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Expansion of a locally equilibrated fluid is considered in an anisotropic space-time given by the
Bianchi type-I metric. Starting from the isotropic equilibrium phase-space distribution function in
the local rest frame, we obtain expressions for components of the energy-momentum tensor
and conserved current, such as number density, energy density, and pressure components. In the
case of an axissymmetric Bianchi type-I metric, we show that they are identical to those
obtained within the setup of anisotropic hydrodynamics. We further consider the case in which
the Bianchi type-I metric is a vacuum solution of the Einstein equation: the Kasner metric. For the
axissymmetric Kasner metric, we discuss the implications of our results in the context of anisotropic

hydrodynamics.
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I. INTRODUCTION

The success of relativistic hydrodynamics in explaining
the space-time evolution of strongly interacting hot and
dense matter, produced in relativistic heavy-ion collisions,
has initiated new developments in the theoretical formu-
lation of relativistic viscous hydrodynamics [1,2]. In
recent years, there have been significant advances in
our understanding of the theory of relativistic hydro-
dynamics and its application to high-energy heavy-ion
collisions at the Relativistic Heavy-lon Collider and the
LHC [3-5]. The formulation of dissipative hydrodynamic
equations is achieved by obtaining the long-wavelength,
low-frequency limit of the underlying microscopic
dynamics of a system [6—11]. The traditional derivation
of dissipative hydrodynamics from kinetic theory relies
on a linearization around an equilibrium distribution
function that is isotropic in momentum space [12-18].
This amounts to expansion of the underlying microscopic
kinetic theory in terms of the inverse Reynolds number
and Knudsen number around local equilibrium [19-24].
This type of expansion may not be accurate in situations
in which deviations from the local equilibrium and/or
space-time gradients are large.

Recent studies have shown that a phase of QCD called
the quark gluon plasma (QGP), which is created in
relativistic heavy-ion collisions, is not isotropic in
momentum space. For instance, at very early times, large
pressure anisotropies are created in the center of the
fireball for viscosities consistent with experimental obser-
vations. Moreover, the level of plasma anisotropy
increases as one moves away from the center of the
fireball to the peripheral regions of the plasma where the
temperature is low [25,26]. Such large pressure
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anisotropies indicate large viscous corrections to the
distribution function, which is contradictory to the
near-equilibrium assumption of the formulation of viscous
hydrodynamic equations. Furthermore, application of tradi-
tional linearized viscous hydrodynamics leads to regions of
phase space in which the single-particle phase-space dis-
tribution function may be negative, which may in turn lead
to negative longitudinal pressure [27-29]. Depending on
whether one considers early times or colder regions of the
plasma, the size of these unphysical regions increases. It is
important to note that the single-particle phase-space dis-
tribution function is used to calculate observable plasma
signatures, such as dilepton and photon production/flow,
quarkonium suppression, and hadronic spectrum through
freeze-out. Therefore, inaccuracies in the distribution func-
tion can potentially lead to incorrect estimation of these
observables [30-33].

Because of the aforementioned problems in traditional
dissipative hydrodynamics, there was motivation to create
an alternative framework that could more accurately
capture the far-from-equilibrium dynamics of highly
momentum-space anisotropic systems. The framework
of anisotropic hydrodynamics has proven to be quite
successful in this context [34-43]; see Ref. [44] for a
comprehensive review. Anisotropic hydrodynamics is a
nonperturbative approximation of relativistic dissipative
hydrodynamics that takes into account the large momen-
tum-space anisotropies generated in relativistic heavy-ion
collisions. The motivation for the formulation of aniso-
tropic hydrodynamics is to create a framework that is better
suited to deal with such large anisotropies and accurately
describes several interesting features such as the early-time
dynamics of the QGP, dynamics near the transverse edges
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of the fireball, and the possibility of a large shear viscosity—
to—entropy density ratio 7/ s.' Asa consequence, it allows
one to extend the regime of applicability of dissipative
hydrodynamics to systems that can be quite far from
isotropic local thermal equilibrium.

In this paper, we present an alternate derivation of
anisotropic hydrodynamic equations by considering the
expansion of a locally equilibrated fluid in an anisotropic
space-time given by the Bianchi type-I metric. Assuming
the isotropic phase-space distribution function at the
initial time in the local rest frame, we obtain expressions
for components of the energy-momentum tensor and
conserved current, such as the number density, energy
density, and pressure components. We show that these
expressions are identical to those obtained within the
setup of anisotropic hydrodynamics when one considers
the axissymmetric Bianchi type-I metric.

