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We investigate dynamics of probe particles moving in the near-horizon limit of extremal Myers-Perry
black holes in arbitrary dimensions. Employing ellipsoidal coordinates we show that this problem is
integrable and separable, extending the results of the odd dimensional case discussed by Hakobyan et al.
[Phys. Lett. B 772, 586 (2017).]. We find the general solution of the Hamilton-Jacobi equations for these
systems and present explicit expressions for the Liouville integrals and discuss Killing tensors and the
associated constants of motion. We analyze special cases of the background near-horizon geometry were
the system possesses more constants of motion and is hence superintegrable. Finally, we consider a near-
horizon extremal vanishing horizon case which happens for Myers-Perry black holes in odd dimensions
and show that geodesic equations on this geometry are also separable and work out its integrals of motion.
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I. INTRODUCTION

Any dynamical system, particle or field dynamics alike, is
classically described by equations of motion and some
boundary conditions for the field theory case. The main
task in analyzing the system is to solve the equations of
motion, which are generically (partial) second order differ-
ential equations, and solving them is generically a formidable
task. Symmetries, Noether theorem and constants of motion,
are the usual tools facilitating tackling the problem. In this
work we will focus on particle dynamics on certain d
dimensional curved backgrounds; the question of field
theories on such backgrounds are deferred to an upcoming
publication.
In a dynamical system with N degrees of freedom and

hence a 2N dimensional phase space, if the number of
independent symmetries is equal to N, the system is called
integrable and is usually solvable. If the system possesses
N þ p, 1 ≤ p ≤ N − 1, independent symmetries (and
hence functionally independent constants of motion), it

is called superintegrable and the region it can probe in its
2N dimensional phase space is a compact N − p dimen-
sional surface; e.g. see [1–3].
For the question of particle dynamics on a general curved

(usually a black hole) background in d dimensions, we are
dealing with a 2d dimensional phase space. It is an
established fact that isometries of the background, the
Killing vectors, provide a set of constants of motion.
Moreover, reparametrization invariance of the particle action
implies that there is always a second rank Killing tensor
whose conserved charge is the mass of particle. For back-
grounds of interest, e.g. black holes or their near-horizon
geometries, usually the number of Killing vectors plus one is
less than d and one may wonder if the system is integrable.
The question of integrability of particle dynamics on black

hole or near-horizon geometries have been extensively
analyzed in the literature; e.g. see [4–15]. In particular, it
has been shown that the problem is (super)integrable for a
large class of blackholes. The integrability is often associated
with the existence of higher rank, usually second rank,
Killing tensor fields [4] (see [16] for review).
Given an extremal black hole there are general theorems

stating that in the near-horizon limit we obtain a usually
smooth geometry with larger isometry group than the
original extremal black hole [17]. It is hence an interesting
question to explore if this symmetry enhancement yields
further independent constants of motion and how it affects
the (super)integrability of particle dynamics. This question,
besides the academic interests, is also relevant to some of
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the observations related to black holes: It is now a well-
accepted fact that there are fast rotating black holes in the
sky which are well modeled by an extreme Kerr geometry
[18] and the matter moving around these black holes in
their accretion disks are essentially probing the near-
horizon geometry [19].
The isometry group of generic stationary extremal black

holes in the near-horizon region is shown to have an
SOð2; 1Þ ¼ SLð2;RÞ part [17,20]. Therefore, particle
dynamics on the near-horizon extreme geometries pos-
sesses dynamical 0þ 1 dimensional conformal symmetry,
i.e. it defines a “conformal mechanics” [5,7,8]. This allows
one to reduce the problem to the study of systems depend-
ing on latitudinal and azimuthal coordinates and their
conjugate momenta with the effective Hamiltonian being
Casimir of conformal algebra. Such associated systems
have been investigated from various viewpoints in Ref. [21]
where they were called “angular (or spherical) mechanics.”
In this work, we continue our analysis of [22,23] and

extend the analysis there to near-horizon extremal Myers-
Perry [24] (NHEMP) black holes [20] in general odd and
even dimensions. We discuss the separability of variables,
constants of motion for “angular mechanics” associated
with these systems, and how they are related to the second
rank Killing tensors of the background. While the system is
in general integrable, as we show, there are special cases
where the system is superintegrable. Moreover, we discuss
another interesting case, the extremal vanishing horizon
(EVH) [25] Myer-Perry black holes [26] and show the
integrability of geodesics in the near-horizon EVH Myers-
Perry (NHEVH-MP) geometries.
The rest of this paper is organized as follows. In Sec. II we

present the geometry of near-horizon extremal Myers-Perry
black holes in generic even and odd dimensions, and
construct the “angular mechanics” describing probe particle
dynamics. In this section we set our notations and con-
ventions. In Sec. IIIwe analyze generic causal curve,massive
or massless geodesic, in the NHEMP background. We show
that this Hamiltonian system is separable in an ellipsoidal
coordinate system, work out the constants of motion, and
establish that the system is integrable. Moreover, we show
how the Killing vectors and second rank Killing tensors are
related to these constants of motion. In Sec. IV we analyze
special cases where some of the rotation parameters of the
background NHEMP are equal. In these cases we have some
extra Killing vectors and tensors and the system is super-
integrable. Section V contains the analysis of particle
dynamics on the special class of extremal vanishing horizon
(EVH) Myers-Perry black holes. We end this note with
discussions and further comments.

II. NHEMP IN ARBITRARY DIMENSIONS;
UNIFIED DESCRIPTION

The NHEMP metric in both odd and even dimensions
in the Gaussian null coordinates was presented in [20].

The NHEMP is a (generically) smooth solution to vacuum
Einstein equations in odd d ¼ ð2N þ 1Þ and d ¼ ð2N þ 2Þ
dimensions; in general it is specified by N number of
rotation parameters ai (or N angular momenta Ji) and has
SLð2;RÞ ×Uð1ÞN isometry. In Boyer-Lindquist coordi-
nates NHEMP metric has the form

ds2¼FH

b

�
−r2dτ2þdr2

r2

�
þ
XNσ

I¼1

ðr2Hþa2I Þdμ2IþγijDφiDφj;

Dφi≡dφiþBi

b
rdτ; ð1Þ

where Nσ ¼ ½d
2
� ¼ N þ σ, i.e. σ ¼ 0 for the odd and σ ¼ 1

for the even dimensions cases, rH is a black hole radius
which satisfies the equation

XNσ

I¼1

r2H
r2H þ a2I

¼ 1þ 2σ

1þ σ
; with aNþ1 ¼ 0 ð2Þ

and,1

FH ¼ 1 −
XN
i¼1

a2i μ
2
i

r2H þ a2i
;

b ¼ 1

r2H

�XN
i¼1

σr2H
r2H þ a2i

þ 4
XN
i<j

r2H
r2H þ a2i

r2H
r2H þ a2j

�
;

Bi ¼ 2rHai
ðr2H þ a2i Þ2

; ð3Þ

γij ¼ ðr2H þ a2i Þμ2i δij þ
1

FH
aiμ2i ajμ

2
j ;

XNσ

I¼1

μ2I ¼ 1: ð4Þ

In our notations lowercase Latin indices i, j run from 1 to N
and uppercase Latin indices I, J run over 1 to Nσ and rH
satisfies.
For the case when all ai take generic nonzero values

2 it is
convenient to introduce new parameters mi

mi¼
r2Hþa2i
r2H

>1; mNþ1¼1 and
XNσ

I¼1

1

mI
¼1þ2σ

1þσ
; ð5Þ

and rescaled coordinates xI ,

xI ¼
ffiffiffiffiffiffi
mI

p
μI∶

XNσ

I¼1

x2I
mI

¼ 1: ð6Þ

1There seems to be a minor typo in the expressions for
NHEMP metrics given in [20], which we have corrected here.

