ eapcpeQE A QP A e must be omitted in order to not
spoil the field equations.

%In particular, Eq. (4.8) states that if a spin connection @*? is

not antisymmetric, then the curvature Q48 and covariant deriva-
tive DB must be constructed only with its antisymmetric part.
As shown in Ref. [25], this ensures that the curvature comes from
a well-defined Lorentz gauge connection and satisfies the Bianchi
identities. We also notice that Q48 is antisymmetric by con-
struction and that the antisymmetrization bracket has been
omitted in the derivative term of Eq. (4.7) because this task
is performed by the Levi-Civita tensor which contracts the
indices (CD).
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Now, when the second connection @ describes a product
manifold the term containing the derivative D drops out of
Eq. (4.9), while the curvature Q coincides with Q in the
boundary. Then, as shown by Myers in Ref. [3], the Gauss-
Bonnet-Myers action (4.5) can be written in the language of
differential forms as

1
1 -
GBM = e

1 _
—%d /M . €ABCDE9AB

SABCDEQAB AN QCD VAN €E
5

A <Q§D —l—%anéCF@GD) A ek, (4.10)
where QP is the curvature of the boundary and the
antisymmetrization brackets are not needed because the
connection @ associated with a product metric is antisym-
metric by construction.

We remark that the translation of Eq. (4.10) to the
tensorial version (4.5) can be made only if the covariance is
reduced to the boundalry.7 However, as we will see in the
next section, the use of the hybrid connection (3.7) allows
to perform a fully covariant translation of the GBCW action
to tensorial language. This will provide not only a way to
generalize the Katz procedure to the Einstein-Gauss-
Bonnet case, but also the way to write the Myers boundary
term in a fully covariant coordinate basis.

B. A Gauss-Bonnet Katz action

Let us consider the hybrid connection (3.7) and its asso-
ciated curvature two-form QA% =d@?? +ncp@ A€ A DIPE.
The relations (see Ref. [25] for further details)

OAB — QAB _ PHplAB)
DB = s

— nep@AC) A gIDB]

— 21Ol A OIPPI (4.11)

can be used to show that the Chern-Weil action (4.9) for the
hybrid connection can be expressed as®

- 1
Igew = o /M eapcpeQE AQCP
5

€ -
B
+55 eapcpr®
32r OM;

1 1 N
A <QCD —EDG[CD] +§nEF9[CE1 A 9[“31) . (412)

7Using the properties given in Sec. III, but adapted to
a five-dimensional manifold Ms, one can directly check
that in Gaussian coordinates the boundary term can be
written as _ﬁdf/vg eABCDEéAB/\(QIfD +10rGOTOP) A ef =
tezJo, EaveaK* A () =5KPK) Ae? and the translation of the
last expression to tensorial language gives Eq. (4.5).

¥We recall that in our conventions, Gauss’ theorem for a four-

form Q reads st dQ = €fdM5

The reason we express Q and D in terms of Q and D is that this
allows us to translate the transgression form to tensorial

language using Q% = efeBQY™ and DOUE) = e BV,
where

QW = guagﬂm
1
Q' = dot + 'y Ny =5 Rl dx) A

VoK = a4+ @, A 01 4 ¥, A QI (4.13)

Building on these results, we are led to propose the
Gauss-Bonnet Katz action as the translation of Eq. (4.12) in
a coordinate basis, that is,

Ik = Igecw

1
= /M Epprt @ A Q7 A dx
5

¢ .
— | Eped”
32 LM e
T
A <gﬂff ~ 5 Vo + ggyﬂ[”ﬂew> A dx®

with 0% = A/dx* where AL = g0A". (4.14)

The Gauss-Bonnet Katz vector is then obtained through the
relation

—d [ZE,W,WH <Q’”’ - —Ve[/"’] + 39 L6719 W]) A dx®

= 0,(vV/=gkGp)dx,

(4.15)

which yields

UL V3 VY Mlﬂz H3 Mg
kl(l]B 5#1#2#3#4 A <RV3D4 3

2
v, Al 2 Al Aﬁuu) _
(4.16)
Therefore the Gauss-Bonnet Katz (4.14) action we
propose, which generalizes the FEinstein Katz action
(2.7)—(2.9), reads, in tensorial language,
Iepk = Igp + IGp