We further consider the case in which the Bianchi type-I
metric is a solution of the Einstein equation: the Kasner
metric. The Kasner metric describes a curved space-time in
general. However, it has been shown that the Kasner space-
time can be treated as a well-controlled approximation
of alocal rest frame of an anisotropically expanding fluid in
Minkowski space-time [47]. Therefore, the Kasner space-
time provides a useful framework for studying the aniso-
tropic expansion because of the simplification of the
hydrodynamic equations [48]. For the axissymmetric
Kasner metric, we further discuss the implications of our
results in the context of anisotropic hydrodynamics.

II. METRIC
The most general anisotropic Bianchi type-I metric is
[49-51]
ds* = di* — g;;dx'dx. (1)

When there is no a priori preferred direction, the metric
simply takes a diagonal form given as

ds? = dr* — A% (t)dx* — B*(t)dy?* — C*(t)dz>. (2)

The quantities A(r), B(z), and C(t) are scale factors for the
expansion along x, y, and z axes. The metric tensor is
diagonal and is given by

G = diag[1, —A%(1). =B(1). —=C*(1))]. (3)
and the inverse of the metric tensor is given by

lAlthough phenomenological analyses of experimental data
suggests that the average value of 1/s of QGP is small, lattice
QCD predicts relatively large values at high temperature [45].
Also see Ref. [46] for phenomenological implications of temper-
ature-dependent 7/s.

1 1 1
= diag |1, — ——, — - .
TR Ty TR T ) “)

Later, we will specialize to the axissymmetric case in which
we will have A(7) = B(t). We will also consider the case in
which the Bianchi type-I metric is a solution of the Einstein
equation: the Kasner metric.

III. STRESS-ENERGY TENSOR FOR A GAS IN
THERMAL EQUILIBRIUM

First, we will investigate the form of stress energy for a
gas of strongly interacting massless particles in thermal
equilibrium at a time ¢ =1ty. This is possible if the
characteristic interaction time is much shorter than the
dynamic expansion time of the system.

The stress-energy tensor is defined as

. &p o,
™ = [ \/=g D PFP S (X Py)
dpla’pzdp3 )
:/\/—ng”p fxpy), ()

where f(x,,p,) is the scalar distribution function in the
relativistic phase space and g is the determinant of metric
tensor g,, and is equal to

g=—-A’BXC* = -V, (6)

where V is the physical volume occupied by the particles.
Similarly, one can define the number density to be

n= / G Pf (5 ). (7)

For ultrarelativistic particles of which the masses can be
ignored, we know that

¢ pup, =m* =0, (8)

where m is mass. Hence, we can write Eq. (8) as

Fo=Poli-y = KA;(»;O)>2 i <BI<750>)2 i (c?%)ﬂ R

©)

where we have denoted E as the energy of the particles at
time t = fy. Since we have thermal equilibrium at time
t =1t;, we can recast our momenta in spherical polar
coordinates (pg,6,¢) to extract the components of
stress-energy tensor (7,) using Eq. (5).

The physical components of 4-momenta that a local
homogeneous observer reads are defined as
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P, = (9")'"p, (10)

such that P,P* = m?* and no sum is implied in Eq. (10).
Thus, in spherical polar coordinates, one finds

P1

P, = = in 0 si
1= ™ Do sin @ sin ¢
P2 .
P = = 6
) Bl1o) Posinécos ¢
Py=—13 = 0. 11
3 Clty) Po €O8 (11)

One can readily verify that the above system of equations
satisfies Eq. (9). We can calculate the transformation
Jacobian of Eq. (5) to be

1
dp'dp*dp® =3 pjdpedQ. (12)

We can choose the scalar distribution function f(x, p) as

1
Feepr) =90 g (13)

where g, is the degeneracy factor; T, is temperature at time
t =ty;and r = 0, 41, and —1 for Boltzmann, Fermi-Dirac,
and Bose-Einstein distribution functions, respectively. Note
that we have assumed Boltzmann’s constant and Planck’s
constant to be unity, i.e., k =f = 1.

