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We propose a boundary term to the Einstein-Gauss-Bonnet action for gravity, which uses the Chern-Weil
theorem plus a dimensional continuation process, such that the extremization of the full action yields the
equations of motion when Dirichlet boundary conditions are imposed. When translated into tensorial
language, this boundary term is the generalization to this theory of the Katz boundary term and vector for
general relativity. The boundary term constructed in this paper allows to deal with a general background
and is not equivalent to the Gibbons-Hawking-Myers boundary term. However, we show that they coincide
if one replaces the background of the Katz procedure by a product manifold. As a first application we show
that this Einstein Gauss-Bonnet Katz action yields, without any extra ingredients, the expected mass of the
Boulware-Deser black hole.
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I. INTRODUCTION

The Gibbons-Hawking-York (GHY) boundary term [1,2]
when added to the Einstein-Hilbert action for general
relativity, and its generalization by Myers [3] to the case
of higher-dimensional Gauss-Bonnet and Lovelock theories
of gravity, guarantees a Dirichlet variational principle, that
is, the extremization of the full action yields the Einstein/
Gauss-Bonnet/Lovelock equations ofmotionwhenDirichlet
boundary conditions are imposed (see also Refs. [4–6]).
As is well known, the Myers boundary terms can be

written in the language of differential forms, making use of
the Chern-Weil theorem [7] together with a dimensional
continuation procedure (see, e.g., Refs. [8,9]). The Chern-
Weil theorem basically states that, given two gauge con-
nection one-forms, the difference between two invariants
constructed with their corresponding strength field is an
exact form, i.e., the exterior derivative of an odd-form,
which is called a transgression form. Transgression forms
can be regarded as the generalization of Chern-Simons
(CS) forms [10] by the inclusion of a second gauge field,
and the Gibbons-Hawking-Myers (GHM) terms that define
the Dirichlet problem in Lovelock gravity can be regarded
as dimensional continuations of transgression forms for the
Lorentz symmetry. An essential feature of the procedure to
write the GHM boundary terms in the vielbein formalism is
that the second gauge field must be defined on a product
manifold, which is just an auxiliary manifold whose
boundary has extrinsic curvature that is identically zero
and coincides with the spacetime boundary. Thus, after
using Gaussian coordinates, we recover the known expres-
sion which depends only on dynamical tensors of the

boundary, and the Dirichlet problem is solved in a back-
ground-independent way.1

A problem one has to deal with after having a well-posed
variational principle with the GHM procedure is that the
Dirichlet action and conserved charges obtained after
applying Noether’s theorem usually diverge. In the
Einstein-Hilbert case the action can be regularized by
the Hawking-Horowitz boundary term [15], which just
makes a background2 subtraction in the GHY term. When a
negative cosmological constant is added, a background-
independent regularization can be achieved by subtracting
counterterms that depend on the intrinsic geometry of the
boundary. This method, known as holographic renormal-
ization, becomes technically involved in higher dimensions
and a closed expression for these Dirichlet counterterms
does not exist for a generic Lovelock gravity. Remarkably,
a universal regularization prescription for any Lovelock

1Transgression forms have found physical applications in
different contexts. For example, they were used in Ref. [11] to
show that a four-dimensional gauged Wess-Zumino-Witten
(WZW) Lagrangian arises from a five-dimensional Einstein-
Gauss-Bonnet Lagrangian with special coefficients and that
general relativity is a dynamical sector of this WZW theory
where the symmetry is broken down to Lorentz. On the other
hand, in Refs. [12,13] it was proved that even-dimensional
topological gravity [14] can be obtained from a CS and a
transgression field theory invariant under the Poincaré group.

2By background we mean a vacuum solution (usually a
maximally symmetric space) that is connected by a continuous
parameter to the solution under study. We also remark that a
product manifold cannot be a background (e.g., global AdS and
Minkowski).
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theory with anti–de Sitter (AdS) asymptotics was provided
in Refs. [16,17] using boundary terms that depend on the
extrinsic curvature, also known as Kounterterms. This
procedure modifies the boundary conditions, as it is the
extrinsic curvature that is kept fixed at the boundary.
However, as was shown in Ref. [18], these kind of
conditions arise naturally from the asymptotic form of
the fields in the Fefferman-Graham expansion, and thus it is
suitable to deal with the variational problem in a wide set of
gravity theories that support asymptotically AdS solutions.
An alternative background-dependent boundary term to

solve both the Dirichlet and regularization problems in
Einstein-Hilbert theory was proposed by Katz [19] (see also
Ref. [20]). There the Dirichlet variational problem was
solved by adding to the covariantized action the divergence
of a vector which is constructed from the metric and the
difference of the Christoffel symbols of the dynamical and
background manifolds. The Katz boundary term ensures
that the variational principle is well defined for Dirichlet
boundary conditions and, together with a background
subtraction, that Noether charges are finite. A nontrivial
problem is finding a suitable Katz vector for each theory.
For example, in Ref. [21] a Katz-like vector for Einstein-
Gauss-Bonnet (EGB) gravity was proposed in such a way
that the expected mass as well as the expected thermody-
namics of the Boulware-Deser black hole [22] and its
rotating generalization (see Ref. [23]) were obtained.
However, it was pointed out that the construction of the
vector giving these results was not unique and that the
proposed vector did not solve the Dirichlet problem.
In this work we follow a new route to propose alternative

boundary terms, whose construction is also based on the
structure of the Chern-Weil theorem. These boundary terms
still guarantee a Dirichlet variational principle and will
allow us to write the Katz [19] boundary term in the
language of vielbeins, thus putting it on a footing similar to
the Gibbons-Hawking-York boundary term.
We will then generalize the construction to the Gauss-

Bonnet theory and it will be shown—in the language of
differential forms—that this proposal solves the Dirichlet
problem. When transposed into tensorial form, this will
provide us with a unique generalization of the Katz vector
for the Gauss-Bonnet action. As a first application, we
compare the obtained Einstein-Gauss-Bonnet-Katz action
to the one proposed in Ref. [21] and show that it yields—
without any extra ingredients—the expected mass and
hence the expected thermodynamics of the Boulware-
Deser black hole [22].
This article is organized as follows. In Sec. II we review

and compare different boundary terms known in the
literature, defining the Dirichlet problem in Einstein grav-
ity. In Sec. III we show how these boundary terms can be
written in the language of differential forms by introducing
a special hybrid spin connection. We also show how these
terms are related with the structure of the terms appearing in

the two-dimensional Chern-Weil theorem. In Sec. IVA we
review the Myers boundary term for Einstein-Gauss-
Bonnet gravity and see that it can be regarded as the
dimensional continuation of the transgression form appear-
ing in the four-dimensional Chern-Weil theorem, when the
second connection is associated with a product manifold.
Then, in Sec. IV B we use the same theorem but with the
hybrid spin connection to show how the Katz-like vector
must be defined. Finally, in Secs. IV C and IV D we show
that our proposal solves the Dirichlet problem and that the
associated Katz vector gives the right mass for the
Boulware-Deser black hole.