. 1
with IEB:@//VI 0,(v/—gklyg)d’x (4.17)
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where Igp and k{ are deﬁned in Egs. (4.1) and (4.16), respectively. Using Gaussian coordinates the Gauss-Bonnet Katz

boundary term also reads’

1
I§p = —/ |hlkgpd®x,  with ki) = €Qcg + €Egp. (4.18)
167 OMs
where Qgg 1s given in Eq. (4.4) and
E 45111213 Kzl V A Kzz Zz; Kzz Zh ZIQ Klg Zh 1 h A[tzla]A[hn]
GB = "% iyis - 223 + _5( 253 + ( + )) +3 3 LIz 2,
45019273 70 1 i3 1 % A i3 iy i3 iy i i3 i3 h © [iyly] © [1313]
+ 5'11213 Z/l Eijzh _E jzAj3 + K Z __(K + Z )(Kj3 + Z ) + 1213A12 A
1J2J3 . i3  [ls03] 1 1
~ 201 A [V (25— K3) K AL = 2 b (K 4 Z2)A) } , (4.19)

1(hik Eik)l_( o Vs the covariant deriva-

tive with respect to the connection F & of the boundary,

where Z) = i —

o ol
Aj = hlkAjk, and Aﬂ( = ij - F/k

Similarly to the results found in Sec. III, the Gauss-
Bonnet Katz action (4.14) and (4.18) reproduces the Gauss-
Bonnet-Myers action (4.5) if the background is replaced by
a product manifold. In that case the extra term Egg vanishes
and thus Igpx = Iggm, because as the boundaries coincide
and K;; = 0 one gets A’ = 0 and Z} = 0. This means that
the action (4.14) also represents the way to write the Gauss-
Bonnet-Myers action (4.5) in a fully covariant coordinate
basis by only replacing the background by a product
manifold. To show this one must use the relations dx* A
dx? Adx? Adx® Adxt = =P Px,  g,,,,,ePT = —5%r0,
eMle = —€diyg, and 0 = ¢ ()} — @)), with @/ and
@), being defined in Eq. (3.9). We note for further reference
that at the boundary dw = 0 and " = 0, because in the
product manifold case the boundaries coincide so that
I, =T Then the normal index w can only be in o

°This result is obtained after expanding the generalized
Kronecker delta with the identity

51/11/2”3’/4 —

y] UyU3ly V) qUrl3ly
HiH2f3 g — 5 5 5

4 Lo U3 V4 4 Lo U3 L,
R e Pl
usmg the Gauss Coda221 equations Rkl —Rbkl e(K}cK'l —K’Kk)
RYi, = —e(VkK V Ki), where V is the covariant derivative

with respect to the connection r i« of the boundary. Also, we use
the following properties:

vle{Zh vlz A{zls + Klewh + K./} Alzw + €Klzl3 AJU}
VlZAE:‘h vlz Alez gKizlAEih]’
w i i P i j
I =—eK;. Ti,=K. Ti=T; A'=A;,
AP = —e(K| +Z}).

|
while the quadratic term inside the parentheses gives
9,00 = g oMK — —eKI KXdxPdx?, where we
have used g, =¢ and 6™ = @M = ¢Kidx! which
can be easily obtained using F;j- = —eK;j, F = K; and
Iy, =T%, =0 because K;; =308,h; =0 for a product
manlfold Thus, all of the information about the product
manifold disappears, giving us the known tensorial result
(4.5) for D =5.

The proposals for the Gauss-Bonnet-Katz action (4.14)
and (4.17), the Katz vector (4.16), and the boundary term
(4.18) form the core of this paper.

C. A Dirichlet variational principle

Here we show that the Gauss-Bonnet-Katz action /gpk
proposed in the previous section solves the Dirichlet
problem. There are a priori various ways to show this,
as one can work using its tensorial form (4.17) or its
expression in differential-form language in the coordinate
basis (4.14) or using Eq. (4.12). The proof we will give here
is based on the dimensional continuation of the variation
of the transgression form, which can be obtained using
homotopic techniques in terms of an interpolating
connection.