2The case when one of the ai is zero is the EVH case we will
discuss separately in Sec. V.
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In these terms the near-horizon metrics read

ds2

r2H
¼ AðxÞ

�
−r2dτ2 þ dr2

r2

�
þ
XNσ

I¼1

dxIdxI

þ
XN
i;j¼1

γ̃ijxixjDφiDφj;

Dφi ≡ dφi þ kirdτ; ð7Þ
where

AðxÞ ¼
PNσ

I¼1 x
2
I =m

2
I

σ
1þσ þ 4

P
N
i<j

1
mi

1
mj

;

γ̃ij ¼ δij þ
1PNσ

I x2I =m
2
I

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi − 1

p
xi

mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj − 1

p
xj

mj
;

ki ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi − 1

p
m2

i ð σ
1þσ þ 4

P
N
k<l

1
mk

1
ml
Þ ; ð8Þ

with

XNσ

I¼1

x2I
mI

¼ 1;
XNσ

I¼1

1

mI
¼ 1þ 2σ

1þ σ
: ð9Þ

With this unified description at hand, we are ready to
describe probe particle dynamics.

A. Probe-particle dynamics

The metric (7) has SLð2;RÞ isometry group and hence
the particle dynamics on this background exhibits dynami-
cal conformal symmetry; we are dealing with a “conformal
mechanics” problem [5,7,8]. Let us denote the three
generators of this slð2;RÞ algebra by H, D, K, and its
Casimir by I :

fH;Dg ¼ H; fH;Kg ¼ 2D;

fD;Kg ¼ K; I ¼ HK −D2: ð10Þ
The mass-shell equation for a particle of mass m0

moving in the background metric

m2
0 ¼ −

X2Nþ1þσ

A;B¼1

gABpApB ð11Þ

leads to the following expression:

m2
0r

2
H ¼ 1

A

��
p0

r
−
XN
i¼1

kipφi

�
2

− ðrprÞ2
�
−

XNσ−1

a;b¼1

habpapb

−
XN
i;j¼1

γ̃ij
pφi

xi

pφj

xj
; ð12Þ

where

hab ¼ δab −
1PNσ

I¼1 x
2
I =m

2
I

xa
ma

xb
mb

;

γ̃ij ¼ δij − xi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi − 1

p
mi

xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj − 1

p
mj

;

a; b ¼ 1; � � �Nσ − 1; i; j ¼ 1;…; N: ð13Þ

Using (12), as in [22], we can construct the Hamiltonian
H ¼ p0 and the other generators of the conformal algebra

H ¼ r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðxa; pa; pφi

Þ þ ðrprÞ2
q

þ
XN
i¼1

kipφi

�
; ð14Þ

D ¼ rpr;

K ¼ 1

r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðxa; pa; pφi

Þ þ ðrprÞ2
q

−
XN
i¼1

kipφi

�
; ð15Þ

where

Lðxa; pa; pφi
Þ ¼ A

�
m0r2H þ

XNσ−1

a;b¼1

habpapb

þ
XN
i;j¼1

γ̃ij
pφi

xi

pφj

xj

�
;

and the momenta pa, pφi
, pr are conjugate to xa, φi, r with

the canonical Poisson brackets

fpa;xbg¼ δab; fpφi
;φjg¼ δij; fpr;rg¼ 1: ð16Þ

Thus, the Casimir element of the conformal algebra reads

I ¼ A

�XNσ−1

a;b¼1

habpapb þ
XN
i¼1

p2
φi

x2i
þ g0

�
− I0 ð17Þ

where

g0 ¼−
�XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
mi−1

p
pφi

mi

�2

þm2
0r

2
H; I0¼

�XN
i

kipφi

�2

:

ð18Þ

In an appropriately chosen frame H can be written in
formally nonrelativistic form [7,8]

H ¼ p2
R

2
þ 2I

R2
; ð19Þ

where R ¼ ffiffiffiffiffiffiffi
2K

p
, pR ¼ 2Dffiffiffiffiffi

2K
p are the effective “radius” and

its canonical conjugate “radial momentum.” As we will
show below the Casimir I encodes all the essential
information about the system of particles on these
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backgrounds. The Casimir I (17) is at most quadratic in
momenta canonically conjugate to the remaining angular
variables and it can conveniently be viewed as the
Hamiltonian of a reduced “angular/spherical mechanics”
[21] describing motion of particle on some curved back-
ground. Note that the “time parameter” conjugate to I is
different than the time parameter τ shown in metric (7)
whose conjugate variable is H ¼ p0. See [27] for more
detailed discussions.
Since the azimuthal angular variables φi are cyclic,

corresponding conjugate momenta pφi
are constants

of motion. We then remain with a reduced ðNσ − 1Þ-
dimensional system described by Hamiltonian (17) and xa
variables and their conjugate momenta.

III. FULLY NONISOTROPIC CASE

To show that the angular/spherical mechanics system is
integrable, we show that it is separable in the ellipsoidal
coordinates when we are dealing with cases where all
parameters mi are nonequal. The ellipsoidal coordinates λI
for odd and even dimensions are then defined as

x2I ¼ ðmI − λIÞ
YNσ

J¼1;J≠I

mI − λJ
mI −mJ

;

λNσ
< mNσ

< … < λ2 < m2 < λ1 < m1: ð20Þ

To resolve the condition
PNσ

I¼1

x2I
mI

¼ 1 we choose λNσ
¼ 0

and hence there are Nσ − 1 independent λI variables, which
will be denoted by λa.
In these coordinates the angular Hamiltonian I (shifted

by a constant and appropriately rescaled) reads

Ĩ ¼ λ1…λNσ−1

�
−
XNσ−1

a

4
QNσ

I¼1ðmI − λaÞπ2a
λa

QNσ−1
b¼1;a≠bðλb − λaÞ

þ
XNσ

i¼1

g2IQNσ−1
a¼1 ðmI − λaÞ

þ g0

�
; ð21Þ

where

Ĩ ≡ ðI þ I0Þ
�

σ

1þ σ
þ 4

XN
k<l

1

mk

1

ml

�YN
i¼1

mi;

I0 ¼
�XN

i

kipφi

�2

; ð22Þ

with

g2I ¼
p2
φI

mI

YNσ

J¼1;J≠I
ðmI −mJÞ;

gNþ1 ¼ pφNþ1
≡ 0; ð23Þ

and fπa; λbg ¼ δab, fpφi
;φjg ¼ δij.