II. EINSTEIN GRAVITY WITH DIRICHLET
BOUNDARY TERMS: A RECAP

The Einstein-Hilbert action in D dimensions is

IE ¼ 1

16π

Z
M

ffiffiffiffiffiffi
−g

p
RdDx; ð2:1Þ

where Newton’s constant and the speed of light are set
equal to 1, g is the determinant of the components gμν of a
pseudo-Riemannian metric in the coordinate system xμ ¼
fw; xig (with w being either the time or a “radial”
coordinate, and xi are coordinates in the boundary ∂M
of dimension d ¼ D − 1), the integral is taken over some
D-dimensional domain of integration (dDx ¼ −ϵdwddx,
with ddx ¼ dxi1 � � � dxid and ϵ being 1 or −1 when w is,
respectively, the “radial” or time coordinate), and R is the
scalar curvature, R ¼ gμνRμν, with Rμν ¼ Rρ

μρν being the
Ricci tensor, Rμ

νρσ ¼ ∂ρΓ
μ
νσ − � � � being the Riemann

tensor, and Γμ
νρ are the Christoffel symbols.

The variation of IE with respect to the contravariant
components of the metric δgμν is3

δIE ¼ 1

16π

Z
M

ffiffiffiffiffiffi
−g

p
GμνδgμνdDx

þ ϵ

16π

Z
∂M

ffiffiffiffiffiffi
jhj

p
ðKij − KhijÞδhijddx

−
ϵ

8π

Z
∂M

δð
ffiffiffiffiffiffi
jhj

p
KÞddx: ð2:2Þ

Here Gμν ¼ Rμν − 1
2
gμνR is the Einstein tensor, ϵ ¼ −1 if

the boundary ∂M of M is spacelike and ϵ ¼ 1 if it is
timelike, h is the determinant of the induced metric on ∂M

3The calculation of gμνδRμν is easily performed à la Landau-
Lifshitz in a locally inertial frame completed by covariantiza-
tion to yield

ffiffiffiffiffiffi−gp
gμνδRμν ¼ ∂μ½ ffiffiffiffiffiffi−gp ðgνρδΓμ

νρ − gμνδΓρ
νρÞ�. The

boundary term
ffiffiffiffiffiffi−gp ðgνρδΓw

νρ − gwνδΓρ
νρÞ is easily computed

using Gaussian coordinates in which the metric reads ds2 ¼
ϵdw2 þ hijdxidxj and where the components of the extrinsic
curvature are Kij ¼ 1

2
∂whij.
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with components hij, and Kij is the extrinsic curvature of
∂M and K ¼ hijKij is its trace.
In order to build a Dirichlet variational principle—that is,

in order for the extremization of the action for gravity to
yield the Einstein (vacuum) equations of motion Gμν ¼ 0
when Dirichlet boundary conditions are imposed, i.e., when
δhij ¼ 0 on ∂M—appropriate boundary terms must be
added to the Einstein-Hilbert action. The two examples we
will concentrate on are as follows:
(1) The Einstein Gibbons-Hawking-York (EGHY)

action [1,2]

IEGHY ¼ IE þ IGHY

with IGHY ¼ ϵ

8π

Z
∂M

ffiffiffiffiffiffi
jhj

p
Kddx; ð2:3Þ

which yields a Dirichlet variational principle since, on shell
(that is, when Gμν ¼ 0),

δIEGHYjonshell¼
ϵ

16π

Z
∂M

ffiffiffiffiffiffi
jhj

p
ðKij−KhijÞδhijddx; ð2:4Þ

which vanishes if Dirichlet boundary conditions (δhij ¼ 0
on ∂M) are imposed. As mentioned in the Introduction, the
finite action is obtained after making a background sub-
traction in the GHY term. Thus, one obtains the Einstein
Hawking-Horowitz (EHH) action [15],

IEHH ¼ IE þ IHH

with IHH ¼ ϵ

8π

Z
∂M

ffiffiffiffiffiffi
jhj

p
ðK − K̄Þddx; ð2:5Þ

where K̄ ¼ h̄ijK̄ij is the trace of the extrinsic curvature of a
background manifold with metric h̄ij on its boundary and
extrinsic curvature K̄ij. It also yields a Dirichlet variational
principle since, on shell,

δIEHHjon shell ¼
ϵ

16π

Z
∂M

ffiffiffiffiffiffi
jhj

p
½Kij − ðK − K̄Þhij�δhijddx:

ð2:6Þ

(2) The Einstein Katz (EK) action [19,20]

IEK¼ IEþ IKE − ĪE with IKE ¼ 1

16π

Z
M
∂μð

ffiffiffiffiffiffi
−g

p
kμEÞdDx

and ĪE¼
1

16π

Z
M̄

ffiffiffiffiffiffi
−ḡ

p
R̄dDx; ð2:7Þ

where the vector kμE is defined as [19]

kμE¼−ðgνρΔμ
νρ−gμνΔρ

νρÞ with Δμ
νρ¼Γμ

νρ− Γ̄μ
νρ; ð2:8Þ

and where Γ̄μ
νρ are the Christoffel symbols of the back-

ground metric ḡμν. To understand the origin of this

vector, we recall that the EH Lagrangian density can be
written as

ffiffiffiffiffiffi−gp
R ¼ ffiffiffiffiffiffi−gp

Gþ ∂μð ffiffiffiffiffiffi−gp
vμÞ, where G ¼

gμνðΓλ
μρΓ

ρ
νλ − Γρ

μνΓλ
ρλÞ and vμ ¼ gνρΓμ

νρ − gμνΓρ
νρ. Then, a

variational principle with no boundary term would be
obtained by just subtracting the divergence ∂μð ffiffiffiffiffiffi−gp

vμÞ.
However, this leads to an action that is not invariant under
diffeomorphisms. Using δḡμν ¼ 0 and that the difference of
two Christoffel symbols is a tensor, Katz constructed the
vector kμE as a covariantized version of the vector vμ and
showed that adding its divergence to the EH action allows
to obtain a well-posed variational principle for Dirichlet
boundary conditions. Indeed, using Gauss coordinates the
Katz boundary term reads

IKE ¼
1

16π

Z
∂M

ffiffiffiffiffiffi
jhj

p
kwEd

dx

¼ ϵ

8π

Z
∂M

ffiffiffiffiffiffi
jhj

p �
ðK− K̄Þ−1

2
ðhij− h̄ijÞK̄ij

�
ddx; ð2:9Þ

and thus the on-shell variation of the Einstein Katz action is

δIEKjon shell ¼
ϵ

16π

Z
∂M

ffiffiffiffiffiffi
jhj

p �
ðKij − K̄ijÞ − hijðK − K̄Þ

þ hij
2
ðhkl − h̄klÞK̄kl

�
δhijddx; ð2:10Þ

which clearly vanishes if Dirichlet boundary conditions are
imposed.
One notes that the boundary terms that define the

Dirichlet actions IEGHY and IEK are not equivalent. The
first difference is that the first one is background indepen-
dent, while the second one is not. On the other hand, the
GHY boundary term IGHY is covariant only with respect to
the boundary, and as a consequence its variation cancels
only the variation of the metric derivatives which are
normal to the boundary. Instead, the Katz boundary term
IKE can be written as a fully covariant expression [Eq. (2.7)]
and is such that its variation cancels the variation of all of
the metric derivatives. Besides, as was shown in Ref. [24],
the Katz procedure is also useful for applying the varia-
tional principle when boundaries are null. However, this is
not the problem we treat in this paper.
Finally, we note that IEK reduces to the action IEGHY if

the background is taken to be a product manifold. Indeed,
in that case the line element in Gaussian coordinates is
ds2 ¼ ϵdw2 þ h̄ijðxlÞdxidxj, and thus K̄ij ¼ 0 because the
metric hij on the boundary does not depend on w.

