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We obtain an exact vacuum solution from the gravity sector contained in the minimal standard-model
extension. The theoretical model assumes a Riemann spacetime coupled to the bumblebee field which is
responsible for the spontaneous Lorentz symmetry breaking. The solution achieved in a static and
spherically symmetric scenario establishes a Schwarzschild-like black hole. In order to study the effects of
the spontaneous Lorentz symmetry breaking we investigate some classic tests, including the advance of
perihelion, the bending of light, and Shapiro’s time delay. Furthermore, we compute some upper bounds,
among which the most stringent associated with existing experimental data provides a sensitivity at the
10−15 level and that for future missions at the 10−19 level.
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I. INTRODUCTION

General relativity (GR) and the standard model of
particle physics are examples of successful field theories
describing nature. The former describes gravitation at the
classical level, and the latter describes particles and the
other three fundamental interactions at the quantum level.
The unification of these two theories is a fundamental
endeavor, and this achievement will provide us with a
deeper understanding of nature.
In the pursuit of this unification some theories of

quantum gravity have already been proposed, but direct
tests of their properties are currently beyond the energy
scale of current experiments because they would be
observed at the Planck scale (∼1019 GeV). However, it
is possible that some signals of quantum gravity can
emerge at sufficiently low energy scales, and their effects
could be observed in experiments carried out at current
energy scales. One of these signals would be associated
with the breaking of Lorentz symmetry.
Studies involving scenarios with Lorentz symmetry

breaking in nature have already been developed and are
being considered as promising avenues for exploration. The
violation of this symmetry principle arises as a possibility

in the context of string field theory [1,2], noncommutative
field theories [3], and loop quantum gravity theory [4],
among other scenarios [5]. These facts suggest that looking
for evidence of Lorentz violation can be an efficient way to
investigate signals of the existence of an underlying theory
of quantum gravity at the Planck scale. A candidate
providing a general theoretical framework for testing
Lorentz and CPT symmetries is the standard-model exten-
sion (SME) [6,7].
The SME is an effective field theory which describes the

standard model coupled to GR and includes additional
terms containing information about the Lorentz violation
occurring at the Planck scale [7]. The electromagnetic
sector of the SME has been extensively studied in the
literature [8–19], as well as the electroweak sector [20],
some aspects of the strong sector [21], and hadronic
physics [22]. Furthermore, some effects of Lorentz
violation in the gravitational sector were studied in
Refs. [23–31], and the case of gravitational waves was
analyzed in Ref. [32].
The aim of this manuscript is to obtain a spherically

symmetric exact solution to the Einstein equations in the
presence of a spontaneous breaking of Lorentz symmetry
due to a nonzero vacuum expectation value of the bumble-
bee field. Its influence in some well-known experimental
tests of general relativity is also analyzed, namely, the
advance of the perihelia of the inner planets, the bending of
light, and the time-delay effect owing to curvature. All tests
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analyzed allow to estimate some upper bounds for the
Lorentz-violating parameter involved. The manuscript is
organized as follows. In Sec. II, we present a general
geometrical framework allowing for the existence of non-
zero vacuum expectation values promoting the spontaneous
breaking of local Lorentz invariance. Furthermore, we
compute the modified Einstein equation generated by the
bumblebee gravity. In Sec. III, we solve the modified
Einstein equation and look for spherically symmetric
solutions. In Sec. IV, we study the effects of Lorentz
violation in some classical tests of general relativity and, by
using the data from existing and future Solar System
experiments, we establish some upper bounds for the
Lorentz-violating parameter involved. Finally, in Sec. V
we give our remarks and conclusions. Throughout the
manuscript we consider natural units (ℏ ¼ c ¼ 1) and the
metric signature ð−þþþÞ. The physical constants are
written explicitly when appropriate.

II. THE THEORETICAL FRAMEWORK

The focus of this work is to study spherically sym-
metric vacuum solutions in the context of an extended
gravitational model including Lorentz-violating terms.
Consequently, we study the effects of Lorentz violation
in some classical tests of general relativity. For this
purpose, we consider the bumblebee model, which is a
known example of a gravity model that extends the
standard formalism of GR, where under a suitable potential
the bumblebee vector field Bμ acquires a nonzero vacuum
expectation value (VEV), inducing a spontaneous Lorentz
symmetry breaking.
In order to investigate the possible effects of the Lorentz