As shown in the Appendix, the Chern-Weil theorem for
the hybrid connection can be written as &, 5cpQAEQCP —
eapcnQ QP = dT ) (w, @), where the transgression
form is given by (we omit the A symbols)

1 ~
@) (0), C;)) = 2% thABCDeAng)D, (420)

where QAB da)A + ot )c“)() and a)Af; = @Bl 4 ;9B

(with HAB = a)AB - AB) is a connection interpolating
between @4 and @*®. It is also shown
Appendix that its variation is then given by

in the
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T ) (w, @) = 2ep5cp (PSP — QABSHP)

1 -
—2d/ th'ABCDgAB(S(I)CD. (421)
0

(1
Then, the Gauss-Bonnet action and the corresponding

boundary term I§; we have proposed in Egs. (4.14) and
(4.17) can be written in the vielbein language as

1
IgB :@/MS dﬁ(z),

where ;) is the dimensional continuation of the
transgression,

_ AB(OCD ,E
Igg = eapcppf2 T QA e,
64n Ms

1 ~
ﬂ(2)(0), Cb) = —2A dtgABCDEeABQ(C;)DeE. (422)

To show that the variation of Igpx = Igg + [ EB vanishes for
Dirichlet conditions, we see that 6f3;) must be the dimen-
sional continuation of 57 ®)(w, @) given in Eq. (4.21) plus
an additional term containing the variation of the vielbein
arising in Eq. (4.22) from the dimensional continuation
procedure. Thus we have 6/ = g1 [\ d(8f(2)), where

5’5(2> - _2€ABCDEQAB&0CD€E + 28ABCDEQA356)CDeE

1
+ Zd/ dteABCDEHABéa),CDeE
0

1
- 2/ dtgABCDEeABQ(C;)DéeE. (423)
0
Under the exterior derivative, the first term in Eq. (4.23) will
cancel the variation of the Gauss-Bonnet action,

1

Sl = —
GB ™ 304

/ d(SABCDEQABéCUCDeE). (424)
Ms

The fourth term vanishes for Dirichlet conditions on the
boundary (5¢*|, m; = 0), and the third one trivially vanishes

because d* = 0. Thus, we have

1 -
51513 = T35 d(gABCDE(QAB‘SwCD - QAB55)CD)€E)
3271' Ms
1 1
- d / dte GABQCD565>.
327, ( A ABCDE D)

Now we only have to prove that the exterior derivative
of the second term vanishes for Dirichlet conditions.
Indeed, the antisymmetric part of the hybrid connection
can be written as @8 = ¢AVeBle, where V = dx”vﬂ is
the covariant derivative with respect to the background
connection I'. Taking 6I" = 0, we obtain

d[z&'ABCDEQAB5d)CD€E] = d[ZSABCDEfZABveD"eEéeS]
-+ d[2€ABCDEQAB€gv5€Da€E].
(4.25)
Now, using
d(ZeABCDEQABeS(SeD"eE)

= 28ABCDEW(QABegeE)5eD“ + QABegv(ﬁeD“)eE]
and d*> = 0, we get
d[2eppcpp*P 5P "]

= d2epcpp(QAEVeP%E§5eS — V(QAB L eF)5eP?))].

(4.26)
Then, the variation of IXg is
51513 = _i//\/ts d(eapcpp* P50 P ")
ﬁ . d [eABCDE <QABWD%E5@,§
—V(QABeCeF)sePe — /) ldteABR,CDéeEﬂ, (4.27)

so that the variation of Igpx = Igp + I5g is given by

6lgpk =2 / d |:€ABCDE <QAB?€D ZeESel
Ms

- 1
—V(QABeSeE)éeD“—/ dt@ABR,CDSeEﬂ, (4.28)
0

which has a suitable form to apply Dirichlet boundary
conditions on the vielbein, de?|, m; = 0. QE.D.