III. EINSTEIN GRAVITY AND BOUNDARY
TERMS IN THE VIELBEIN FORMALISM

Another way to address the variational problem in
Einstein’s gravity is to use the vielbein formalism. Here
one switches from the previous coordinate one-form basis
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of the cotangent spaces (dxμ, with d being the exterior
derivative acting on a function f as df ¼ ∂αfdxα and such
that ddxρ ¼ 0) to a tetrad one-form basis (eA) such that the
metric tensor g ¼ gμνdxμ ⊗ dxν [where ⊗ is the tensorial
product operator and where gð∂μ; ∂νÞ ¼ gμν, with ∂μ being
the conjugate coordinate basis of the tangent spaces] is
diagonalized into g ¼ ηABeA ⊗ eB, where ηAB is the
Minkowski metric. Hence, A; B ¼ 0; 1;… are Lorentz
indices which are moved with ηAB and its inverse,
ωA

B is the (torsionless) spin connection, defined by
deA þ ωA

B ∧ eB ¼ 0 where a wedge denotes the exterior
product (that is, the antisymmetrized tensorial product), εAB
is the (Lorentz) Levi-Civita index such that ε01 ¼ 1, and
finally ΩAB ¼ ηBCΩA

C, where ΩA
B ¼ dωA

B þ ωA
C ∧ ωC

B
is the curvature two-form. (And similar definitions for the
barred background manifold.)
A convenient starting point is the Chern-Weil (CW)

theorem in two dimensions (see, e.g., Ref. [7]), which states
that

εABðΩAB − Ω̄ABÞ ¼ dðεABθ̄ABÞ
where θ̄AB ¼ ωAB − ω̄AB; ð3:1Þ

where ωA
B and ω̄A

B are two given spins with curvature
two-forms ΩA

B and Ω̄A
B, εAB is the Lorentz Levi-Civita

tensor, and the term inside the exterior derivative εABθ̄AB is
called the transgression form. This theorem (which can be
seen as an identity in two dimensions) suggests introducing
as a four-dimensional Einstein-Chern-Weil (ECW) action
its dimensional continuation, IECW, defined as

IECW ¼ 1

32π

Z
M4

εABCDΩAB ∧ eC ∧ eD

−
1

32π

Z
M4

dðεABCDθ̄AB ∧ eC ∧ eDÞ; ð3:2Þ

where the first term yields the Einstein-Hilbert action (2.1).
The translation uses the following relations:

ΩAB ¼ 1

2
eAαeBβRα

βμνdxμ ∧ dxν;

εABCDeAμeBν eCρ eDσ ¼ ffiffiffiffiffiffi
−g

p
εμνρσ;

dxβ ∧ dxγ ∧ dxρ ∧ dxσ ¼ −εβγρσd4x;

εμνρσε
βγρσ ¼ −2ðδβμδγν − δβνδ

γ
μÞ; ð3:3Þ

where xμ ¼ t; r;ϕ;φ, δαβ is the Kronecker symbol and εμνρσ
is the Levi-Civita symbol with spacetime indices such that
εtrϕφ ¼ 1, εtrϕφ ¼ −1. Besides, the possible background
bulk term

R
εABCDΩ̄AB ∧ eC ∧ eD must be omitted in order

to not spoil the field equations.
Now, as is well known (see, e.g., Ref. [3]) Eq. (3.2)

reproduces the Einstein Gibbons-Hawking-York action

(2.3) if the spin connection ω̄AB is associated with a
product manifold whose line element in Gaussian coor-
dinates is ds̄2 ¼ ϵdw2 þ h̄ijðxlÞdxidxj, where the metric
h̄ij on the boundary does not depend on the coordinate
normal to the boundary w. Then, the extrinsic curvature of
the background boundary vanishes, K̄ij ¼ 0, and all of the
terms containing barred quantities disappear. In this case,
the translation of Eq. (3.2) to tensorial language can only be
performed using Gaussian coordinates, i.e., if the covari-
ance is reduced to the boundary. Indeed, in Gaussian
coordinates the Lorentz indices are split as A ¼ ðn; aÞ
(where n is, respectively, 0 or 1 when ϵ is 1 or −1), and for
ω̄ associated with a product manifold we have the follow-
ing properties:

θ̄ab ¼ωab − ω̄ab ¼ 0; ωna ¼−ωan ¼−ϵKa;

with Ka ¼ eai K
i
jdx

j and ω̄na ¼−ω̄an ¼−ϵēai K̄i
jdx

j ¼ 0:

ð3:4Þ

Then, using Gauss’ theorem for a three-form Q asR
M dQ ¼ −ϵ

R
∂M Q, the boundary term in Eq. (3.2) reads

−
Z

dðεABCDθ̄AB ∧ eC ∧ eDÞ ¼ ϵ

Z
2εabcKa ∧ eb ∧ ec

¼ ϵ

Z
4

ffiffiffi
h

p
Kd3x; ð3:5Þ

where the last equality is obtained using

εnabc ¼ −ϵεabc; εabceai e
b
j e

c
k ¼

ffiffiffiffiffiffi
jhj

p
εijk;

dxidxjdxk ¼ −ϵεijkd3x; εljkε
ijk ¼ −2ϵδlj: ð3:6Þ

On the other hand, a fully covariant translation to tensorial
language of the boundary term in Eq. (3.2) is not possible in
general. The reason is that after using the tetrad postulate,
namely, ωA

B ¼ ðeAαeγBΓα
νγ þ eAα∂νeαBÞdxν (and a similar

expression with bars for the second connection), there is
no general way to get rid of the vielbeins to obtain an
expression depending on the metrics and Christoffel symbols
only. However, there is a case that is general enough for
which a covariant translation is possible. To show this, we
first introduce the hybrid spin connection as4

ω̃A
B ≡ ðeAαeβBΓ̄α

νβ þ eAα∂νeBαÞdxν; ð3:7Þ

where Γ̄ is the Christoffel symbol of an a priori
arbitrary background manifold M̄. Then, the difference
of the connections ωAB ¼ ηBCωA

C and ω̃AB ¼ ηBCω̃A
C is

given by

4The geometric properties and the proof that ω̃AB does trans-
form as a spin connection under local Lorentz transformations
can be found in Ref. [25].
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θ̃AB ¼ ωAB − ω̃AB ¼ eAμeBν θ̃
μν; ð3:8Þ

where θ̃μν ¼ ωμν − ω̃μν with

ωμν ≡ gναωμ
α; ωμ

α ¼ Γμ
βαdx

β

and ω̃μν ≡ gναω̄μ
α; ω̄μ

α ¼ Γ̄μ
βαdx

β: ð3:9Þ

If we use the hybrid connection (3.7) in the ECW action
(3.2), then this action can be translated [using the properties
given in Eq. (3.3)] into a fully covariant coordinate basis,
namely,