violation in the gravitational sector, we consider the special
class of theories in which Lorentz violation arises from the
dynamics of a single vector Bμ that acquires a nonzero
VEV. These theories are called bumblebee models and are
among the simplest examples of field theories with sponta-
neous Lorentz and diffeomorphism violations. It is well
known in the literature that the breaking of local Lorentz
symmetry is always accompanied by diffeomorphism
violation [33]. In this scenario, the Lorentz violation is
triggered by a potential whose functional form possesses a
minimum which ensures the breaking of the Uð1Þ sym-
metry. In general, the action for a single bumblebee field Bμ

coupled to gravity and matter can be written as

SB ¼
Z

d4xLB

¼
Z

d4xðLg þ LgB þ LK þ LV þ LMÞ: ð1Þ

In Riemann spacetime, Lg is the pure gravitational
Einstein-Hilbert term which may also include the cosmo-
logical constant, LgB describes the gravity-bumblebee

coupling, LK contains the bumblebee kinetic and any
self-interaction terms, LV corresponds to the potential
which includes terms that trigger the spontaneous
Lorentz violation, and LM defines the matter and other
field contents and their couplings to the bumblebee field.
By considering the case of a spacetimewith null torsion and
a null cosmological constant (Λ ¼ 0), we introduce the
following Lagrangian density:

LB ¼ e
2κ

Rþ e
2κ

ξBμBνRμν −
1

4
eBμνBμν

− eVðBμÞ þ LM; ð2Þ

where κ ¼ 8 πGN is the gravitational coupling, e≡ ffiffiffiffiffiffi−gp
is the determinant of the vierbein and ξ is the real coupling
constant (with mass dimension −1) that controls the non-
minimal gravity-bumblebee interaction. The corresponding
bumblebee field strength is defined as

Bμν ¼ ∂μBν − ∂νBμ; ð3Þ

where Bμ has mass dimension 1. We point out that some
bumblebee models involving nonzero torsion in more
general contexts were investigated in Refs. [7,31,33].
For our purposes, the particular form of the potential

VðBμÞ in Eq. (2) driving its dynamics is irrelevant, but it is
important to emphasize that it must be formed from scalar
combinations of the bumblebee field Bμ and the metric gμν.
In any case, we choose a potential V that provides a
nonvanishing VEV for Bμ, which could have the following
general functional form:

V ≡ VðBμBμ � b2Þ; ð4Þ

where b2 is a positive real constant. Some qualitative
features of the symmetry-breaking potential have been
explored in Refs. [1,7,33–35]. It follows that the VEVof the
bumblebee field is determined when VðBμBμ � b2Þ ¼ 0,
implying that the condition

BμBμ � b2 ¼ 0 ð5Þ

must be satisfied. This is solved when the field Bμ acquires
a nonzero VEV given by

hBμi ¼ bμ; ð6Þ

where the vector bμ is a function of the spacetime
coordinates such that bμbμ ¼∓b2 ¼ const; then, the non-
zero vector background bμ spontaneously breaks the
Lorentz symmetry. We note the � signs in the potential
(4) determine whether the field bμ is timelike or spacelike.
On the other hand, the Lorentz-violating contributions to

the gravitational sector provided by the minimal SME are
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SLV ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðuRþ sμνRμν þ tμναβRμναβÞ; ð7Þ

where u, sμν, and tμναβ are real and dimensionless tensors
carrying information about Lorentz violation. It is possible
to establish a match between the bumblebee action (1) and
the Lorentz-violating action (7) by considering the follow-
ing parametrization of the underlying bumblebee field
and the metric with the Lorentz-violating tensors u, sμν,
and tμναβ:

u ¼ 1

4
ξBμBμ; sμν ¼ ξ

�
BμBν −

1

4
gμνBαBα

�
; ð8Þ

tμναβ ¼ 0; ð9Þ

where sμν is traceless [7,30].
The next step is to establish the fields equations from the

action (1) with the aim of finding vacuum solutions in the
context of the extended gravitational sector.