The level surface of angular Hamiltonian (21), Ĩ ¼ E,
can be conveniently represented through

XNσ−1

a¼1

Ra − E

λa
QNσ−1

b¼1;a≠bðλb − λaÞ
¼ 0; ð24Þ

where3

Ra≡−4
YNσ

I¼1

ðmI−λaÞπ2aþð−1ÞNσ

XNσ

I¼1

g2Iλa
mI−λa

−g0ð−λaÞNσ−1;

ð25Þ

and we used the identities

1QNσ−1
a¼1 ðλa − κÞ ¼

XNσ−1

a¼1

1QNσ−1
b¼1;a≠bðλb − λaÞ

1

λa − κ
;

1

λ1…λNσ−1
¼

XNσ−1

a¼1

1QNσ−1
b¼1;b≠aðλb − λaÞ

1

λa
: ð26Þ

We can rewrite the expression (24) in a more useful form,
recalling the identities,

XNσ−1

a¼1

λαaQNσ−1
b¼1
b≠a

ðλa−λbÞ
¼ δα;Nσ−2 α¼ 0;…;Nσ −2: ð27Þ

Multiplying both sides of (27) by arbitrary constants να and
adding to (24), we get

XNσ−1

a¼1

Raðπ; λÞ −
PNσ−1

c¼1 νc−1λ
c−1
a

λa
QNσ−1

b¼1;a≠bðλb − λaÞ
¼ 0; ν0 ¼ E: ð28Þ

Equipped with the above we can solve the Hamilton-
Jacobi equations

E
�
λa;

∂Sgen
∂λa

�
¼ ν0; ð29Þ

and obtain the generating function Sgen depending onNσ − 1
integration constants (i.e. the general solution of Hamilton-
Jacobi equation). To this end we substitute in (28)

3Note that Raλa → Ra and νa → Faþ1 replacements have been
assumed in the current paper compared to [22].
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πa ¼
∂Sgen
∂λa ; ð30Þ

and choose the ansatz

Sgenðλ1;…; λNσ−1Þ ¼
XNσ−1

a¼1

SðλaÞ: ð31Þ

This reduces theHamilton-Jacobi equation to a set ofNσ − 1
ordinary differential equations

R

�
λa;

dSðλaÞ
dλa

�
−

XNσ−1

b¼1

νb−1λ
b−1
a ¼ 0; ð32Þ

or in an explicit form,

− 4

�
dSðλaÞ
dλa

�
2 YNσ

I¼1

ðmI − λaÞ þ ð−1ÞNσ

XNσ

I¼1

g2I λa
mI − λa

− g0ð−λaÞNσ−1 −
XNσ−1

b¼1

νb−1λ
b−1
a ¼ 0: ð33Þ

Hence, the analytic solution to the Hamilton-Jacobi equation
is given through the generating function (31) with

Sðλ; νaÞ ¼
1

2

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQNσ
I¼1 ðmI − λÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1ÞNσ

�XNσ

I¼1

g2ImI

mI − λ
þ g0λNσ−1 −

XN
i¼1

g2i

�
−

XNσ−1

b¼1

νb−1λ
b−1

vuut : ð34Þ

Then, differentiating with respect to constants νa, we can get the explicit solutions of the equations of motion

τ ¼ ∂Sgen
∂ν0 ≡ ∂Sgen

∂E ; ca ¼
∂Sgen
∂νa : ð35Þ

To include the dynamics of azimuthal coordinatesφi we have to consider the generating function Stot ¼ Sgen þ
P

N
i¼1 pφi

φi,
where we take into account functional dependence of g0, gi from pφi

. This yields the solutions for azimuthal coordinates

φi ¼ −
∂Sgen
∂pφi

: ð36Þ

Thus, we get the solutions of the angular sector of generic NHEMP with nonequal nonvanishing rotational parameters.

A. Constants of motion

The expressions for commuting constants of motionFa can be found from (32), by expressing constants νa in terms of λa,
πa ¼ ∂Sgen=∂λa:

XNσ−1

b¼1

Fbλ
b−1
a ¼ Raðπa; λaÞ ⇔

0
BBBBB@

1 λ1 λ21 � � � λNσ−2
1

1 λ2 λ22 � � � λNσ−2
2

..

. ..
. ..

. . .
. ..

.

1 λNσ−1 λ2Nσ−1 � � � λNσ−2
Nσ−1

1
CCCCCA

0
BBBBB@

F1

F2

..

.

FNσ−1

1
CCCCCA

¼

0
BBBBB@

R1

R2

..

.

RNσ−1

1
CCCCCA
; ð37Þ

where Raðλa; πaÞ are given by (25). Integrals of motion are the solutions to this equation and may be expressed via the
inverse Vandermonde matrix, explicitly,

Fα ¼ ð−1Þα−1
XNσ−1

a¼1

Ra

A≠a
Nσ−α−1QNσ−1

b¼1
b≠a

ðλb − λaÞ
; α ¼ 1;…; Nσ − 2; FNσ−1 ¼

XNσ−1

a¼1

RaQNσ−1
b¼1
b≠a

ðλa − λbÞ
; ð38Þ

where

A≠a
α ≡ XNσ−1

1≤k1<…<kα
k1 ;…;kα≠a

λk1…λkα : ð39Þ

After tedious transformations one can rewrite these expressions in xa, φi coordinates,

Fa ¼ ð−1Þa
XNσ−1

b;c¼1

Kbc
ðaÞðxÞpbpc −

XN
i;j¼1

Lij
ðaÞpφi

pφj
þ ð−1Þa−1ANσ−am

2
0r

2
H; ð40Þ
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where

Kbc
ðaÞ ¼

� XNσ−a−1

α¼0

ð−1ÞNσþα−aAαm
Nσ−α−a
b þ x2b

XNσ−a−1

α¼1

ð−1ÞαM≠b
Nσ−α−a−1m

α
b

�
δbc þM≠b;c

Nσ−a−1xbxc ð41Þ

Lij
ðaÞ ¼

�
ð1 − δ1aÞ

XNσ−a

α¼1

ð−1ÞNσþαAα−1m
Nσ−a−αþ1
i − δ1aANσ−1

�
δij

x2i
þ ð−1Þa−1ANσ−a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi − 1

p
mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj − 1

p
mj

ð42Þ

with

Aaðxi; mjÞ≡
XNσ−1

1≤k1<…<ka

λk1…λka ¼ −
XNσ

i¼1

x2i M
≠i
a−1 þ

XNσ

1≤k1<…<ka

mk1…mka; a ¼ 1;…; Nσ − 1; ð43Þ

and

M
≠a1;…;aj
i ≡ XNσ

1≤k1<…<ki
k1 ;…;ki≠a1 ;…;aj

mk1…mki; j ¼ 0;…; Nσ − 1; i ¼ 1;…; Nσ − j: ð44Þ

It is also assumed that

A0 ≡ 1; M
≠a1;…;aj
0 ≡ 1: ð45Þ

One can check that in odd dimensions in the special cases
of FN−1, FN−2 and FN−3, the above reduce to the
corresponding integrals of motion given in [23]. One can
also check that simply requiring the rotation parameters to
be equal in these expressions, one does not recover all the
integrals of the special case of ai ¼ a;∀i NHEMP. In such
special cases all of the first integrals of the spherical
mechanics of the generic (nonequal ai) case transform
into the Hamiltonian of the spherical mechanics of the
equal ai case. So, to obtain the Liouville integrals in the
isotropic case we need to develop a more sophisticated
contraction procedure.
We also note that the above expressions for the constants

of motion were found in the ellipsoidal coordinates
introduced for the special case of nonequal rotational
parameters ai. However, we then wrote them in the initial
coordinates, and they hold for generic nonzero values of the
rotation parameters ai. We will analyze the special cases
where some of the ai or mi are equal in Sec. IV and when
one of them is vanishing in Sec. V.