ĨECW ¼ 1

32π

Z
M4

εABCDΩAB ∧ eC ∧ eD

−
1

32π

Z
M4

dðεABCDθ̃AB ∧ eC ∧ eDÞ ð3:10Þ

¼ 1

32π

Z
M4

ffiffiffiffiffiffi
−g

p
εμνρσΩμν ∧ dxρ ∧ dxσ

−
1

32π

Z
M4

dð ffiffiffiffiffiffi
−g

p
εμνρσθ̃

μν ∧ dxρ ∧ dxσÞ; ð3:11Þ

with Ωμν ¼ gναΩμ
α and Ωμ

α ¼ 1
2
Rμ

αβγdxβ ∧ dxγ. Hence,
the use of the hybrid connection (3.7) provides a way to
translate the boundary term in the ECW action (3.10) into a
fully covariant coordinate basis (3.11).
These remarks pave the way to write the Einstein-Katz

action in the vielbein language. First, we notice that the
definitions given in Eqs. (3.8) and (3.9) lead to θ̃AB ¼
eAμeBν gναΔ

μ
βαdx

β, where Δμ
βα ¼ Γμ

βα − Γ̄μ
βα is the tensor

appearing in the definition of the Katz vector (2.8).
Hence, the Katz vector is related to the exterior derivative
of the boundary term in Eq. (3.10) as5

−dð ffiffiffiffiffiffi
−g

p
εμνρσθ̃

μν∧dxρ∧dxσÞ¼2∂μð
ffiffiffiffiffiffi
−g

p
kμEÞd4x: ð3:12Þ

Therefore, the ECW action (3.10) reproduces the Einstein
Katz action (2.7), namely, IEK ¼ ĨECW.
Interestingly, if Γ̄ is associated with a product manifold,

then the relation (3.12) still holds and the action (3.10)
represents a fully covariant way to write the EGHY action
(2.3). Indeed, showing the equality of the boundary terms
in Eqs. (3.10) and (2.3), that is, that

ffiffiffiffiffiffi
−g

p
εμνρσθ̃

μν ∧ dxρ ∧ dxσ ¼ 4
ffiffiffiffiffiffi
jhj

p
Kd3x; ð3:13Þ

is easily done using Gaussian coordinates: ds2 ¼ ϵdw2 þ
hijdxidxj and ds̄2 ¼ ϵdw2 þ h̄ijðxlÞdxidxj. In these coor-

dinates Γw
ij ¼ −ϵKij and Γj

iw ¼ Kj
i , where Kij ¼ 1

2
∂whij is

the extrinsic curvature of ∂M, Kl
i ¼ hljKij and K̄ij ¼ 0.

Hence the indices ρ and σ on the lhs of Eq. (3.13) reduce to
j and k. We also used the relations εwljk ¼ −εlwjk ¼ −ϵεljk
and dxi∧dxj∧dxk¼−ϵeijkd3x, as well as εljkεijk¼−2ϵδil.
The fact that Eq. (3.10) also represents a fully covariant

way to write the EGHYaction if the background is taken to
be a product manifold is completely consistent with the fact
that the Katz action (2.9) leads to the GHY action (2.3)
under the same condition. Thus, the use of the hybrid
connection (3.7) allows us to construct ĨECW, which
reproduces a) the EK action when Γ̄ is associated with
an arbitrary background, and b) the EGHYaction when Γ̄ is
associated with a product manifold.
The expressions (3.10)–(3.13) are the first results of this

paper, which bridge the gap between the Gibbons-
Hawking-York and Katz boundary terms. Additionally,
one can easily check that the Hawking-Horowitz (HH)
action (2.5) can be written using differential forms as
Eq. (3.11) if one replaces ω̃μν by ω̄μν ¼ ḡναω̄μ

α; but then,
that action cannot be written in the vielbein language as
Eq. (3.10), and thus the HH action does not correspond to a
translation of the ECW action for any given pair of spin
connections. This shows that the HH action is not related to
a fundamental geometrical object, such as a transgression
[as defined in Eq. (3.1)]. This is probably why no
generalization of the HH action is known so far in the
literature for the Gauss-Bonnet and Lovelock cases.

IV. THE GAUSS-BONNET-KATZ ACTION
AND VECTOR

A. The Gauss-Bonnet-Myers action: A recap

(1) In tensorial language:
The Gauss-Bonnet action is [6,26,27]

IGB¼
1

16π

Z
M

ffiffiffiffiffiffi
−g

p ðRμνρσRμνρσ−4RμνRμνþR2ÞdDx

¼ 1

16π

Z
M

ffiffiffiffiffiffi
−g

p
RμνρσPμνρσdDx with

Pαβγδ¼Rαβγδ−2Rα½γgδ�βþ2Rβ½γgδ�αþRgα½γgδ�β

¼ 1

64π

Z
M

ffiffiffiffiffiffi
−g

p
δα1α2α3α4β1β2β3β4

Rβ1β2
α1α2R

β3β4
α3α4d

Dx; ð4:1Þ

where indices are raised by means of the inverse metric gμν,
brackets denote antisymmetrization, and δα1α2α3α4β1β2β3β4

is the
generalized Kronecker symbol, that is, the determinant of
the 4 × 4 matrix built from the ordinary Kronecker sym-
bols, with the first row being δα1β1 , δ

α1
β2
, etc. Its variation is

obtained using the technology outlined in footnote 3 and
is [3–6,21]

5Consistency between the fully covariant versions of the Katz
action (2.7) and (3.10)–(3.12) and its expression in Gaussian
coordinates (2.9) is obtained by taking into account that, with
our conventions, the Gauss’ theorems for a vector Aμ and a three-
form Q are given, respectively, by

R
M4

∂μð ffiffiffiffiffiffi−gp
AμÞd4x ¼

ϵ
R
∂M4

ffiffiffiffiffiffijhjp
nμAμd4x and

R
M4

dQ ¼ −ϵ
R
∂M4

Q.
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δIGB¼
1

16π

Z
M

ffiffiffiffiffiffi
−g

p
HμνδgμνdDx

þ ϵ

16π

Z
∂M

½
ffiffiffiffiffiffi
jhj

p
Bijδhij−δð

ffiffiffiffiffiffi
jhj

p
QGBÞ�ddx; ð4:2Þ

where

Hμ
ν ¼ 2ðRμαβγRναβγ − 2RαβRμ

ανβ − 2RμαRνβ þ RRμ
νÞ

−
1

2
δμνðRαβγδRαβγδ − 4RαβRαβ þ R2Þ

¼ 2RμβγδPνβγδ −
1

2
δμνRαβγδPαβγδ

¼ −
1

8
δμα1α2α3α4νβ1β2β3β4

Rβ1β2
α1α2R

β3β4
α3α4 ; ð4:3Þ

and where

QGB ¼ 4δj1j2j3i1i2i3
Ki1

j1

�
1

2
Ri2i3
bj2j3

−
ϵ

3
Ki2

j2
Ki3

j3

�

¼ 4ðJ − 2Gb
ijK

ijÞ;