Inserting Eqs. (11)—(13) into Egs. (5) and (7) and doing
the angular integration, one easily obtains the equilibrium
relations

n=g,(Tp).
e="To = 92(To)*.
1
P=Ty :T22=T33:§87 (14)

where we have absorbed some constants appearing after
integration into the redefined degeneracy factors g; and g,.
Thus, we have established that the form of the stress-energy
tensor completely agrees with that of a gas in thermal
equilibrium with its surrounding having temperature
T = T,. In the next section, we will derive the evolution
of stress energy when the gas gets completely decoupled
from its surrounding.

IV. COLLISIONLESS STRESS-ENERGY TENSOR

We idealize the decoupling of the gas from its surround-
ing happens at time ¢ = #;, such that after time 7, the gas
experiences a collisionless adiabatic expansion or contrac-
tion as specified by the metric of Eq. (2). Also, Liouville’s
theorem guarantees that the distribution function f(x, p) of
Eq. (13) remains constant throughout the phase space for

all time during the evolution. This in turn implies that the
energy E and the temperature 7, at a given time ¢, are
redshifted by the same amount, i.e.,

E T

—_——— = 1
E, T, = (15)

where z is the usual redshift factor.

The evolution of the stress-energy tensor depends only
on the function z, which needs to be determined. From
Eq. (8), the energy E for the particles evolving by the metric
given in Eq. (2) at time ¢ is

o= |ti) * (at) + () | 00

Since, the 3-momenta p; are constants of motion, i.e.,
dp;/dr =0 (as shown in Appendix), the contravariant
components of Eq. (16) are

S CRCRCEI
(17)

Now, using Egs. (10) and (11) in Eq. (17), we can easily
find the redshift factor z to be

[l ey

From Egq. (18), we see that the characteristic temperature is
dependent on the direction of the motion of the particles.

Using Eqgs. (15) and (18), we can calculate the compo-
nents of the stress-energy tensor at a later time ¢ > £, from
Eq. (14). We proceed in the same way as before, except the
angular integration is altered. We obtain

_ M 2”d¢/”sinez3d9 (19)
47'[ 0 0
2r /4
e = Ty ::_jr o A sin 0z4do, (20)
3(7)):)0

2r p4
=7 / cos? pd¢p / sin® 0z*d0,  (21)
471' 0 0
3(P 2z b2
Py =Ty = %A sin? qﬁd(ﬁA sin® 0z*d0), (22)

2z T
P, =Ts; :% A dg A sin 0 cos? 9z*df.  (23)
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If we assume an ax1ssymmetr1c case, i.e., Alty) ) = ( B(ty) = é:

and ( = &3, in which case the system of Egs. (19)-(22)

reduces to a more tractable form,

1
" %/1 BG-a)+a)™ar, (24
£= 30/1 (25 = &) +&1)da, (25)
PL= 3(1%)0 _1(1 — ARG - &)+ &)L (26)

P =200 [ - e @)

where 4= cos@ and we have defined P, =P, =P,
and Pz = PH‘
Integrating Eqs. (24)—-(27), we get

g

s (28)
) gggl <1 +garcta2 _¢a13-—1> _ 807;<:), (29)
A (L 6
PO -
Py = 3(27;&)0 <§(1 1— £) arc(:;ai \1/)5&3/_7>
_ 3(7;1‘)0 <§§é§l I)1>’ (31)

where 5:% and R(¢)
1

while we substitute £ as %

=21 +75m\7§%‘{ﬁ) for > 1,
for £ < 1.

V. COLLISIONLESS BOLTZMANN EQUATION

The expression for components of the energy-momentum
tensor and conserved current, given in Egs. (28)—(31), for a
system of anisotropically expanding collisionless plasma,
can also be obtained by considering the Boltzmann equation
in the free-streaming case. The collisionless Boltzmann
equation for the Bianchi type-I metric is given as

of
Pro.f —Tosp® pﬁa . =0. (32)

Taking into account that f cannot depend on the position x;,
because of the homogeneity of space, the collisionless
Boltzmann equation thus becomes

0
PP0of = Thsp p/’(,)]; 0, (33)
0 " ; Of
p°dof = (2Tg;p° +T;p") p/ o 0. (34)

The nonzero components of the Christoffel symbols are
ng = %’ r%y = %’ and l—‘(Z)z =

Christoffel symbols into the above equation gives us

g. Substituting these values of

A _Of B
Aap

af c af B

Solving the above equation by the method of char-
acteristics yields f = f(A%(t)p*, B*(t)p*, C*(t)p?) =
F(A()P*, B(t)PY, C(t)P?), where we have used Eq. (10)
and redefined momenta in terms of physical momenta [52].