B. Killing tensors

In the previous subsection we presented the constants of
motion in the form of demonstrating their explicit depend-
ence on the momenta pa, pφi

. To represent (40) through the
respective Nσ second rank Killing tensors, one can replace
the last term proportional to m2

0 from the mass-shell
equations (11) and (12). Note also that the Fa,
a ¼ 1;…:Nσ − 1, provides Nσ − 1 one constants of
motion. We can then add FNσ

to this collection, which
is proportional to the mass with the corresponding second
rank killing tensor being the inverse metric, i.e.

FNσ
¼ ð−1Þa−1

�
r2H

X2Nþ1þσ

A;B¼1

gABpApB

−
�XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi − 1

p
pφi

mi

�
2
�
; ð46Þ

where we assumed M≠b;c
−1 ¼ 0.

To get the expression for Killing tensors, we should
simply replace the momenta by the respective vector fields,
pA → ∂

∂xA. That is, in the coordinates ðxa;φaÞ where the
constants of motion (40) are written, one should replace

pa →
∂
∂xa ; pφi

→
∂
∂φi ; pr →

∂
∂r ; p0 →

∂
∂τ :

In ellipsoidal coordinates the above presented Nσ − 2
Killing tensors read

Ka ¼
X
α

A≠a
α hαð∂λαÞ2 þ

X
I

X
α

A≠a
α
Q

J≠IðmJ −mIÞ
mIðmI − λaÞ

Q
b
0ðλb − λaÞ

× ð∂φI
Þ2 þ Aa

AðλÞ
�
−

1

r2
ð∂τÞ2 þ r2ð∂rÞ2

�
: ð47Þ

Thus, we have N þ 1 mutually commuting Killing vectors
∂=∂φi, ∂=∂τ and Nσ Killing tensors, summing up to d ¼
Nσ þ N þ 1 and hence the system is integrable. One may
check that our expressions for the Killing tensors match
with those that appeared in [14,28] after taking the near-
horizon limit. We note that the two extra Killing vectors of
the SLð2;RÞ part of the isometry which appear in the near-
horizon limit and in the coordinates of (7) take the form

HOVHANNES DEMIRCHIAN et al. PHYS. REV. D 97, 104004 (2018)

104004-6



r
∂
∂r− τ

∂
∂τ ;

�
τ2þ 1

r2

� ∂
∂τ−2τr

∂
∂r−

2

r

XN
i¼1

∂
∂φi

; ð48Þ

and do not yield new independent constants of motion.

IV. ISOTROPIC AND PARTIALLY
ISOTROPIC CASES

When some of the ai ≠ 0’s are equal, the geometry (1)
exhibits a bigger isometry group than SLð2;RÞ ×Uð1ÞN ;
depending on the number of equal ai’s the Uð1ÞN part is
enhanced to a rank N subgroup of UðNÞ. This larger
isometry group brings a larger number of Killing vectors
and tensors and one hence expects the particle dynamics for
these cases to become a superintegrable system. This is
what we will explore in this section and construct the
corresponding conserved charges.

A. The fully isotropic, equal mi case

When all of the rotational parameters coincide, the
Hamiltonian of the probe particle reduces to the system
on sphere and admits separation of variables in spherical
coordinates [8]. It can be checked that in this case, the
Hamiltonian of the reduced mechanics derived from (17)
transforms into the corresponding mechanics with equal
parameters derived in [8] for both odd and even dimen-
sional cases. Notice that in this limit the difference between
even and odd cases becomes visible:

(i) In the odd case, σ ¼ 0, the isotropic limit corre-
sponds to the choice mi ¼ N, i ¼ 1;…; N. As a
result, the angular Hamiltonian (17) which we will
denote by IN takes the form

IN ¼
XN−1

a;b¼1

ðNδab − xaxbÞpapb þ N
XN
i¼1

p2
φi

x2i
;

XN
i¼1

x2i ¼ N: ð49Þ

For the fixed pφi
configuration space of this system

is an (N − 1)-dimensional sphere, and the Hamil-
tonian defines specific generalization of the Higgs
oscillator, which is also known as a Rossochatius
system [29].

(ii) In the even case, σ ¼ 1, one has mi ¼ 2N when i ¼
1;…; N and mNþ1 ¼ 1; i.e. we cannot choose all
parameters mI be equal. As a result, the angular
Hamiltonian (17) reads

IN ¼
XN
i;j¼1

ðη2δij−xixjÞpipjþ
XN
i¼1

η2p2
φi

x2i
þω

XN
i¼1

x2i ;

ð50Þ

where

η2 ¼ 4N2 − ð2N − 1Þ
XN
i¼1

x2i ;

ω ¼
�
1 −

1

2N

�
2 XN
i;j¼1

pφi
pφj

−m2
0ð2N − 1Þ: ð51Þ

In the case of even dimension, configuration space
fails to be a sphere (even with fixed pφi

).
What is important is that both systems admit separation of
variables in spherical coordinates. Namely, by recursively
introducing spherical coordinates

xNσ
¼

ffiffiffiffiffiffi
Nσ

p
cos θNσ−1;

xa ¼
ffiffiffiffiffiffi
Nσ

p
x̃a sin θNσ−1;

XNσ−1

a¼1

x̃2a ¼ 1; ð52Þ

we get the following recurrent formulas for the constants of
motion

σ ¼ 0∶ Iodd ¼ FN−1; Fa ¼ p2
θa
þ p2

φaþ1

cos2θa
þ Fa−1

sin2θa
; F0 ¼ p2

φ1
; ð53Þ

σ ¼ 1∶ Ieven ¼ 2Np2
θN

þ νsin2θN þ ð2Ncot2θN þ 1ÞFN−1: ð54Þ

It is clear that F1;…; FNσ−1 defines a complete set of
Liouville constants of motion and the σ ¼ 1 system
contains σ ¼ 0 as a subsystem. Moreover, the
Rosochatius system (angular Hamiltonian for σ ¼ 0 case
with fixed pφi

) is superintegrable: it has N − 2 additional
functionally independent constants of motion defined by
the expression

Ia;a−1¼ðpθa−2 sinθa−2 cotθa−1−pθa−1 cosθa−2Þ2

þ
�
pφa−1

cotθa−1
cosθa−2

þpφa
cosθa−2 tanθa−1

�
2

: ð55Þ

When pφi
are not fixed, the system is an ðNσ − 1þ NÞ-

dimensional one. In that case, from its action-angle
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formulation [8] one can observe, it remains maximally
superintegrable for σ ¼ 0, i.e. possesses 4N − 3 constants
of motion: Besides 2N − 3 constants of motion given by
(53) and (55), and the N commuting integrals pφi

(asso-
ciated with axial Killing vectors), there are N additional
constants of motion with quadratic term mixing pθa and
pφi

, i.e. N second rank Killing tensors in the ∂θa∂φi

direction. When σ ¼ 1, the system is 2N dimensional,
and has 4N − 2 integrals, i.e., lacks one integral from being
maximally superintegrable.
From these constants of motion one can readily read the

associated Killing vectors and second rank Killing tensors.
Hence, the isotropic system has N þ 1 mutually commut-
ing Killing vectors and d − 3 ¼ 2N þ σ − 2 Killing ten-
sors, and additional N noncommuting second rank Killing
tensors.
For more detailed analysis of the isotropic case, see [8].