Bj
i ¼ 2δjj1j2j3ii1i2i3

Ki1
j1

�
1

2
Ri2i3
bj2j3

−
ϵ

3
Ki2

j2
Ki3

j3

�

¼ 2ð3Jji − Jδji − 2Pj
b kilK

klÞ;

with ϵJij ¼ −
2

3
KilKlpKpj þ

2

3
KKilKl

j

þ 1

3
KijðKlpKlp − K2Þ: ð4:4Þ

Gb
ij and Pb

ijkl are the Einstein and P tensors built with the
boundary-induced metric hij, and Kij is the extrinsic
curvature.
Note that in Eq. (4.2) we omitted the divergence of a

four-dimensional vector density in the boundary term
∂lð

ffiffiffiffiffiffijhjp
WlÞ, which is irrelevant since it was evaluated

on the closed boundary ∂M and studied in Ref. [28]. (Note
too thatHμ

ν vanishes identically in dimension less than five,
as first seen by Bach [29] and as its Lovelock expression in
terms of the rank-five generalized Kronecker symbol makes
obvious.)
As in Einstein gravity, appropriate boundary terms must

be added to the Gauss-Bonnet action in order for the
variation of the full action to vanish on shell when Dirichlet
boundary conditions (δhij ¼ 0 on ∂M) are imposed. The
Gauss-Bonnet-Myers action [3], which generalizes the
Einstein Gibbons-Hawking-York one, is

IGBM ¼ IGB þ IM with IM ¼ ϵ

16π

Z
∂M

ffiffiffiffiffiffi
jhj

p
QGBddx;

ð4:5Þ
withQGB given in Eq. (4.4). It yields a Dirichlet variational
principle since (that is, when Hμν ¼ 0),

δIGBMjon shell ¼
ϵ

16π

Z
∂M

ffiffiffiffiffiffi
jhj

p
Bijδhijddx; ð4:6Þ

which vanishes for δhij ¼ 0.
(2) In the language of forms:
To rewrite the previous expressions in the vielbein

language we start again with the Chern-Weil theorem, this
time in four dimensions (see Refs. [7,25]):

εABCDðΩAB∧ΩCD−Ω̄AB∧ Ω̄CDÞ

¼d

�
2εABCDθ̄

AB∧
�
Ω̄CDþ1

2
D̄θ̄CDþ1

3
ηEFθ̄

½CE�∧ θ̄½FD�
��

;

ð4:7Þ

where θ̄AB ¼ ωAB − ω̄AB,

Ω̄AB ¼ dω̄½AB� þ ηCDω̄
½AC� ∧ ω̄½DB�;

D̄θ̄½AB� ¼ dθ̄½AB� þ ηCDω̄
½AC� ∧ θ̄½DB�

þ ηCDω̄
½BC� ∧ θ̄½AD�; ð4:8Þ

and where the expression inside the exterior derivative
on the rhs of Eq. (4.7) is the transgression form.
Antisymmetrization is not needed in these equations if
ω̄AB is antisymmetric.6

The theorem (or identity) (4.7) again suggests introduc-
ing as a Gauss-Bonnet-Chern-Weil (GBCW) action its
dimensional continuation, IGBCW, defined as (we limit
ourselves to five dimensions for notational simplicity)

IGBCW ¼ 1

64π

Z
M5

εABCDEΩAB ∧ ΩCD ∧ eE

−
1

32π
d
Z
M5

εABCDEθ̄
AB

∧
�
Ω̄CD þ 1

2
D̄θ̄CD þ 1

3
ηEFθ̄

½CE� ∧ θ̄½FD�
�

∧ eE;

ð4:9Þ
where the first term gives back the Gauss-Bonnet action
(4.1), as it can be easily checked using the properties
given in Eq. (3.3) but adapted to a five-dimensional
manifold M5. Again, the possible background bulk termR
εABCDEΩ̄AB ∧ Ω̄CD ∧ eE must be omitted in order to not

spoil the field equations.

6In particular, Eq. (4.8) states that if a spin connection ω̄AB is
not antisymmetric, then the curvature Ω̄AB and covariant deriva-
tive D̄θ̄½AB� must be constructed only with its antisymmetric part.
As shown in Ref. [25], this ensures that the curvature comes from
a well-defined Lorentz gauge connection and satisfies the Bianchi
identities. We also notice that Ω̄AB is antisymmetric by con-
struction and that the antisymmetrization bracket has been
omitted in the derivative term of Eq. (4.7) because this task
is performed by the Levi-Civita tensor which contracts the
indices ðCDÞ.
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Now, when the second connection ω̄ describes a product
manifold the term containing the derivative D̄ drops out of
Eq. (4.9), while the curvature Ω̄ coincides with Ω in the
boundary. Then, as shown by Myers in Ref. [3], the Gauss-
Bonnet-Myers action (4.5) can be written in the language of
differential forms as

IGBM ¼ 1

64π

Z
M5

εABCDEΩAB ∧ ΩCD ∧ eE

−
1

32π
d
Z
M5

εABCDEθ̄
AB

∧
�
ΩCD

b þ 1

3
ηFGθ̄

CFθ̄GD
�
∧ eE; ð4:10Þ

where ΩCD
b is the curvature of the boundary and the

antisymmetrization brackets are not needed because the
connection ω̄ associated with a product metric is antisym-
metric by construction.
We remark that the translation of Eq. (4.10) to the

tensorial version (4.5) can be made only if the covariance is
reduced to the boundary.7 However, as we will see in the
next section, the use of the hybrid connection (3.7) allows
to perform a fully covariant translation of the GBCWaction
to tensorial language. This will provide not only a way to
generalize the Katz procedure to the Einstein-Gauss-
Bonnet case, but also the way to write the Myers boundary
term in a fully covariant coordinate basis.

B. A Gauss-Bonnet Katz action

Let us consider the hybrid connection (3.7) and its asso-
ciated curvature two-form Ω̃AB¼dω̃ABþηCDω̃

½AC�∧ ω̃½DB�.
The relations (see Ref. [25] for further details)

Ω̃AB ¼ ΩAB − D̃θ̃½AB� − ηCDθ̃
½AC� ∧ θ̃½DB�;

D̃θ̃½AB� ¼ Dθ̃½AB� − 2ηCDθ̃
½AC� ∧ θ̃½DB� ð4:11Þ

can be used to show that the Chern-Weil action (4.9) for the
hybrid connection can be expressed as8

ĨGBCW¼−
1

64π

Z
M5

εABCDEΩAB∧ΩCD

þ ϵ

32π

Z
∂M5

εABCDEθ̃
AB

∧
�
ΩCD−

1

2
Dθ̃½CD�þ1

3
ηEFθ̃

½CE�∧ θ̃½FD�
�
: ð4:12Þ

The reasonwe express Ω̃ and D̃ in terms ofΩ andD is that this
allows us to translate the transgression form to tensorial
language using ΩAB ¼ eAμeBνΩμν and Dθ̃½AB� ¼ eAμeBν∇θ̃½μν�,
where

Ωμν ¼ gναΩμ
α;

Ωμ
α ¼ dωμ

α þ ωμ
σ ∧ ωσ

α ¼
1

2
Rμ

αβγdxβ ∧ dxγ;

∇θ̃½μν� ¼ dθ̃½μν� þ ωμ
α ∧ θ̃½αν� þ ων

α ∧ θ̃½μα�: ð4:13Þ

Building on these results, we are led to propose the
Gauss-Bonnet Katz action as the translation of Eq. (4.12) in
a coordinate basis, that is,