From the above equation, we see that for a
collisionless system the momentum dependence of
the distribution function should be of the form
f = f(A%(1)p~, BX(t)p*, C*(t)p?). Using this form of
functional dependence in the equilibrium distribution
function, given in Eq. (13), and taking the appropriate
moments again leads to the same expressions for the
components of the energy-momentum tensor and conserved
current, Eqgs. (28)—(31), of a system of anisotropically
expanding collisionless plasma [53]. This, however, is
not surprising because in the previous section we used
the fact that the particle momenta, p;, are constants of
motion; i.e., particles do not suffer any collision and are free
streaming. Therefore, the solution of the collisionless
Boltzmann equation should also lead to the same expres-
sions for the components of the energy-momentum tensor
and conserved current, as demonstrated here. We note that
anisotropic expansion through the metric, as considered
here, naturally leads to the Romatshke-Strickland form of
the distribution function [54].

o -2

VI. KASNER METRIC

We shall restrict ourselves here even further to the
classical vacuum solutions of the Einstein equation and
consider only the subclass of Bianchi type-I metrics in
which the expansion factors take the Kasner form [55,56]

ds® = di* — ?dx® — Pbdy? — Pedz?,  (36)

where a, b, and ¢ are three parameters that are related to
each other by the equations

a+b+c=1 (37)
at+ b+ =1. (38)

The above constraints are obtained by requiring that the
metric given in Eq. (36) is a vacuum solution of the Einstein

104005-4



METRIC ANISOTROPIES AND EMERGENT ANISOTROPIC ...

PHYS. REV. D 97, 104005 (2018)

equation. However, as was shown in Ref. [55], the fluid
satisfies the above relations if we impose conformal invari-
ance. In general, the Kasner metric describes a curved space-
time. However, it was shown that the Kasner space-time can
be treated as an approximation of a local rest frame of an
anisotropically expanding fluid in Minkowski space-time
[47]. Hence, the hydrodynamic equations for anisotropic
expansion take a simple form in Kasner space-time [48].
Since the particle current must be conserved, the number
density n of particles that is measured by a comoving
observer satisfies the continuity equation
% +Tyn = 0. (39)
The nonvanishing components of the Christoffel symbols
for the Kasner metric are

b c

a
rl,=—, 2, =-, 3, =-. 40
0= 20 =7 30 =7 (40)

Using Eq. (40) in Eq. (39), we have

dn n

— b -=0 41

dt+(a+ +c)t (41)
dn n
—+—-=0, 42
d[+l‘ ( )

where in the second equation we have used Eq. (37). On
integrating Eq. (42), we have

n :”OTIO. (43)

It is interesting to note that the above equation holds for all
Kasner-type expansion. As demonstrated in the following,
the Milne metric turns out to be a special case of the Kasner
metric.

From Eqgs. (37) and (38), we see that out of the three
parameters a, b, and ¢ only one is independent. If we
impose an additional constraint of azimuthal symmetry, we
have only two possibilities for (a, b, c):

22 1
Casel: (0,0,1) Casell: |=,=,—=|. 44
asel: (0,0,1) Case <3,3, 3> (44)

The first one of course reduces to the usual Milne coor-
dinates by a coordinate transformation fsinhz =y and
tcoshz =7, where y and 7 are rapidity and proper time.
The second one is a new finding in the context of azimuthally
symmetric anisotropic hydrodynamics. It is important to
note that for case I all the components of the Riemann
curvature tensor vanishes and hence can be obtained by a
general coordinate transformation of the Minkowski metric.
On the other hand, case II has curvature and therefore cannot
be obtained by a general coordinate transformation of the
Minkowski metric, which is flat.

Imposing the condition in Eq. (44) on the variable &
gives us

2
Casel: { =
1

2
Casell: & = ;—g (45)
Case I refers refers to longitudinal expansion, while case II
denotes transverse expansion. We note that case I corre-
sponds to the usual free-streaming solution in Bjorken
expansion, which has been obtained in the past by other
authors [57-59]. It is also interesting to note that a system
that is Bjorken expanding in Minkowski space-time is static
in the Milne coordinate system, which is case I of Eqs. (44)
and (45).