Here we present it mainly to set the conventions we use in
the study of an “intermediate case,” when only some of the
rotation parameters are equal to each other.

B. Partially isotropic case in odd dimensions

Let us start with the simpler odd dimensional system,
σ ¼ 0, with p ¼ N − l nonequal rotation parameters and l
equal ones:

m1 ≠ m2 ≠ … ≠ mp ≠ mpþ1;

mpþ1 ¼ mpþ2 ¼ … ¼ mN ≡ κ: ð56Þ

Starting from the metric (7) we will construct the
Hamiltonian for the reduced mechanics by introducing
spherical and ellipsoidal coordinates. Spherical coordinates
fy; θig, i ¼ 1…l − 1 will be introduced for the l latitudinal
coordinates xpþ1;…; xN corresponding to the equal rota-
tional parameters

xpþ1 ¼ y
Yl−1
i¼1

sin θi;

xpþa ¼ y cos θa−1
Yl−1
i¼a

sin θi;

xpþl ¼ y cos θl−1; a ¼ 2;…; l − 1: ð57Þ

Hence,

Xl

a¼1

x2pþa

mpþa
¼ y2

κ
;

Xl

a¼1

ðdxpþaÞ2 ¼ ðdyÞ2 þ y2dΩl−1;

ð58Þ

with dΩl−1 being the metric on the (l − 1)-dimensional
sphere: dΩl−1 ¼ dθ2l−1 þ sin2θl−1dΩl−2.

Performing the coordinate transformation (57) in (1), it is
seen that the radial coordinate y of the spherical subsystem
behaves very much like the other latitudinal coordinates of
nonequal rotational parameters. Therefore, we will treat y
and x1…xp in the same way:

ya ¼ðx1;…;xp;yÞ; m̃a ¼ðm1;…;mp;mpþ1Þ∶
Xpþ1

a¼1

1

m̃a
¼ 1;

Xp
a¼1

y2a
m̃a

þ y2

m̃pþ1

¼ 1; ð59Þ

in terms of which the metric takes the form

ds2

r2H
¼ AðyÞ

�
−r2dτ2 þ dr2

r2

�
þ dy2pþ1 þ y2pþ1dΩl−1

þ
Xp
a¼1

ðdyaÞ2 þ
XN
i;j¼1

γ̃ijxiðyÞxjðyÞDφiDφj; ð60Þ

with

AðyÞ ¼
Ppþ1

a¼1 y
2
a=m̃2

a

4
Ppþ1

a<b
1
m̃a

1
m̃b

;
Xpþ1

a¼1

y2a
m̃a

¼ 1: ð61Þ

The Hamiltonian of the corresponding spherical mechan-
ics then reads

I ¼ A

�Xp
a;b¼1

habpapb þ
Xpþ1

a¼1

g2a
y2a

þ g0

�
;

with g2a ¼ ðp2
φ1
;…; p2

φp
; Ipþ1Þ;

hab ¼ δab −
1Ppþ1

a¼1 y
2
a=m̃2

a

ya
m̃a

yb
m̃b

; ð62Þ

and Ipþ1 is defined as by (49) in the (pþ 1)-dimensional
space. The above describes a lower-dimensional version of
(17), where all rotational parameters are nonequal and we
can analyze it as we did for the general case in the previous
section. That is, we introduce on the (pþ 1)-dimensional
ellipsoidal coordinates

y2a ¼
Qpþ1

b¼1 ðm̃a − λbÞQpþ1
b¼1;b≠a ðm̃a − m̃bÞ

; ð63Þ

and take λpþ1 ¼ 0 for resolving the constraint (61) given by
the second expression. This coordinate transformation is
similar to the one introduced in [30] in the context of
general Kerr-NUT-AdS geometries. The rest of the analysis
goes through as in [22] and as in Sec. III.
The partially isotropic case discussed here, as we see,

interpolates between the generic case of Sec. III
(p ¼ N − 1) and the fully isotropic case (p ¼ 0) of
Sec. IVA: It decouples to the Hamiltonians of type (21)
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and (49). The case l ¼ 1 corresponds to the system with
nonequal parameters, and the spherical subsystem is trivial
(Ipþ1 ¼ p2

φpþ1
). For l ≥ 2 the (l − 1)-dimensional spherical

subsystem is not trivial anymore and has 2ðl − 1Þ − 1
constants of motion. Thus the reduced (N − 1)-dimensional
angular system has pþ 2l − 3 ¼ N − 1þ l − 2 constants
of motion, i.e. the number of extra constants of motion
compared to the generic case is l − 2, with l > 2. It
becomes maximally superintegrable only for l ¼ N, i.e.
when all rotational parameters are equal.
This discussion can be easily extended to the case of

even dimensions (σ ¼ 1). Here we will have an additional
latitudinal coordinate (pþ l ¼ N þ 1) and a rotational
parameter with a fixed value (mNþ1 ¼ 1). One should note
that mNþ1 cannot be equal to any other rotational param-
eter, so it is one of the p nonequal parameters. In the
limiting case when l ¼ 1 and all rotational parameters are
different, we have an integrable system with p ¼ N
configuration space degrees of freedom, as expected.
Since mNþ1 cannot be equal to the others, p cannot be
equal to 0 and the even dimensional system cannot be
maximally superintegrable. In the limit when all rotational
parameters are equal except mNþ1 (p ¼ 1), the system
will lack one integral of motion to be maximally
superintegrable.

C. General case

Having discussed the some equal mi’s but the rest
nonequal case, we now turn to the most general case when
there are s sets (blocks) of equal rotation parameters each
containing li members. As before we assume that there are
p rotation parameters which are not equal to the others, so
that pþP

s
i¼1 li ¼ Nσ . Note that in our conventions li ≥ 2.

We introduce an upper index which, written on a parameter
or a function, denotes the number of the block under

consideration. So, for examplemðiÞ
a will denote all the equal

rotational parameters in the ith set of rotation parameters

and xðiÞa will denote their corresponding latitudinal coor-
dinates and

fmðiÞ
a g¼mpþl1þ���þli−1þa≡ κðiÞ i¼ 1;…;s; a¼ 1;…; li:

ð64Þ

The list of all rotational parameters can be written as

fmαg¼m1;m2;…;mp; fmð1Þ
a g;fmð2Þ

a g;…;fmðsÞ
a g;