IGBK ≡ ĨGBCW

¼ 1

64π

Z
M5

EμνρσλΩμν ∧ Ωρσ ∧ dxλ

þ ϵ

32π

Z
∂M5

Eμνρσαθ̃
μν

∧
�
Ωρσ −

1

2
∇θ̃½ρσ� þ 1

3
gγλθ̃

½ργ�θ̃½λσ�
�

∧ dxα

with θ̃μν ¼ Δμν
α dxα where Δμν

α ¼ gνδΔμ
αδ: ð4:14Þ

The Gauss-Bonnet Katz vector is then obtained through the
relation

−d

�
2Eμνρσαθ̃

μν ∧
�
Ωρσ −

1

2
∇θ̃½ρσ� þ 1

3
gγλθ̃

½ργ�θ̃½λσ�
�
∧ dxα

�

¼ ∂μð
ffiffiffiffiffiffi
−g

p
kμGBÞd5x; ð4:15Þ

which yields

kμGB¼−δμν2ν3ν4μ1μ2μ3μ4Δ
μ1μ2
ν2

�
Rμ3μ4
ν3ν4 −∇ν3Δ

½μ3μ4�
ν4 þ2

3
gγλΔ

½μ3γ�
ν3 Δ½λμ4�

ν4

�
:

ð4:16Þ

Therefore the Gauss-Bonnet Katz (4.14) action we
propose, which generalizes the Einstein Katz action
(2.7)–(2.9), reads, in tensorial language,

IGBK ¼ IGB þ IKGB

with IKGB ¼ 1

64π

Z
M5

∂μð
ffiffiffiffiffiffi
−g

p
kμGBÞd5x; ð4:17Þ

7Using the properties given in Sec. III, but adapted to
a five-dimensional manifold M5, one can directly check
that in Gaussian coordinates the boundary term can be
written as − 1

32πd
R
M5

εABCDEθ̄
AB∧ðΩCD

b þ1
3
ηFGθ̄

CFθ̄GDÞ∧eE¼
ϵ

16π

R
∂M5

εabcdKa∧ðΩbc
b − ϵ

3
KbKcÞ∧ed and the translation of the

last expression to tensorial language gives Eq. (4.5).
8We recall that in our conventions, Gauss’ theorem for a four-

form Q reads
R
M5

dQ ¼ −ϵ
R
∂M5

Q.
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where IGB and kμGB are defined in Eqs. (4.1) and (4.16), respectively. Using Gaussian coordinates the Gauss-Bonnet Katz
boundary term also reads9

IKGB ¼ 1

16π

Z
∂M5

ffiffiffiffiffiffi
jhj

p
kwGBd

4x; with kwð2Þ ¼ ϵQGB þ ϵEGB; ð4:18Þ

where QGB is given in Eq. (4.4) and

EGB ¼ 4δj1j2j3i1i2i3
Ki1

j1

�
−
1

2
∇∘ j2Δ

∘ i2i3
j3 þ ϵKi2

j2
Zi3
j3
−
ϵ

3
ðKi2

j2
Zi3
j3
þ Zi2

j2
ðKi3

j3
þ Zi3

j3
ÞÞ þ 1

3
hl2l3Δ

∘ ½i2l2�
j2 Δ

∘ ½l3i3�
j3

�

þ 4δj1j2j3i1i2i3
Zi1
j1

�
1

2
Ri2i3
bj2j3

−
1

2
∇∘ j2Δ

∘ i2i3
j3 þ ϵKi2

j2
Zi3
j3
−
ϵ

3
ðKi2

j2
þ Zi2

j2
ÞðKi3

j3
þ Zi3

j3
Þ þ 1

3
hl2l3Δ

∘ ½i2l2�
j2 Δ

∘ ½l3i3�
j3

�

− 2δj1j2j3i1i2i3
Δ
∘ i1i2
j1

�
∇∘ j2ðZi3

j3
− Ki3

j3
Þ þ Kj2l3Δ

∘ ½l3i3�
j3 −

2

3
hl2l3ðKl2

j2
þ Zl2

j2
ÞΔ
∘ ½l3i3�
j3

�
; ð4:19Þ

where Zi
j ¼ − 1

2
ðhik þ h̄ikÞK̄jk, ∇

∘
is the covariant deriva-

tive with respect to the connection Γ
∘ i
jk of the boundary,

Δ
∘ il
j ¼ hlkΔ

∘ i
jk, and Δ

∘ i
jk ¼ Γ

∘ i
jk −

¯
Γ
∘ i
jk.

Similarly to the results found in Sec. III, the Gauss-
Bonnet Katz action (4.14) and (4.18) reproduces the Gauss-
Bonnet-Myers action (4.5) if the background is replaced by
a product manifold. In that case the extra term EGB vanishes
and thus IGBK ¼ IGBM, because as the boundaries coincide
and K̄ij ¼ 0 one gets Δik

j ¼ 0 and Zi
j ¼ 0. This means that

the action (4.14) also represents the way to write the Gauss-
Bonnet-Myers action (4.5) in a fully covariant coordinate
basis by only replacing the background by a product
manifold. To show this one must use the relations dxα∧
dxβ∧dxγ∧dxδ∧dxλ¼−εαβγδλd5x, εμνρσλε

αβγδλ ¼ −δαβγδμνρσ,

εijklεspql ¼ −ϵδijkspq, and θ̃μν ¼ gνγðωμ
γ − ω̄μ

γ Þ, with ωμ
γ and

ω̄μ
γ being defined in Eq. (3.9). We note for further reference

that at the boundary dw ¼ 0 and θ̃ij ¼ 0, because in the
product manifold case the boundaries coincide so that
Γi
lk ¼ Γ̄i

lk. Then the normal index w can only be in θ̃μν,

while the quadratic term inside the parentheses gives
gγλθ̃

½jγ�θ̃½λk� ¼ gwwθ̃
½jw�θ̃½wk� ¼ −ϵKj

pKk
qdxpdxq, where we

have used gww ¼ ϵ and θ̃½iw� ¼ −θ̃½wi� ¼ ϵKi
ldx

l which
can be easily obtained using Γw

ij ¼ −ϵKij, Γi
jw ¼ Ki

j, and
Γ̄w
ij ¼ Γ̄i

jw ¼ 0 because K̄ij ¼ 1
2
∂wh̄ij ¼ 0 for a product

manifold. Thus, all of the information about the product
manifold disappears, giving us the known tensorial result
(4.5) for D ¼ 5.
The proposals for the Gauss-Bonnet-Katz action (4.14)

and (4.17), the Katz vector (4.16), and the boundary term
(4.18) form the core of this paper.

C. A Dirichlet variational principle

Here we show that the Gauss-Bonnet-Katz action IGBK
proposed in the previous section solves the Dirichlet
problem. There are a priori various ways to show this,
as one can work using its tensorial form (4.17) or its
expression in differential-form language in the coordinate
basis (4.14) or using Eq. (4.12). The proof we will give here
is based on the dimensional continuation of the variation
of the transgression form, which can be obtained using
homotopic techniques in terms of an interpolating
connection.
As shown in the Appendix, the Chern-Weil theorem for

the hybrid connection can be written as εABCDΩABΩCD −
εABCDΩ̃ABΩ̃CD ¼ dT ð3Þðω; ω̃Þ, where the transgression
form is given by (we omit the ∧ symbols)

T ð3Þðω; ω̃Þ ¼ 2

Z
1

0

dtεABCDθ̃
ABΩCD

ðtÞ ; ð4:20Þ

where ΩAB
ðtÞ ¼ dωAB

ðtÞ þ ωA
ðtÞCω

CB
ðtÞ and ωAB

ðtÞ ¼ ω̃½AB� þ tθ̃½AB�

(with θ̃AB ¼ ωAB − ω̃AB) is a connection interpolating
between ω̃½AB� and ωAB. It is also shown in the
Appendix that its variation is then given by