VII. RESULTS AND DISCUSSION

In this section, we investigate the evolution of the stress-
energy tensor of the fireball that has experienced a relative
longitudinal contraction or expansion at time ¢ along the z
axis such that ¢ > 1, where 1 is the time of isotropization.

For a violent longitudinal expansion, £ > 1, and the form
of £1in Eq. (45) is that of case I in Fig. 1. By Egs. (28)—(31),
this induces a stress-energy tensor of the form

1
as the anisotropic longitudinal expansion increases, i.e., in
the limit 1/ — 0. Throughout the evolution starting from
initial isotropization at time #, to the final asymptotic limit,
we have P <P, as dictated by Egs. (28)-(31).

The scenario of case II happens when there is a violent
transverse expansion i.e., £ < 1, which leads to stress
energy of the limiting form

1

0.9

FIG. 1. Evolution of longitudinal and transverse pressures,
scaled by the energy density, for case I (red) and case II (blue) as
described in the text.
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as the anisotropic transverse expansion increases, i.e., in the
limit £ — 0. Equations (28)—(31) imply that expansion
along the transverse direction is accompanied by a simul-
taneous longitudinal contraction that eventually builds up
an enormous pressure along the z direction while the slow
expansion along the transverse direction continues, as
evident in Fig. 1.

In both cases, we observe that the system never reaches
the isotropic state. This is due to the fact that we have
considered free streaming, i.e., noninteracting evolution.
Note that this is in contrast to dissipative hydrodynamics in
which the evolution drives the system toward equilibrium.

VIII. SUMMARY AND OUTLOOK

In this paper, we have considered the free streaming of a
locally equilibrated fluid in an anisotropic space-time given
by the Bianchi type-I metric. We obtained expressions for
components of the energy-momentum tensor and con-
served current, such as energy density, pressure compo-
nents, and number density, for an asymptotic observer. In
the case of an axissymmetric Bianchi type-I metric, we
showed that they are identical to that obtained within the
setup of anisotropic hydrodynamics. We further considered
the case in which the Bianchi type-I metric is a solution of
the Einstein equation: the Kasner metric. For the axissym-
metric Kasner metric, we discussed the implications of our
results in the context of anisotropic hydrodynamics.

The framework presented in this paper may also find
applications in the context of cosmology. In the standard
cosmological model, it is assumed that the space-time is
isotropic about every point in space and time. However,
after the discovery of temperature anisotropies of the
cosmic microwave background (CMB), we now know that
the Universe is isotropic up to small perturbations. If the
CMB temperature were isotropic about every point in
space-time, then the Universe can be described by an exact
Friedmann-Lemaitre model [60]. However, since the CMB
radiation is not exactly isotropic, it can be described by a
perturbed Friedmann-Robertson-Walker metric that can be
obtained as a special case of the Bianchi type-I metric.
Since the framework of anisotropic hydrodynamics is well
studied, one may apply similar techniques in cosmological
models.

Looking forward, it will be interesting to consider an
interacting medium within the present setup by considering
all possible corrections to the energy-momentum tensor up
to a particular order in gradients. Alternatively, one can
consider an evolving medium through interactions, i.e., in
the presence of a nonvanishing collision kernel in the

Boltzmann equation. This will lead to viscous corrections
in the local distribution function. One can also study the
evolution of dissipative quantities within this setup. We
leave these questions for future studies.
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APPENDIX: GEODESIC EQUATION
AND FREE STREAMING

In this Appendix, we show that after the decoupling time
ty as the particles stream freely through space-time the
momenta p,, of particles are constants of the motion along
their phase-space trajectories. Consider the general geo-
desic equation for the Bianchi type-I metric

dp*
L-Frzap”p”:(),

I (A1)

where I, are the usual Christoffel symbols, p* is the
4-momentum of the particle, and 7 is the proper time. For
convenience, we consider only the x component of
Eq. (A1), and other components could be derived straight-
forwardly. For the x component, the nonvanishing compo-

nents of I3, are I’ = I'}) = 4. Substituting this into the
geodesic equation, Eq. (A1), we have

dp”* A
2=p'p* =0 A2
g T 2app (A2)
dp* 2p*dA
— =0, A3
dr A dr (A3)
where we used the identity Apo :%% :%' We can
rewrite Eq. (A3) as
d dp
—(A?p*) = =2 =0, A4
= wepr) =L (A4)

which implies p, =const. is a constant of motion.
A similar relation holds for other components of p,,.
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