D. The Einstein-Gauss-Bonnet-Katz action
and the Boulware-Deser black hole

The static, spherically symmetric black hole Boulware-
Deser metric—which solves the Einstein-Gauss-Bonnet
equations of motion G, +aH,, =0 in five dimensions—is

1
ds* = —f(r)c*df* + f—(r) dr* + r2dQ<zD_2>,
22 4a 4y
S I AN O T
f(r) +25[ 25 22 +rD—1’
where £? = —W,& = (D - 3)(D — 4)a, and p is the

mass parameter. Its mass has been obtained by various
methods, in particular a la Katz in Ref. [21]. In Eq. (3.9) of
that reference the following Gauss-Bonnet-Katz vector was
proposed:
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kbio = 4R A7, — 8(RMAY, — R AL,) + 2R(g" A7, — g7 ALy). (4.29)

This led to the right mass [when taking the background to be asymptotically AdS, i.e., when u is taken to be zero in f(r)],
although it was noted that it did not yield a well-posed Dirichlet problem. To make a comparison with our construction, we

can write Eq. (4.16) as'’

Ky = 4RMP A7, — A(RMAY,

— RPAY, + RV, AS, — R, " AS,) + 2R(¢ AL,

- g’ Al

+AAMI, ALY L 4ALV A 1 8AR Y Al 4 gAY A

A 7] A [40] A,[,/w]

8
‘§9ﬂ< p 2ol v 2ol

It is an easy (MATHEMATICA) exercise to redo the calcu-
lation with the Gauss-Bonnet-Katz vector proposed in this
paper and to verify that it also gives the right mass.
Interestingly, only the terms of the first line in
Eq. (4.30) (which is different from k’l‘)Ko) contribute to
the mass, while the precise combination of the derivative
and cubic terms ensure that the Dirichlet problem is well
defined.

V. CONCLUSIONS

In the context of background-substraction methods, we
have proposed a boundary term for Einstein-Gauss-Bonnet
gravity, which both solves the Dirichlet problem and
ensures the finiteness of the conserved charges in this
theory. The Chern-Weil theorem for the hybrid connection
gives rise to a mathematical structure at the boundary,
which naturally accommodates the Christoffel connection
associated to the background spacetime. We have also
shown that the use of such an object is essential in the
construction of Katz-like terms in general relativity and
Einstein-Gauss-Bonnet theory.

In a way, what we have explored here is the use of an
enhanced symmetry (Lorentz in the tangent space) to fix
the ambiguity of the possible boundary terms that sets a
well-posed action principle. This leads to a generalized
Katz vector in EGB gravity such that the correct mass for
the Boulware-Deser black hole is obtained. Our results,
based on the use of the Chern-Weil theorem, show that the
vector that simultaneously allows to obtain, e.g., the right
mass of the Boulware-Deser black hole and defines the
Dirichlet problem is unique.

The construction presented in this work allows to deal
with a general background which can be chosen so as to

""This can be obtained by expanding the Kronecker delta in
Eq. (4.16) with the following identity

V|Vl SUIV) SU3la UiV U3l UiUy qU3ly
5}41/42}43#4 - 5141#25143#4 5/41/1%5/47#4 + 5#1#45142#3

U1y QU3ly4 V| Uy QU3ly U1Uy QU3ly

+ 5142#35M1!44 - 6/42/445/4”43 + 5143!445M1/42’

12 L) oUo AN
where 8,4, = Gy O, = 81y Oy -

_ ZABW]A[M[]AMU] + ZA/L,DG]A[”HA[M] + AB"’] ABW]Ang

7] o=

A (4.30)

|
yield finite global charges without invoking extra regulari-
zation procedures. At the same time, it includes the GHM
boundary term as a special case when the background is
taken to be a product manifold.

Our analysis naturally suggests that a generalization of
the Katz procedure for a generic Lovelock gravity can be
performed, and the results we have for that problem will be
reported soon [25].
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APPENDIX: CHERN-WEIL THEOREM
IN D=4 AND VARIATION OF THE
TRANSGRESSION FORM

Let us define the connection

o = @ 4 1P,

DAB — AB _ AB

which interpolates between @8 and w?8. Using DB =
DOUB! — 2Mrg giAr ]9[63] the interpolating field strength
QY = doff + o, Ca) B can be written as

Q?t? — QAB + tDé[AB] + thFGé[AF]é[GB]

= QA 4 (1 — 1)DOE! 1 (1 — 1)%n 0110108,

which gives Qff = QAP and Qlff = Q. With these

definitions, the four-dimensional Chern-Weil theorem
given in Eq. (4.7) can be written as &,50pQ QP —
eapcnQBQCP = dTC) (w, @), so that the transgression
form is given by
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1 ~
T (w, @) =2 / dtespcpt QG (A1)
0