A. The field equations

The Lagrangian density (2) yields the extended Einstein
equations

Gμν ¼ Rμν −
1

2
Rgμν ¼ κTμν; ð10Þ

where Gμν is the Einstein tensor and Tμν is the total energy-
momentum tensor arising from the matter sector (TM

μν)
and the contributions of the bumblebee field (TB

μν); thus,
we write

Tμν ¼ TM
μν þ TB

μν; ð11Þ

with

TB
μν ¼ −BμαBα

ν −
1

4
BαβBαβgμν − Vgμν þ 2V 0BμBν

þ ξ

κ

�
1

2
BαBβRαβgμν − BμBαRαν − BνBαRαμ

þ 1

2
∇α∇μðBαBνÞ þ

1

2
∇α∇νðBαBμÞ

−
1

2
∇2ðBμBνÞ −

1

2
gμν∇α∇βðBαBβÞ

�
: ð12Þ

The prime denotes differentiation with respect to the
argument, as usual. Similarly, Eq. (2) provides the follow-
ing equation of motion for the bumblebee field:

∇μBμν ¼ Jν; ð13Þ

with Jν ¼ JBν þ JMν , where JMν is associated with the matter
sector (acting as a source for the bumblebee field) and JBν is

a partial current that arises from the bumblebee self-
interaction

JBν ¼ 2V 0Bν −
ξ

κ
BμRμν: ð14Þ

Taking the covariant divergence on the extended Einstein
equations (10) and using the contracted Bianchi identities
(∇μGμν ¼ 0) leads to the condition

∇μTμν ¼ 0; ð15Þ

which gives the covariant conservation law for the total
energy-momentum tensor Tμν.
The trace of Eq. (10) reads

R ¼ −κTM þ 4κV − 2κV 0BμBμ

þ ξ

�
1

2
∇2ðBμBμÞ þ∇α∇βðBαBβÞ

�
; ð16Þ

where TM ≡ gμνTM
μν, and by substituting this into Eq. (10)

we obtain the trace-reversed version,

Rμν ¼ κ

�
TM
μν −

1

2
gμνTM

�
þ κTB

μν þ 2κgμνV

− κBαBαgμνV 0 þ ξ

4
gμν∇2ðBαBαÞ

þ ξ

2
gμν∇α∇βðBαBβÞ: ð17Þ

Note that if both the bumblebee field Bμ and the potential
VðBμÞ vanish, Eq. (17) recovers the usual GR equations,
as expected.

III. A SPHERICALLY SYMMETRIC SOLUTION IN
THE LORENTZ-VIOLATING SCENARIO

We focus on a vacuum solution (i.e., one that describes
empty space surrounding a gravitating body) by imposing
TM
μν ¼ 0. Furthermore, the potential in Eq. (2) is taken to

trigger a nonzero VEV satisfying Eq. (6) and thereby
vanishes. We will assume this scenario in the remainder of
this manuscript.
Specifically, we are interested in vacuum solutions

induced by a spontaneous Lorentz symmetry breaking
when the bumblebee field Bμ remains frozen in its vacuum
expectation value bμ. A similar hypothesis was used in
Ref. [36]. In this way, the bumblebee field is fixed to be

Bμ ¼ bμ; ð18Þ

and consequently we have V ¼ 0 and V 0 ¼ 0. Under
such conditions, Eq. (17) leads to the extended Einstein
equations in vacuum,
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R̄μν ¼ 0; ð19Þ

where we have defined

R̄μν ¼ Rμν þ κbμαbαν þ
κ

4
bαβbαβgμν þ ξbμbαRαν

þ ξbνbαRαμ −
ξ

2
bαbβRαβgμν −

ξ

2
∇α∇μðbαbνÞ

−
ξ

2
∇α∇νðbαbμÞ þ

ξ

2
∇2ðbμbνÞ: ð20Þ

The tensor R̄μν has been introduced as a shorthand notation
and for algebraic simplicity. Meanwhile, the bumblebee
equation of motion (13) now becomes

∇μbμν ¼ −
ξ

κ
bμRμν; ð21Þ

where bμν ≡ ∂μbν − ∂νbμ is the field strength associated
with the vector bμ.
In order to obtain a static, spherically symmetric

vacuum solution to the extended Einstein equations,
we assume a spacetime driven by a Birkhoff metric
gμν ¼ diagð−e2γ; e2ρ; r2; r2sin2θÞ, with γ and ρ being
functions of r. Hereafter, we consider a spacelike back-
ground bμ assuming the form

bμ ¼ ð0; brðrÞ; 0; 0Þ: ð22Þ

Moreover, once we have assumed a background field in the
form (22), it follows that all components of the correspond-
ing field strength vanish identically, i.e., bμν ¼ 0.
Now by using the condition bμbμ ¼ b2 ¼ const, we

determine the explicit form of the radial background field,

brðrÞ ¼ jbjeρ: ð23Þ

It is easy to verify that the background given by Eq. (23) is
not covariantly constant, i.e., we have some nonvanishing
values for ∇μbν. It is worthwhile to point out the difference
with the proposal analyzed in Ref. [36], which assumes the
condition ∇μbν ¼ 0.
Next, we proceed to solve for the functions γðrÞ and