α¼ 1;…;N;

m1 ≠m2 ≠…≠mp; fmðiÞ
a g¼ κðiÞ

with κðiÞ ≠ κðjÞ; pþ l1þ���þ ls¼N: ð65Þ

Let us start with the odd (σ ¼ 0Þ case and the metric (7).
We can construct the Hamiltonian for the reduced

mechanics by introducing spherical and ellipsoidal coor-
dinates. Different spherical coordinates will be introduced
separately for each set of latitudinal coordinates corre-
sponding to different sets of equal rotational parameters,

xðiÞ1 ¼ ri
Yli−1
α¼1

sin θðiÞα

xðiÞk ¼ ri cos θ
ðiÞ
k−1

Yli−1
a¼k

sin θðiÞa

xðiÞli ¼ ri cos θ
ðiÞ
li−1; k ¼ 2;…; li − 1: ð66Þ

One should note that these spherical coordinates satisfy the
relations

Xli
a¼1

ðxðiÞa Þ2 ¼ r2i and
Xli
a¼1

ðdxðiÞa Þ2 ¼ dri2 þ r2i dΩ
ðiÞ
li−1;

ð67Þ

where dΩðiÞ
n ¼ ðdθðiÞn Þ2 þ sin2θðiÞn dΩðiÞ

n−1 denotes the metric
on unit n-dimensional sphere. For the rest of the latitudinal
coordinates x1…xp corresponding to nonequal rotational
parameters and the radial coordinates ri of isotropic
subsystems, we introduce the notation

fyag ¼ fx1;…; xp; r1;…; rsg;
fm̃ag ¼ fm1;…; mp; κ

ð1Þ;…; κðsÞg: ð68Þ

In this notation the metric (7) can be rewritten as

ds2

r2H
¼ AðyÞ

�
−r2dτ2 þ dr2

r2

�
þ
Xpþs

a¼1

dya2 þ
Xs

b¼1

y2pþbdΩ
ðbÞ
lb−1

þ
XN
i;j¼1

γ̃ijxiðyÞxjðyÞDφiDφj; ð69Þ

where γ̃ij, AðyÞ are defined as in (8) and (61), respectively.
Therefore, the Hamiltonian of the corresponding angular
mechanics reads

I ¼ A

� Xpþs−1

a;b¼1

habπaπb þ
Xpþs

a¼1

g2a
y2a

þ g0

�

fg2ag ¼ fp2
φ1
;…; p2

φp
; I ð1Þ;…; I ðsÞg;

I ðaÞ ¼ FðaÞ
la−1; ð70Þ

where I ðaÞ are the spherical subsystems resulting from the s
sets of equal rotation parameters, hab is defined by (62),
and
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FðaÞ
d ¼ p2

θðaÞd

þ ðgðaÞdþ1Þ2
cos2θðaÞd

þ FðaÞ
d−1

sin2θðaÞd

;

FðaÞ
0 ¼ ðgðaÞ1 Þ2;
gðaÞd ¼ pφpþl1þ���þla−1þd

fπa; λbg ¼ δab; fpφi
;φjg ¼ δij

fp
θðaÞb

; θðcÞd g ¼ δacδbd: ð71Þ

Hence, the reduced spherical mechanics (70) has the exact
form of (21) (with appropriate constants) whose integra-
bility has already been discussed. All discussions from the
previous subsection can be easily extended to this case, e.g.
separation of variables may be achieved in the ellipsoidal
coordinates (see [30] for a discussion on similar coordinate
transformation),

y2a¼
Qpþs

b¼1 ðm̃a−λbÞQpþs
b¼1;b≠a ðm̃a−m̃bÞ

; ð72Þ

and place λpþs ¼ 0 for resolving the constraint on latitu-
dinal coordinates (9), which now takes the formPpþs

a¼1
y2a
m̃a

¼ 1.
So, we separated the variables for the (N − 1)-

dimensional angular mechanics describing the geodesics
in the near-horizon limit of a ð2N þ 1þ σÞ-dimensional
Myers-Perry black hole in arbitrary dimension with arbi-
trary nonzero values of rotational parameters. The number
of constants of motion in this system can be easily counted:
it is equal to dþ Nσ − p − 2s. The generic case of
nonequal mi is recovered by s ¼ 0, p ¼ Nσ and the fully
isotropic case as s ¼ 1, p ¼ 0. In a similar manner one can
construct associated Killing tensors.

D. Contraction from fully nonisotropic
to isotropic NHEMP

Having the two corner cases discussed (fully noniso-
tropic and isotropic), an interesting question arises. What
kind of approximation would transform the first integrals
of fully nonisotropic NHMEP to the first integrals of
isotropic NHEMP? It is straightforward to check that
simply taking all rotation parameters to be equal just
transforms all the first integrals of fully nonisotropic
NHMEP to the Hamiltonian of the spherical mechanics of
isotropic NHEMP (with an overall constant factor and a
constant term). So if mi ¼ N

Fa ¼ Ca

�XN−1

b;c¼1

ðδbc − xbxcÞpbpc þ
XN
k¼1

p2
φk

x2k

�
þ C0

a ð73Þ

where Ca and C0
a are constants. To find the desired

approximation, we will work with rotation parameters
which have little variations from their isotropic value N
(ϵi ≪ N),

mi ¼ N þ ϵi:

In such a limit, the Hamiltonian of the nonisotropic
mechanics can be extended in powers of ϵi, keeping the
first order term only

F1¼NN−3
�
NĨ isoþN2g0−

XN
i¼1

ϵix2i

�XN−1

a

p2
aþ

XN
k

p2
φk

x2k
þg0

�

þ2
XN−1

a;b

ϵapaxapbxb

�
ð74Þ

where

Ĩ iso ¼
XN−1

a;b¼1

ðNδab − xaxbÞpapb þ N
XN
i¼1

p2
φi

x2i
ð75Þ

is the isotropic Hamiltonian. We should note that the linear
term of F1 still corresponds with the isotropic Hamiltonian
Ĩ iso but the relation

P
x2i ¼ N does not hold anymore.

Now, if we find some linear combination PðFaÞ of first
integrals of nonisotropic mechanics such that the free term
of the expansion around mi ¼ N vanishes, we can write

fPðFaÞ; F1g ¼ 0 ¼
�XN

i¼1

ϵiPiðpj; xjÞ; Ĩ iso þ
XN
i¼1

ϵið…Þ
�

¼
XN
i¼1

ϵifPiðpj; xjÞ; Ĩ isog

⇒ fPiðpj; xjÞ; Ĩ isog ¼ 0: ð76Þ
We see that the first order coefficients Piðpj; xjÞ of the
PðFaÞ linear combination are first integrals for Ĩ iso. To
construct such combination whose free term vanishes we
can take any of the first integrals, let us say FN−1 and
expand it,

FN−1 ¼ ð−1ÞN
�
Ĩ iso −

g0
N

XN
i¼1

ϵix2i þ
XN
i

ϵi
p2
φi

x2i
þ
XN−1

a¼1

ϵap2
a

�

ð77Þ
We see from (74) and (77) that by combining F1 and FN−1
the free term can be eliminated

N−ðN−3ÞF1 þ ð−1ÞN−1NFN−1 − g0N2

¼ −
�XN−1

a

p2
a þ

XN
k

p2
φk

x2k

�XN
i¼1

ϵix2i

þ 2
XN−1

a;b

ϵapaxapbxb − N

�XN
i

ϵi
p2
φi

x2i
þ
XN−1

a¼1

ϵap2
a

�
:

ð78Þ
Furthermore, from the expression

P
N
i x2i =mi ¼ 1 we can

find
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x2N ¼
�
x̃2N þ 1

N

XN−1

a

ϵax2a

��
1þ ϵN

N

�
;

x̃2N ≡ N −
XN−1

a

x2a

and replace with this relation every occurrence of xN in
(78). Doing this, wewill end up with the same equation (78)
with just x2N replaced by x̃2N. So in further calculations we
are free to consider Eq. (78) with a redefined xN

x̃2N → x2N ¼ N −
XN−1

a

x2a: ð79Þ

Thus, having in mind (76), we find the first integrals of
isotropic mechanics to be

Fiso
a ¼ −x2a

�XN−1

b

p2
b þ

XN
k

p2
φk

x2k

�
þ 2paxa

XN−1

b

pbxb

− N

�
p2
φa

x2a
þ p2

a

�
;

Fiso
N ¼ −x2N

�XN−1

b

p2
b þ

XN
k

p2
φk

x2k

�
− N

p2
φN

x2N
: ð80Þ

Now, we can see that the sum of all N first integrals results
into the Casimir of isotropic mechanics

XN
i¼1

Fiso
i ¼ −2Ĩ iso: ð81Þ

Thus, by definition, all Fiso
i commute with

P
N
i¼1 F

iso
i , but

one can check that they do not commute with each other.