To calculate the variation 57 ) we need the properties

5QF = DU (swlf),  Saf = 6Pl 4 15017,
N d . d
OBl = 7 (a)?,l; )s 56AB = = (éw?tl;),
. d
A
DO PlABl — E(Qﬁ?) (A2)

which can be easily obtained from the previous definitions.
Thus, we have

! ~ ~
6’]-(3) (a), &)) = 2/ dtgABCD (69ABQ(CY>D + 6ABD(I) (5(08?))
0

1 . d
_ B
1 -
—2d A dr[sABCDeABawgf], (A3)

where we have used

8ABCDéA Ep (50)8)) = 8ABCDD(t)éA 350)8)

—d [%BCDéAB&Ug)D]
and some of the properties given in Eq. (A2). The terms in
the first integral in Eq. (A3) give

~ d
can (97057 + 010 )

d ~ d 5
= €aBcp (IQ?,?)CSHCD T €ascp (QfF)60P,
and thus we obtain

8T (w, @) = 2e4pcp (0P — OEsP)

1 -
—2d / dtgABCDeABawgf. (A4)
0

This is the relation used in the main text to show that the
Gauss-Bonnet-Katz action indeed yields a Dirichlet varia-
tional principle. Note that the use of the interpolating
connection a)’(“l’;’ is essential to get this result.

[1] G. W. Gibbons and S.W. Hawking, Action integrals and
partition functions in quantum gravity, Phys. Rev. D 15,
2752 (1977).

[2] J.W. York, Role of conformal three geometry in the
dynamics of gravitation, Phys. Rev. Lett. 28, 1082 (1972).

[3] R. C. Myers, Higher-derivative gravity, surface terms, and
string theory, Phys. Rev. D 36, 392 (1987).

[4] E. Gravanis and S. Willison, Israel conditions for the Gauss-
Bonnet theory and the Friedmann equation on the brane
universe, Phys. Lett. B 562, 118 (2003).

[5] S.C. Davis, Generalized Israel junction conditions for a
Gauss-Bonnet brane worlds, Phys. Rev. D 67, 024030
(2003).

[6] N. Deruelle and J. Madore, On the quasilinearity of the
Einstein-Gauss-Bonnet gravity field equations, arXiv:
gr-qc/0305004.

[7] M. Nakahara, Geometry, Topology and Physics (IOP,
Bristol, 1991).

[8] O. Miskovic and R. Olea, Counterterms in dimensionally
continued AdS gravity, J. High Energy Phys. 10 (2007) 028.

[9] P. Mora, R. Olea, R. Troncoso, and J. Zanelli, Transgression
forms and extensions of Chern-Simons gauge theories,
J. High Energy Phys. 02 (2006) 067.

[10] A.H. Chamseddine, Topological gauge theory of gravity
in five and all odd dimensions, Phys. Lett. B 233, 291
(1989).

[11] A. Anabalon, S. Willison, and J. Zanelli, General relativity
from a gauged WZW term, Phys. Rev. D 75, 024009 (2007).

[12] N. Merino, A. Perez, and P. Salgado, Even-dimensional
topological gravity from Chern-Simons gravity, Phys. Lett.
B 681, 85 (2009).

[13] N. Merino, A. Perez, P. Salgado, and O. Valdivia, Topo-
logical gravity from a transgression gauge field theory,
Phys. Lett. B 693, 600 (2010).

[14] A.H. Chamseddine, Topological gravity and supergravity in
various dimensions, Nucl. Phys. B346, 213 (1990).

[15] S.W. Hawking and G.T. Horowitz, The gravitational
Hamiltonian, action, entropy and surface terms, Classical
Quantum Gravity 13, 1487 (1996).

[16] R. Olea, Regularization of odd-dimensional AdS gravity:
Kounterterms, J. High Energy Phys. 04 (2007) 073.

[17] G. Kofinas and R. Olea, Universal regularization prescrip-
tion for Lovelock AdS gravity, J. High Energy Phys. 11
(2007) 069.

[18] O. Miskovic and R. Olea, On boundary conditions in three-
dimensional AdS gravity, Phys. Lett. B 640, 101 (2006).

[19] J. Katz, A note on Komar’s anomalous factor, Classical
Quantum Gravity 2, 423 (1985).