ρðrÞ. For this, we take the extended Einstein equations in
vacuum with our metric ansatz to get the following non-
vanishing components for the tensor (20):

R̄tt ¼
�
1þ l

2

�
Rtt þ

l
r
ð∂rγ þ ∂rρÞe2ðγ−ρÞ; ð24Þ

R̄rr ¼
�
1þ 3l

2

�
Rrr; ð25Þ

R̄θθ ¼ ð1þ lÞRθθ − l
�
1

2
r2e−2ρRrr þ 1

�
; ð26Þ

R̄ϕϕ ¼ R̄θθsin2θ; ð27Þ

where we have defined the Lorentz-violating parameter
l ¼ ξb2. The components of the Ricci tensor Rμν appearing
above are given by

Rtt ¼ e2ðγ−ρÞ
�
∂2
rγ þ ð∂rγÞ2 − ∂rγ∂rρþ

2

r
∂rγ

�
; ð28Þ

Rrr ¼ −∂2
rγ − ð∂rγÞ2 þ ∂rγ∂rρþ

2

r
∂rρ; ð29Þ

Rθθ ¼ e−2ρ½rð∂rρ − ∂rγÞ − 1� þ 1: ð30Þ

We note that the R̄μν tensor also has only three diagonal
independent components, the same as in the absence of the
background field.
Each of the components given by Eqs. (24)–(27) must

satisfy Eq. (19), which implies that every one of them is
independently null. In this way, from Eq. (25) we have
R̄rr ¼ 0, leading to the condition

Rrr ¼ 0: ð31Þ

At this point we note that the equation of motion of the
bumblebee vacuum background bμ established in Eq. (21)
is identically satisfied by considering the parametrization
(22), since it provides bμν ¼ 0, and together with Eq. (31)
gives bμRμν ¼ 0.
We now focus our attention on solving the modified

vacuum Einstein equations. The condition (31) allows to
obtain from Eq. (29) the equation

∂2
rγ þ ð∂rγÞ2 − ∂rγ∂rρ ¼ 2

r
∂rρ: ð32Þ

By use of Eq. (32) it follows that we can rewrite Eq. (28) as

Rtt ¼
2

r
ð∂rρþ ∂rγÞe2ðγ−ρÞ; ð33Þ

and we use it together with Eq. (31) in Eqs. (24) and (26)
to get

R̄tt ¼
2ð1þ lÞ

r
ð∂rρþ ∂rγÞe2ðγ−ρÞ; ð34Þ

R̄θθ ¼ ð1þ lÞRθθ − l: ð35Þ

Next, we take the combination

r2e−2γR̄tt þ 2R̄θθ ¼ 0; ð36Þ

which yields a differential equation for the function ρðrÞ,
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ð1þ lÞ∂rðre−2ρÞ ¼ 1: ð37Þ

It is easy to show that the solution is

e2ρ ¼ ð1þ lÞ
�
1 −

ρ0
r

�
−1
; ð38Þ

where for now ρ0 is some arbitrary constant.
In order to find the function γðrÞ we consider the

combination

lr2e−2γR̄tt − ð2þ lÞR̄θθ ¼ 0; ð39Þ

which provides

0 ¼ ð2þ 3lÞð1þ lÞr∂rγ þ ð1þ lÞð2þ lÞ
þ ðlþ 1Þðl − 2Þr∂rρ − ð2þ lÞe2ρ: ð40Þ

By substituting Eq. (38), we obtain an explicit differential
equation for γðrÞ,

ðρ0 − rÞ∂rγ þ
ρ0
2r

¼ 0;

whose solution, written in a convenient form, is given by

e2γ ¼ e−2γ0
�
1 −

ρ0
r

�
; ð41Þ

where e−2γ0 is a constant which can be removed by means
of the rescaling t → eγ0t. In fact, it can be verified that
the solutions (38) and (41) actually satisfy the set of
equations (24)–(27).
Finally, we write down the Lorentz-violating spherically

symmetric solution

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ ð1þ lÞ

�
1 −

2M
r

�
−1
dr2

þ r2dθ2 þ r2sin2θdϕ2; ð42Þ

where we have conveniently identified the arbitrary
constant ρ0 ≡ 2M (M ¼ GNm is the usual geometrical
mass) such that in the limit l → 0 we recover the usual
Schwarzschild metric. The metric (42) represents a purely
radial Lorentz-violating solution outside a spherical body
characterizing a modified black hole solution. Furthermore,
we compute the Kretschmann scalar