V. EXTREMAL VANISHING HORIZON CASE

As seen from metric (1), the case where one of the ai’s is
zero is a singular case. In fact for this case one should
revisit the near-horizon limit. It has been shown that [26]
for the odd dimensional extremal MP black holes the
horizon area also vanishes and we are hence dealing with an
extremal vanishing horizon (EVH) black hole [25]. The
near-horizon EVH black holes have remarkable features
which are not shared by generic extremal black holes; they
constitute a different set of geometries which should be
studied separately [31]. In particular, it has been proven that
for EVH black holes the near-horizon geometry includes an
AdS3 factor (in contrast with the AdS2 factor of general
extremal case) [31,32], i.e. the d-dimensional NHEVHMP
exhibits SOð2; 2Þ × Uð1ÞN−1 isometry. To study this case,
we start by a review on black hole geometry itself. Then, by
taking the near-horizon and EVH limit, we discuss the

separability of Hamilton-Jacobi equations on the NHEVH
geometries.
As discussed in the special case of EVH black holes, one

has to revisit the standard NH theorems for extremal black
holes. Here we review EVH black holes in the family of
odd-dimensional MP black holes [24]:

ds2 ¼ −dτ2 þ μρ2

ΠF

�
dτ þ

XN
i¼1

aiμ2i dϕi

�
2

þ ΠF
Π − μρ2

dρ2

þ
XN
i¼1

ðρ2 þ a2i Þðdμ2i þ μ2i dϕ
2
i Þ ð82Þ

where

F¼ 1−
X
i

a2i μ
2
i

ρ2þa2i
; Π¼

YN
i¼1

ðρ2þa2i Þ;
X
i

μ2i ¼ 1:

ð83Þ

The extremal case happens when Π − μρ2 ¼ 0 has double
roots and the EVH case is when one of ai parameters,
which we take to be aN , is zero. That is in the EVH case
μ ¼ Q

N−1
a¼1 a

2
a. We note that we could have considered a

“near-EVH”metric where the black hole is at a nonzero but
small temperature and the horizon area is also small, while
the ratio of horizon area to the temperature is finite [25,31].
The horizon for the EVH case is at ρ ¼ 0 and hence in

the NH limit, the leading contributions come from

Π¼ μρ2
�
1þρ2

r20

�
; F0 ¼ 1−

XN−1

a¼1

μ2a;
1

r20
¼
XN−1

b¼1

1

a2b
:

ð84Þ

Plugging the above into the metric (82) and taking

ρ ¼ r0rϵ; τ ¼ r0t=ϵ; ψ ¼ φN=ϵ;

φa ¼ ϕa þ τ=aa; a ¼ 1;…; N − 1; ϵ → 0;

we obtain the NHEVHMP metric [26]:

ds2 ¼ F0r20

�
−r2dt2 þ dr2

r2
þ r2dψ2

�
þ
XN−1

b¼1

a2bdμ
2
b

þ
XN−1

a;b¼1

γabdφadφa;

γab ≡ a2aμ2aδab þ aaab
μ2aμ

2
b

F0

; ð85Þ

where in the above a, b run from 1 toN − 1. Had we started
from the near-EVH geometry, the AdS3 factor (the r, t, ψ
part) of (85) would have turned into a generic Bañados,
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Teitelboim and Zanelli black hole geometry [25,31]. The
NH geometry (85) has SOð2;2Þ×Uð1ÞN−1≃SLð2;RÞ×
SLð2;RÞ×Uð1ÞN−1 isometry. This is to be compared with
SLð2;RÞ ×Uð1ÞN of the non-EVH NHEMP discussed in
previous sections.
To discuss separability of the particle dynamics on (85),

as in the previous sections, we introduce coordinates,

xa ≡ aaμa
r0

ma ≡ a2a
r20

XN−1

a¼1

1

ma
¼ 1; ð86Þ

in which (85) takes the form

ds2

r20
¼ F0ds2AdS3 þ

XN−1

a

dx2a þ
XN−1

a;b

γ̃abxaxbdφadφb; ð87Þ

with

ds2AdS3 ¼ r2ð−dt2 þ dψ2Þ þ dr2

r2
; F0 ¼ 1 −

XN−1

a

x2a
ma

;

γ̃abxaxb ¼
1

r20
γab; γ̃ab ¼ δab þ

1

F0

xaffiffiffiffiffiffi
ma

p xbffiffiffiffiffiffi
mb

p : ð88Þ

The generators of the two SLð2;RÞ Killing vectors may be
written as

Hþ ¼ ∂v; Dþ ¼ v∂v− r∂r Kþ ¼ v2∂vþ
1

r2
∂u−2rv∂r;

H−¼ ∂u; D−¼ u∂u− r∂r K−¼ u2∂uþ
1

r2
∂v−2ru∂r;

ð89Þ

where v ¼ tþ ψ and u ¼ t − ψ . The Casimir of
SLð2;RÞ’s are

I� ¼ H�K� −D2
� ð90Þ

and one can readily check that both Casimirs are equal
to I ¼ 1

r2 ð∂2
t − ∂2

ψ Þ − r2∂2
r .

The mass-shell equation of the probe particle (11) then
reads

ðp0Þ2 − ðpψÞ2
r2

¼ ðrprÞ2 þ Iðpa; xa; pφa
Þ ð91Þ

where

fpa;xbg¼ δab; fpφa
;φbg¼ δab;

fpψ ;ψg¼ 1; fpr;rg¼ 1; ð92Þ

and

Iðpa; xa; pφa
Þ ¼

�
1 −

XN−1

c¼1

x2c
mc

��XN−1

a¼1

p2
a þ

XN−1

a¼1

p2
φa

x2a
þ g0

�
;

g0 ¼ −
�XN−1

a

pφaffiffiffiffiffiffi
ma

p
�2

þm2
0r

2
0; ð93Þ

where I in (93) is the Casimir. Note that while the
background has SLð2;RÞ × SLð2;RÞ × Uð1ÞN−1 isometry
the Casimirs of the two SLð2;RÞ factors happen to be
identical and hence we are dealing with a single I ;
appearance of an extra SLð2;RÞ does not add to the
number of constants of motion compared to the non-
EVH case.
Hence, as in the regular case, we have to consider

separately three cases:
(i) Generic, non-isotropic case, all ma are nonequal.