[20] J. Katz, J. Bicak, and D. Lynden-Bell, Relativistic con-
servation laws and integral constraints for large cosmologi-
cal perturbations, Phys. Rev. D 55, 5957 (1997).

[21] N. Deruelle, J. Katz, and S. Ogushi, Conserved charges in
Einstein Gauss-Bonnet theory, Classical Quantum Gravity
21, 1971 (2004).

[22] D.G. Boulware and S. Deser, String-generated gravity
models, Phys. Rev. Lett. 55, 2656 (1985).

104009-11


https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevD.36.392
https://doi.org/10.1016/S0370-2693(03)00555-0
https://doi.org/10.1103/PhysRevD.67.024030
https://doi.org/10.1103/PhysRevD.67.024030
http://arXiv.org/abs/gr-qc/0305004
http://arXiv.org/abs/gr-qc/0305004
https://doi.org/10.1088/1126-6708/2007/10/028
https://doi.org/10.1088/1126-6708/2006/02/067
https://doi.org/10.1016/0370-2693(89)91312-9
https://doi.org/10.1016/0370-2693(89)91312-9
https://doi.org/10.1103/PhysRevD.75.024009
https://doi.org/10.1016/j.physletb.2009.10.001
https://doi.org/10.1016/j.physletb.2009.10.001
https://doi.org/10.1016/j.physletb.2010.09.017
https://doi.org/10.1016/0550-3213(90)90245-9
https://doi.org/10.1088/0264-9381/13/6/017
https://doi.org/10.1088/0264-9381/13/6/017
https://doi.org/10.1088/1126-6708/2007/04/073
https://doi.org/10.1088/1126-6708/2007/11/069
https://doi.org/10.1088/1126-6708/2007/11/069
https://doi.org/10.1016/j.physletb.2006.07.045
https://doi.org/10.1088/0264-9381/2/3/018
https://doi.org/10.1088/0264-9381/2/3/018
https://doi.org/10.1103/PhysRevD.55.5957
https://doi.org/10.1088/0264-9381/21/8/004
https://doi.org/10.1088/0264-9381/21/8/004
https://doi.org/10.1103/PhysRevLett.55.2656

DERUELLE, MERINO, and OLEA

PHYS. REV. D 97, 104009 (2018)

[23] N. Deruelle and Y. Morisawa, Mass and angular momenta of
Kerr anti-de Sitter spacetimes in Einstein-Gauss-Bonnet
theory, Classical Quantum Gravity 22, 933 (2005).

[24] J. Katz and D. Lerer, On global conservation laws at null
infinity, Classical Quantum Gravity 14, 2249 (1997).

[25] N. Deruelle, N. Merino, and R. Olea, Chern-Weil
theorem, Lovelock Lagrangians in critical dimensions and
boundary terms in gravity actions, arXiv:1803.04741.

[26] C. Lanczos, Elektromagnetismus als natiirliche Eigenschaft
der Riemannschen Geometrie, Z. Phys. 73, 147 (1932);
A remarkable property of the Riemann-Christoffel tensor in
four dimensions, Ann. Math. 39, 842 (1938).

[27] D. Lovelock, The Einstein tensor and its generalization,
J. Math. Phys. (N.Y.) 12, 498 (1971); D. Lovelock and
H. Rund, Tensors, Differential Forms, and Variational
Principles (John Wiley & Sons, New York, 1975).

[28] S. Chakraborty, K. Parattu, and T. Padmanabhan, A novel
derivation of the boundary term for the action in Lanczos-
Lovelock gravity, General Relativity Gravitation 49, 121
(2017).

[29] R. Bach, Zur Weylschen Relativititstheorie und der
Weylschen Erweiterung des Kriimmungstensorbegriffs,
Math. Z. 9, 110 (1921).

104009-12


https://doi.org/10.1088/0264-9381/22/6/002
https://doi.org/10.1088/0264-9381/14/8/023
http://arXiv.org/abs/1803.04741
https://doi.org/10.1007/BF01351210
https://doi.org/10.2307/1968467
https://doi.org/10.1063/1.1665613
https://doi.org/10.1007/s10714-017-2289-5
https://doi.org/10.1007/s10714-017-2289-5
https://doi.org/10.1007/BF01378338