RμναβRμναβ ¼ 4ð12M2 þ 4lMrþ l2r2Þ
r6ðlþ 1Þ2 ; ð43Þ

which clearly differs from the Schwarzschild Kretschmann
invariant for non-null l. This ensures that the metric (42) is
a true solution containing Lorentz-violating corrections,
i.e., there exists no coordinate transformation connecting

the metric (42) to the Schwarzschild one; otherwise, the
scalar invariant (43) would be the same for both metrics.
We observe, for r ¼ 2M, that the Kretschmann invariant is
finite so such a singularity can be removed (by an adequate
coordinate transformation). However, r ¼ 0 is a physical
(or not removable) singularity due to the fact that the
Kretschmann invariant is divergent. Therefore, we point out
that the nature of the singularities r ¼ 0 and r ¼ 2M (event
horizon) remains unchanged.
Once the solution (42) has been obtained, we can look

for observational signatures or constraints on the Lorentz-
violating parameter l by analyzing some fundamental tests
of GR. For this purpose, we can pursue these Lorentz-
violating corrections in a gravitational environment such as
the Solar System. An alternative treatment could be done
using the parametrized post-Newtonian (PPN) formalism
[37] which allows for the comparison and testing of metric
theories of gravity by using the experimental data when the
weak-field limit is considered. Thus, we can investigate the
possibility that this formalism allows for some sort of
match between the weak-field limit of our solution and an
equivalent post-Newtonian metric; the latter could with-
stand a partial overlap with the isotropic limit of the SME,
as discussed in Ref. [30].
In the GR scenario an analysis of the post-Newtonian

corrections to the gravitational field of a static spherical
body can be established by taking the weak-field limit and
expanding to post-Newtonian accuracy from the already
known Schwarzschild solution. Following this idea, a
common choice for a weak-field analysis is the isotropic
coordinate system. Thus, the metric solution (42) expressed
in isotropic coordinates assumes the form

ds2 ¼ ḡ00ðr̄Þdt2 þ ½fðr̄Þ�2ðdx̄2 þ dȳ2 þ dz̄2Þ; ð44Þ

where r̄ is the isotropic radial coordinate defined by

r̄ ¼ ðx̄2 þ ȳ2 þ z̄2Þ1=2; ð45Þ

and

dr̄2 þ r̄2dΩ2 ¼ dx̄2 þ dȳ2 þ dz̄2: ð46Þ

The metric component ḡ00ðr̄Þ is given by

ḡ00ðr̄Þ ¼ −1þ 2M
rðr̄Þ : ð47Þ

The radial coordinate transformation r → r̄ is ruled by
the equation

r ¼ r̄

�
M
2r̄

�
1−1=

ffiffiffiffiffiffiffi
1þl

p �
1þ

�
M
2r̄

�
1=

ffiffiffiffiffiffiffi
1þl

p �2
; ð48Þ

where the integration constant has been considered in such
a way that by setting l ¼ 0 one recovers the result in the
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absence of Lorentz violation. The spatial metric function
fðr̄Þ is

fðr̄Þ ¼
�
M
2r̄

�
1−1=

ffiffiffiffiffiffiffi
1þl

p �
1þ

�
M
2r̄

�
1=

ffiffiffiffiffiffiffi
1þl

p �2
; ð49Þ

and the metric components written in the isotropic form
read

ḡ00ðr̄Þ ¼ −
½1 − ðM

2r̄Þ1=
ffiffiffiffiffiffiffi
1þl

p
�2

½1þ ðM
2r̄Þ1=

ffiffiffiffiffiffiffi
1þl

p
�2
; ð50Þ

ḡijðr̄Þ ¼ ½fðr̄Þ�2δij; ḡ0iðr̄Þ ¼ 0: ð51Þ

Immediately, the tensor field sμν defined in Eq. (8) can be
expressed in isotropic coordinates. The nonzero compo-
nents of the tensor s̄μν are

s̄00 ¼ l
4

½1þ ðM
2r̄Þ1=

ffiffiffiffiffiffiffi
1þl

p
�2

½1 − ðM
2r̄Þ1=

ffiffiffiffiffiffiffi
1þl

p
�2
; ð52Þ

s̄ij ¼ l
½fðr̄Þ�2

�
x̄ix̄j

r̄2
−
1

4
δij

�
: ð53Þ

We now analyze the match between the Lorentz-violating
parameter l and the pure-gravity sector of the minimal
SME. For this purpose, we consider the weak-field limit,
M=r̄ ≪ 1 and l ≪ 1, and obtain