To separate the variables in (93), in the special
case when none of the rotational parameter is equal,
we introduce the ellipsoidal coordinates

x2a ¼
Q

N−1
b¼1 ðma − λbÞQ
N−1
b≠a ðma −mbÞ

: ð94Þ

In this terms the angular Hamiltonian reads

I ¼
�YN−1

a

λa
ma

��XN−1

a¼1

4
Q

N−1
b ðmb − λaÞQ
N−1
b≠a ðλb − λaÞ

π2a

þ
XN−1

a

p2
φa

x2a
þ g0

�
; ð95Þ

where fπa; λbg ¼ δab. One can see that (95) has a
very similar form to (21), and using the identities
(26) and (27), it can be rewritten as follows (after
fixing the Hamiltonian I ¼ E):

XN−1

a¼1

Ra − Ẽ
λa

Q
N−1
b¼1;a≠bðλb − λaÞ

¼ 0; ð96Þ

where

Ra ¼ 4λaπ
2
a

YN−1

b

ðmb − λaÞ þ ð−1ÞN−1
XN−1

b

λag2b
λa −mb

− g0ð−λaÞN−1;

g2a ¼ p2
φa

YN−1

b¼1

ðma −mbÞ; Ẽ ¼ E
YN−1

a

ma: ð97Þ

Separation of variables and the constants of motion
is similar to Sec. III, where (96) corresponds to (24).

(ii) Isotropic case, all ma are equal.
In this case (ma ¼ N − 1), we separate the varia-

bles in (93) by introducing spherical coordinates
fu; ; yα; θN−2g
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xN−1 ¼ u cos θN−2;

xN−1−α ¼ uyα sin θN−2;
XN−2

α¼1

y2α ¼ 1 ð98Þ

where α ¼ 1…N − 2. In these coordinates (93) will
take the following form:

I ¼
�
1 −

1

N − 1
u2
��

p2
u þ

FN−2

u2
þ g0

�
ð99Þ

with Fa defined in (53), where the separation of
variables and the derivation of integrals ofmotionwas
carried out according to Sec. IVA.

(iii) Partially isotropic case.
The last case is the most general one which

involves sets of equal and a set of nonequal rota-
tional parameters. With the discussions of the two
previous cases (fully isotropic and fully noniso-
tropic) in view and recalling the analysis of the
partially isotropic NHEMP case of the previous
section, it is straightforward to separate the variables
in a partially isotropic NHEVHMP. Following the
steps in Sec. IV C, one should first introduce differ-
ent spherical coordinates for each set of equal
rotational parameters and ellipsoidal coordinates
for the joint set of nonequal rotational parameters
and the radial parts of spherical coordinates. This
will result into spherical mechanics similar to (70)
where the Hamiltonians of spherical subsystems will
be included as parameters.

VI. DISCUSSION

In this work, continuing analysis of [22,23], we studied
separability of geodesic motion on the near-horizon geom-
etries of a Myers-Perry black hole in d, even or odd,
dimensions and established the integrability by explicit
construction of d constants of motion. In the general case,
½d−1
2
� þ 1 of these constants of motion are related to the

Killing vectors of the background [note that the back-
ground in general has ½d−1

2
� þ 3 Killing vectors, but three of

them form an slð2;RÞ algebra and hence there is only one
independent conserved charge from this sector]. Our
analysis reconfirms the earlier observations that although
the near-horizon limit in the extremal black holes enhances
the number of Killing vectors by 2 [17], the number of
independent conserved charges from the Killing vectors
does not change. Our system, in the general case, has ½d

2
�

constants of motion associated with second rank Killing
tensors that the system possesses. We also constructed the
explicit relation between these Killing tensors and the
conserved charges and one may check that our Killing
tensors and those in [14] match. We note that the Killing
tensors of [14] were obtained using the near-horizon limit

on the Killing tensors of Myers-Perry black hole in a
coordinate system which makes the geodesics of the black
hole separable itself, whereas we directly worked with
ellipsoidal coordinates for the NHEMP, introduced in [22].
Comparing the two systems before and after the NH limit, it
was argued in [14] that a combination of Killing tensors is
reducible to the Killing vectors; however, we obtain other
second rank Killing tensors, through which the system
remains integrable. Moreover, by explicitly showing the
separability, one concludes that there is no inconsistency
with the theorems in [10]. There is an extra conserved
charge related to the Casimir of the SLð2;RÞ symmetry
group which intrinsically exists in the NHEG’s. We have
shown that the charge of the Casimir is independent of the
other conserved charges. In this sense, one of the “hidden
symmetries,” symmetries which are associated with equa-
tions of motion and are not isometries of the background,
becomes explicit in the NH limit [14].
Following the discussions in [8], we showed that for

special cases where some of the rotation parameters of the
background are equal, the geodesic problem on NHEMP is
superintegrable. We established superintegrability by estab-
lishing existence of other constants of motion. Our methods
here, combined with those in [8], allows one to read the
extra second rank Killing tensors obtained in these cases.
The rough picture is as follows: We started with a system
with 2N þ 1þ σ variables with N isometries. Fixing the
momenta associated with the isometries, we obtained and
focused on the N − 1þ σ dimensional “angular mechan-
ics” part. In this sector, whenever N number of rotation
parameters mi of the background metric are equal the
Uð1ÞN isometry is enhanced to UðNÞ and this latter brings
about other second rank Killing tensors. All in all, for the
fully isotropic case in odd dimensions with Uðd−1

2
Þ isom-

etry, the d − 2 dimensional spherical mechanics part is
maximally superintegrable, it has N þ ðN − 2Þ ¼ 2N − 2
extra constants of motion. The fully isotropic case in even
dimensions, however, is not maximally superintegrable; it
has still 2N − 1 extra Killing tensors (one less than the N
constants of motion to make the system fully superintegr-
able). We discussed the “special cases” in two different
ways. First, we reanalyzed the system from scratch (in
Sec. IVA) and also took the equal rotation parameter limit
of the generic case (in Sec. IV D). As expected, these two
cases matched. Our preliminary analysis, which we did not
show here, indicates that the above statements are also true
for the NH limit of extremal MP black holes in (A)dS
backgrounds.
We also discussed the EVH case, which happens for odd-

dimensional extremal MP when one of the rotation param-
eters ai vanishes. In the general NHEVHMP case, where
the background isometry is SOð2; 2Þ ×Uð1Þd−32 , the number
of independent charges associated with Killing vectors is
dþ1
2
. Despite enhancement of the isometry group compared

to the generic NHEMP case, we found that this symmetry
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enhancement does not add to the number of independent
constants of motion; the system in general does not pose
extra constants of motion and remains just integrable.
Here we explored second rank Killing tensors; one may

suspect the system has independent higher rank Killing
tensors too. Although it is unlikely, if it happens, the system
for the generic rotation parameters becomes superintegr-
able. It is interesting to explore this question. Finally, as
already pointed out in the Introduction, one can consider
other probes including scalar, Dirac field, or gauge or
tensor perturbations on the NHEMP backgrounds and
study their integrablitiy. To this end, the study of Killing
Yano tensor and principal tensor [33,34] should be com-
pleted. We hope to address this in our future publications.
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