9This result is obtained after expanding the generalized
Kronecker delta with the identity

δν1ν2ν3ν4μ1μ2μ3μ4 ¼ δν1μ1δ
ν2ν3ν4
μ2μ3μ4 − δν1μ2δ

ν2ν3ν4
μ1μ3μ4 þ δν1μ3δ

ν2ν3ν4
μ1μ2μ4 − δν1μ4δ

ν2ν3ν4
μ1μ2μ3

using the Gauss-Codazzi equations Rij
kl¼Rij

bkl−ϵðKi
kK

j
l −Ki

lK
j
kÞ,

Rwi
kl ¼ −ϵð∇∘ kKi

l −∇∘ lKi
kÞ, where ∇∘ is the covariant derivative

with respect to the connection Γ
∘ i
jk of the boundary. Also, we use

the following properties:

∇i2Δ
j2j3
i3

¼ ∇∘ i2Δ
j2j3
i3

þKj2
i2
Δwj3

i3
þKj3

i2
Δj2w

i3
þ ϵKi2i3Δ

j2j3
w ;

∇i2Δ
½wj3�
i3

¼ ∇∘ i2Δ
½wj3�
i3

− ϵKi2lΔ
½lj3�
i3

;

Γw
ij ¼ −ϵKij; Γi

wj ¼ Ki
j; Γi

jk ¼ Γ
∘ i
jk; Δjl

i ¼ Δ
∘ jl
i ;

Δ½wl�
k ¼ −ϵðKl

k þ Zl
kÞ:
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δT ð3Þðω; ω̃Þ ¼ 2εABCDðΩABδωCD − Ω̃ABδω̃CDÞ

− 2d
Z

1

0

dtεABCDθ̃
ABδωCD

ðtÞ : ð4:21Þ

Then, the Gauss-Bonnet action and the corresponding
boundary term IKGB we have proposed in Eqs. (4.14) and
(4.17) can be written in the vielbein language as

IGB¼
1

64π

Z
M5

εABCDEΩABΩCDeE; IKGB¼
1

64π

Z
M5

dβð2Þ;

where βð2Þ is the dimensional continuation of the
transgression,

βð2Þðω; ω̃Þ ¼ −2
Z

1

0

dtεABCDEθ̃
ABΩCD

ðtÞ e
E: ð4:22Þ

To show that the variation of IGBK ¼ IGB þ IKGB vanishes for
Dirichlet conditions, we see that δβð2Þ must be the dimen-

sional continuation of δT ð3Þðω; ω̃Þ given in Eq. (4.21) plus
an additional term containing the variation of the vielbein
arising in Eq. (4.22) from the dimensional continuation
procedure. Thus we have δIKGB ¼ 1

64π

R
M5

dðδβð2ÞÞ, where

δβð2Þ ¼ −2εABCDEΩABδωCDeE þ 2εABCDEΩ̃ABδω̃CDeE

þ 2d
Z

1

0

dtεABCDEθ
ABδωCD

t eE

− 2

Z
1

0

dtεABCDEθ
ABΩCD

ðtÞ δe
E: ð4:23Þ

Under the exterior derivative, the first term in Eq. (4.23) will
cancel the variation of the Gauss-Bonnet action,

δIGB ¼ 1

32π

Z
M5

dðεABCDEΩABδωCDeEÞ: ð4:24Þ

The fourth term vanishes for Dirichlet conditions on the
boundary (δeEj∂M5

¼ 0), and the third one trivially vanishes
because d2 ¼ 0. Thus, we have

δIKGB ¼ −
1

32π

Z
M5

dðεABCDEðΩABδωCD − Ω̃ABδω̃CDÞeEÞ

−
1

32π

Z
M5

d

�Z
1

0

dtεABCDEθ
ABΩCD

ðtÞ δe
E

�
:

Now we only have to prove that the exterior derivative
of the second term vanishes for Dirichlet conditions.
Indeed, the antisymmetric part of the hybrid connection

can be written as ω̃½AB� ¼ e½Aα ∇̄eB�α, where ∇̄ ¼ dxμ∇̄μ is
the covariant derivative with respect to the background
connection Γ̄. Taking δΓ̄ ¼ 0, we obtain

d½2εABCDEΩ̃ABδω̃CDeE� ¼ d½2εABCDEΩ̃AB∇̄eDαeEδeCα �
þ d½2εABCDEΩ̃ABeCα ∇̄δeDαeE�:

ð4:25Þ

Now, using

dð2εABCDEΩ̃ABeCα δeDαeEÞ
¼ 2εABCDE½∇̄ðΩ̃ABeCα eEÞδeDα þ Ω̃ABeCα ∇̄ðδeDαÞeE�

and d2 ¼ 0, we get

d½2εABCDEΩ̃ABδω̃CDeE�
¼ d½2εABCDEðΩ̃AB∇̄eDαeEδeCα − ∇̄ðΩ̃ABeCα eEÞδeDαÞ�:

ð4:26Þ

Then, the variation of IKGB is

δIKGB¼−
1

32π

Z
M5

dðεABCDEΩABδωCDeEÞ

þ 1

32π

Z
M5

d

�
εABCDE

�
Ω̃AB∇̄eDαeEδeCα

−∇̄ðΩ̃ABeCα eEÞδeDα−
Z

1

0

dtθABRCD
t δeE

��
; ð4:27Þ

so that the variation of IGBK ¼ IGB þ IKGB is given by

δIGBK¼2

Z
M5

d

�
εABCDE

�
Ω̃AB∇̄eDαeEδeCα

−∇̄ðΩ̃ABeCα eEÞδeDα−
Z

1

0

dtθABRCD
t δeE

��
; ð4:28Þ

which has a suitable form to apply Dirichlet boundary
conditions on the vielbein, δeAj∂M5

¼ 0. Q.E.D.

D. The Einstein-Gauss-Bonnet-Katz action
and the Boulware-Deser black hole

The static, spherically symmetric black hole Boulware-
Deser metric—which solves the Einstein-Gauss-Bonnet
equations of motion GμνþαHμν¼0 in five dimensions—is

ds2 ¼ −fðrÞc2dt2 þ 1

fðrÞ dr
2 þ r2dΩ2

ðD−2Þ;

fðrÞ ¼ 1þ r2

2α̃
−

r2

2α̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4α̃

l2
þ 4μ

rD−1

r
;

wherel2 ¼ − ðD−1ÞðD−2Þ
2Λ , α̃ ¼ ðD − 3ÞðD − 4Þα, andμ is the

mass parameter. Its mass has been obtained by various
methods, in particular à la Katz in Ref. [21]. In Eq. (3.9) of
that reference the following Gauss-Bonnet-Katz vector was
proposed:
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kμDKO ¼ 4Rμνρ
σΔσ