hs̄00iΩ ¼ s̄00 ¼ l
4
þ � � � ; ð54Þ

hs̄11iΩ ¼ hs̄22iΩ ¼ hs̄33iΩ ¼ l
12

þ � � � ; ð55Þ

hs̄12iΩ ¼ hs̄13iΩ ¼ hs̄23iΩ ¼ 0; ð56Þ

where h·iΩ means the average over the sphere. It is
important to emphasize that the tensor hs̄μνiΩ satisfies
the traceless property and, besides that, these components
restrict the SME coefficients to the isotropic limiting form,
which is consistent with what was discussed in Ref. [30].
Therefore, it is reasonable to conclude that the estimates of
the attainable experimental sensitivities for Lorentz viola-
tion associated with the nonzero components of hs̄μνiΩ will
be of approximately the same order of magnitude as the
parameter l.
We attempt to find some matching with the PPN

parameters by expanding each metric component in a
series of U ¼ M=r̄ ≪ 1 and l ≪ 1. So the metric expan-
sion becomes

ḡ00ðr̄Þ ≃ −1þ 2U − 2U2 þ � � �

− l½U − 2U2 þ � � �� ln
�
U
2

�
þ � � � ; ð57Þ

ḡijðr̄Þ ≃ δij

�
1þ 2U þ 3

2
U2 þ � � �

þlð1þU þ � � �Þ ln
�
U
2

�
þ � � �

�
: ð58Þ

This result reveals that the exact solution (42) does not
admit a PPN expansion, i.e., it is not possible to expand
only in powers ofUðr̄Þ due to the emergence of logarithmic
contributions in the metric series. Hence, we conclude that
the adoption of the parametrization (22) does not allow a
post-Newtonian version of the Lorentz-violating metric
(42). Therefore, this is not a promising avenue for searching
for upper bounds on the Lorentz-violating parameter l.
In the next section, we will use our exact solution in

order to obtain estimates of the sensitivities to the Lorentz-
violating coefficient l from key GR tests by adopting a
standard framework where the treatment of metric fluctua-
tions about a Minkowski background is not required.

IV. SOME CLASSICAL TESTS AND
UPPER-BOUND ESTIMATES

In this section, our focus is to identify dominant
signatures of Lorentz violation from the motion of particles
in a spacetime described by the Lorentz-violating spheri-
cally symmetric solution (42). Thus, with the aim of
imposing upper bounds on the Lorentz-violating coefficient
l, we consider some classical key tests: the precession of
the perihelia of inner planets, the bending of light, and the
Shapiro time-delay effect.
The motion of test particles along the geodesics

described by xμðλÞ obeys the equation

d2xμ

dλ2
þ Γμ

σν
dxσ

dλ
dxν

dλ
¼ 0; ð59Þ

where λ is an affine parameter. However, due to the metric
compatibility, it is always possible to consider a constant of
motion χ defined by

χ ¼ −gμνUμUν; ð60Þ

where the vector Uμ is defined as

Uμ ¼ dxμ

dλ
≡ _xμ; ð61Þ

where a dot denotes differentiation with respect to the affine
parameter. For massive particles, the affine parameter is
typically chosen to be the proper time τ and χ ¼ þ1
(timelike geodesics). On the other hand, for massless

CASANA, CAVALCANTE, POULIS, and SANTOS PHYS. REV. D 97, 104001 (2018)

104001-6



particles we have χ ¼ 0 and the parameter λ is not fixed
(null geodesics).

A. Advance of perihelion

From the geodesic equation (59), we obtain the equations
describing the trajectory of a massive test particle moving
in the spacetime (42):

d
dτ

��
1 −

2M
r

�
_t

�
¼ 0; ð62Þ

̈rþMðr − 2MÞ
r3ðlþ 1Þ _t2 −

M
rðr − 2MÞ _r

2

−
r − 2M
lþ 1

ð_θ2 þ sin2θ _ϕ2Þ ¼ 0; ð63Þ

d
dτ

ðr2 _θÞ − r2 sin θ cos θ _ϕ2 ¼ 0; ð64Þ

d
dτ

ðr2sin2θ _ϕÞ ¼ 0: ð65Þ

By considering the initial conditions θðτ0Þ ¼ π=2 and
_θðτ0Þ ¼ 0, from Eq. (64), it follows that θ̈ðτÞ and any
other higher-order derivatives are equal to zero, so the
particle motion is confined to the plane θ ¼ π=2. Therefore,
we have a spherically symmetric spacetime with two
Killing vectors corresponding to the conserved energy
(E) and the conserved angular momentum (L). The timelike
Killing vector Kμ ¼ ð∂tÞμ is related to the conserved
particle energy, given by

E ¼ −gμνKμUν ¼
�
1 −

2M
r

�
_t: ð66Þ

The rotational Killing vector ψμ ¼ ð∂ϕÞμ provides the
conserved angular momentum of the particle,

L ¼ gμνψμUν ¼ r2 _ϕ: ð67Þ

Clearly, Eqs. (66) and (67) are consistent with Eqs. (62)
and (65), respectively.
Then, from the conserved quantities in Eq. (60) for

timelike geodesics, this yields a single differential equation
for the coordinate r in terms of the proper time τ,

ð1þ lÞ_r2 þ
�
1 −

2M
r

��
L2

r2
þ 1

�
¼ E2: ð68Þ

We now introduce the variable u ¼ r−1, such that

_r ¼ dr
dϕ

_ϕ ¼ −L
du
dϕ

: ð69Þ

By substituting it into Eq. (68), we obtain

ð1þ lÞ
�
du
dϕ

�
2

þ u2 ¼ E2 − 1

L2
þ 2M

L2
uþ 2Mu3: ð70Þ

As is usually done in this treatment, it is preferable to solve
the second-order equation which is obtained by differ-
entiating the above equation with respect to ϕ, providing

ð1þ lÞ d
2u

dϕ2
þ u −

M
L2

− 3Mu2 ¼ 0: ð71Þ

It only presents Lorentz-violating contributions into the
coefficient of the first term, maintaining the total structure
of that obtained in the context of GR. In order to
perturbatively solve Eq. (71) and due to the fact that
we are assuming l ≪ 1, it is still valid to consider the
last term as a relativistic correction when compared with
the Newtonian case. The perturbative solution is defined in
terms of a small parameter ϵ ¼ 3M2=L2:

u ≃ uð0Þ þ ϵuð1Þ: ð72Þ

The differential equation at zeroth order in ϵ yields

ð1þ lÞ d
2uð0Þ

dϕ2
þ uð0Þ −

M
L2

¼ 0; ð73Þ

whose solution is given by

uð0Þ ¼ M
L2

�
1þ e cos

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
��

: ð74Þ

It is analogous to the Newtonian result. Here, the integra-
tion constants we have considered are the orbital eccen-
tricity e (considered to be small as that of GR) and the
initial value ϕ0 ¼ 0.
The differential equation at first order in ϵ is

ð1þ lÞ d
2uð1Þ

dϕ2
þ uð1Þ −

L2

M
ðuð0ÞÞ2 ¼ 0; ð75Þ

which admits an approximate solution of the form

uð1Þ ≃
M
L2

e
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
�

þ M
L2

��
1þ e2

2

�
−
e2

6
cos

�
2ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
��

: ð76Þ

For our purposes, the second term can be neglected once it
consists of a constant displacement and a quantity that
oscillates around zero.
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Therefore, the perturbative solution (72) reads

u≃
M
L2

�
1þ e cos

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
�
þ ϵe

ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
��

:

ð77Þ

Because ϵ ≪ 1, the perturbative solution (77) can be
rewritten in the form of an ellipse equation,

u ≃
M
L2

�
1þ e cos

�
ϕð1 − ϵÞffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
��

: ð78Þ

Despite the presence of the Lorentz violation, the orbit
remains periodic with period Φ,

Φ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p

1 − ϵ
≈ 2π þ ΔΦ: ð79Þ

The advance of perihelion (ΔΦ) is obtained by taking the
lowest order in the ϵ and l expansion, which reads

ΔΦ ¼ 2πϵþ πl ¼ ΔΦGR þ δΦLV: ð80Þ

The term ΔΦGR is the prediction of GR, given by

ΔΦGR ¼ 2πϵ ¼ 6πGNm
c2ð1 − e2Þa ; ð81Þ

where c is the speed of light, m is the mass of the
gravitational source, e is the orbital eccentricity, and a is
the semimajor axis of the orbital ellipse. The term δΦLV is
the contribution per period due to spontaneous Lorentz
violation,

δΦLV ¼ πl: ð82Þ

Consequently, Eq. (80) shows the Lorentz-violating effects
as an additional correction to the standard result of GR.
From perihelion-shift data of some planetary motions