νρ − 8ðRμνΔρ
νρ − RνρΔμ

νρÞ þ 2RðgμνΔρ
νρ − gνρΔμ

νρÞ: ð4:29Þ

This led to the right mass [when taking the background to be asymptotically AdS, i.e., when μ is taken to be zero in fðrÞ],
although it was noted that it did not yield a well-posed Dirichlet problem. To make a comparison with our construction, we
can write Eq. (4.16) as10

kμGB ¼ 4Rμνρ
σΔσ

νρ − 4ðRμνΔρ
νρ − RνρΔμ

νρ þ Rν
σgμρΔσ

νρ − Rμ
σgνρΔσ

νρÞ þ 2RðgμνΔρ
νρ − gνρΔμ

νρÞ
þ 4Δ½μν�

ν ∇ρΔ
½ρσ�
σ þ 4Δ½ρσ�

ν ∇ρΔ
½μν�
σ þ 8Δ½ρσ�

σ ∇½νΔ
½μν�
ρ� þ 8Δ½μν�

ρ ∇½σΔ
½ρσ�
ν�

−
8

3
gγλðΔ½ργ�

½ρ Δ½λσ�
σ� Δ½μν�

ν − 2Δ½μν�
ρ Δ½ργ�

½ν Δ½λσ�
σ� þ 2Δ½ρσ�

ρ Δ½μγ�
½σ Δ½λν�

ν� þ Δ½ρσ�
ν Δ½μγ�

ρ Δ½λν�
σ Þ: ð4:30Þ

It is an easy (MATHEMATICA) exercise to redo the calcu-
lation with the Gauss-Bonnet-Katz vector proposed in this
paper and to verify that it also gives the right mass.
Interestingly, only the terms of the first line in
Eq. (4.30) (which is different from kμDKO) contribute to
the mass, while the precise combination of the derivative
and cubic terms ensure that the Dirichlet problem is well
defined.

V. CONCLUSIONS

In the context of background-substraction methods, we
have proposed a boundary term for Einstein-Gauss-Bonnet
gravity, which both solves the Dirichlet problem and
ensures the finiteness of the conserved charges in this
theory. The Chern-Weil theorem for the hybrid connection
gives rise to a mathematical structure at the boundary,
which naturally accommodates the Christoffel connection
associated to the background spacetime. We have also
shown that the use of such an object is essential in the
construction of Katz-like terms in general relativity and
Einstein-Gauss-Bonnet theory.
In a way, what we have explored here is the use of an

enhanced symmetry (Lorentz in the tangent space) to fix
the ambiguity of the possible boundary terms that sets a
well-posed action principle. This leads to a generalized
Katz vector in EGB gravity such that the correct mass for
the Boulware-Deser black hole is obtained. Our results,
based on the use of the Chern-Weil theorem, show that the
vector that simultaneously allows to obtain, e.g., the right
mass of the Boulware-Deser black hole and defines the
Dirichlet problem is unique.
The construction presented in this work allows to deal

with a general background which can be chosen so as to

yield finite global charges without invoking extra regulari-
zation procedures. At the same time, it includes the GHM
boundary term as a special case when the background is
taken to be a product manifold.
Our analysis naturally suggests that a generalization of

the Katz procedure for a generic Lovelock gravity can be
performed, and the results we have for that problem will be
reported soon [25].
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APPENDIX: CHERN-WEIL THEOREM
IN D= 4 AND VARIATION OF THE

TRANSGRESSION FORM

Let us define the connection

ωAB
ðtÞ ¼ ω̃½AB� þ tθ̃½AB�; θ̃AB ¼ ωAB − ω̃AB;

which interpolates between ω̃½AB� and ωAB. Using D̃θ̃½AB� ¼
Dθ̃½AB� − 2ηFGθ̃

½AF�θ̃½GB�, the interpolating field strength
ΩAB

ðtÞ ¼ dωAB
ðtÞ þ ωA

ðtÞCω
CB
ðtÞ can be written as

ΩAB
ðtÞ ¼ Ω̃AB þ tD̃θ̃½AB� þ t2ηFGθ̃

½AF�θ̃½GB�

¼ ΩAB þ ðt − 1ÞDθ̃½AB� þ ðt − 1Þ2ηFGθ̃½AF�θ̃½GB�;

which gives ΩAB
ð0Þ ¼ Ω̃AB and ΩAB

ð1Þ ¼ ΩAB. With these

definitions, the four-dimensional Chern-Weil theorem
given in Eq. (4.7) can be written as εABCDΩABΩCD−
εABCDΩ̃ABΩ̃CD ¼ dT ð3Þðω; ω̃Þ, so that the transgression
form is given by

10This can be obtained by expanding the Kronecker delta in
Eq. (4.16) with the following identity

δν1ν2ν3ν4μ1μ2μ3μ4 ¼ δν1ν2μ1μ2δ
ν3ν4
μ3μ4 − δν1ν2μ1μ3δ

ν3ν4
μ2μ4 þ δν1ν2μ1μ4δ

ν3ν4
μ2μ3

þ δν1ν2μ2μ3δ
ν3ν4
μ1μ4 − δν1ν2μ2μ4δ

ν3ν4
μ1μ3 þ δν1ν2μ3μ4δ

ν3ν4
μ1μ2 ;

where δν1ν2μ1μ2 ¼ δν1μ1δ
ν2
μ2 − δν1μ2δ

ν2
μ1 .
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T ð3Þðω; ω̃Þ ¼ 2

Z
1

0

dtεABCDθ̃
ABΩCD

ðtÞ : ðA1Þ

To calculate the variation δT ð3Þ we need the properties

δΩAB
ðtÞ ¼ DðtÞðδωAB

ðtÞ Þ; δωAB
ðtÞ ¼ δω̃½AB� þ tδθ̃½AB�;

θ̃½AB� ¼ d
dt

ðωAB
ðtÞ Þ; δθ̃½AB� ¼ d

dt
ðδωAB

ðtÞ Þ;

DðtÞθ̃½AB� ¼ d
dt

ðΩAB
ðtÞ Þ; ðA2Þ

which can be easily obtained from the previous definitions.
Thus, we have

δT ð3Þðω; ω̃Þ ¼ 2

Z
1

0

dtεABCDðδθ̃ABΩCD
ðtÞ þ θ̃ABDðtÞðδωCD

ðtÞ ÞÞ

¼ 2

Z
1

0

dtεABCD

�
δθ̃ABΩCD

ðtÞ þ d
dt

ðΩAB
ðtÞ ÞδωCD

ðtÞ

�

− 2d
Z

1

0

dt½εABCDθ̃ABδωCD
ðtÞ �; ðA3Þ

where we have used

εABCDθ̃
ABDðtÞðδωCD

ðtÞ Þ ¼ εABCDDðtÞθ̃ABδωCD
ðtÞ

− d½εABCDθ̃ABδωCD
ðtÞ �

and some of the properties given in Eq. (A2). The terms in
the first integral in Eq. (A3) give

εABCD

�
δθ̃ABΩCD

ðtÞ þ d
dt

ðΩAB
ðtÞ ÞδωCD

ðtÞ

�

¼ εABCD
d
dt

ðtΩAB
ðtÞ Þδθ̃CD þ εABCD

d
dt

ðΩAB
ðtÞ Þδω̃CD;

and thus we obtain

δT ð3Þðω; ω̃Þ ¼ 2εABCDðΩABδωCD − Ω̃ABδω̃CDÞ

− 2d
Z

1

0

dtεABCDθ̃
ABδωCD

ðtÞ : ðA4Þ

This is the relation used in the main text to show that the
Gauss-Bonnet-Katz action indeed yields a Dirichlet varia-
tional principle. Note that the use of the interpolating
connection ωAB

ðtÞ is essential to get this result.
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