[37–39], we can establish estimates of the attainable
sensitivities for the Lorentz-violating parameter l by taking

the uncertainty of experimental data obtained from the
orbits of the inner planets. Table I provides some values of
the perihelion advance—both observed and predicted by
GR [40]—for some bodies in the Solar System, according
to current measurements found in Ref. [39]. Note that, in
addition to the planets, we also present the observational
data for the asteroid Icarus, which agree with GR pre-
dictions to within 20% of the estimated uncertainty [41,42].
Considering, e.g., the motion of Mercury around the Sun

we have an observational error yielding 0.00300C−1 (or
72.3 × 10−7 arcseconds per orbit); see Table I. Thus, one
assumes that the contribution of the Lorentz-violating term
δΦLV is less than the observational error. Such a procedure
allows us to estimate an upper bound at the level of
l☿ < 1.1 × 10−11. By applying the same procedure for
the observational data of the other planets in Table I, we
have achieved the set of estimates of the attainable
sensitivities (upper bounds) for the Lorentz-violating
parameter l displayed in Table II. We observe that the
most stringent upper bound attained from the advance of
perihelion is at the level of 10−12.

B. Bending of light

Unlike the previous case, we now have massless test
particles whose trajectories correspond to null geodesics.
Thus, χ ¼ 0 in Eq. (60), which after substituting the
conserved quantities becomes

TABLE I. Theoretical and observed data of perihelion shifts given in arcseconds per century (00C−1).

Planet GR predictiona Observed Uncertaintyb

Mercury (☿) 42.981 42.979� 0.0030 −0.0020� 0.0030
Venus (♀) 8.6247 8.6273� 0.0016 −0.00026� 0.00016
Earth (⊕) 3.83877 3.83896� 0.00019 −0.000019� 0.000019
Mars (♂) 1.350938 1.350918� 0.000037 −0.000020� 0.000037
Jupiter (⊛) 0.0623 0.1210� 0.0283 0.0587� 0.0283
Saturn (⊘) 0.01370 0.01338� 0.00047 −0.00032� 0.00047
Icarus 10.1 9.8� 0.8 −0.3� 0.8

aComputed from the database of Refs. [40,43].
bFrom Refs. [39,42].

TABLE II. Estimates of upper bounds obtained from some
observational uncertainties of perihelion shifts.

Lorentz-violating parameter Upper bound References

l♂ 1.1 × 10−12 [39]
l⊕ 2.9 × 10−12 [39]
l☿ 1.1 × 10−11 [39]
l♀ 1.5 × 10−11 [39]
l⊘ 2.1 × 10−10 [39]
l⊛ 5.2 × 10−9 [39]
lIcarus 1.3 × 10−8 [42]
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ð1þ lÞ_r2 þ
�
1 −

2M
r

�
L2

r2
¼ E2; ð83Þ

where a dot now denotes differentiation with respect to
some affine parameter.
Again, we consider u ¼ r−1 with r≡ rðϕÞ and the

differentiation with respect to ϕ in Eq. (83), which gives

ð1þ lÞ d
2u

dϕ2
þ u − 3Mu2 ¼ 0: ð84Þ

We observe that in the limit l → 0, Eq. (84) recovers the
corresponding GR result providing the deflection of light
rays, as expected. In analogy with the previous subsection,
we use a perturbative method to achieve a solution by
considering the quantityMu as sufficiently small. Thus, we
write the approximate solution in the form

u ≃ uð0Þ þ 3Muð1Þ: ð85Þ

Inserting this into Eq. (84) gives the following differential
equation for uð0Þ:

ð1þ lÞ d
2uð0Þ

dϕ2
þ uð0Þ ¼ 0; ð86Þ

whose solution is

uð0Þ ¼ 1

d
sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
�
; ð87Þ

where d is a constant of integration and we have considered
the initial angle ϕ0 ¼ 0, for convenience. This result
corresponds to the equation of a straight line, which is
analogous to the Newtonian prediction.
The differential equation for uð1Þ, in turn, becomes

ð1þ lÞ d
2uð1Þ

dϕ2
þ uð1Þ −

1

d2
sin2

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
�

¼ 0; ð88Þ

and its solution is written as

uð1Þ ¼ 1

3d2

�
1þ A cos

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
�
þ cos2

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
��

:

ð89Þ

Hence, a general solution for uðϕÞ has the form

u≃
1

d
sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þl

p
�

þM
d2

�
1þAcos

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þl

p
�
þ cos2

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þl

p
��

; ð90Þ

where A is an arbitrary constant.

Since we are interested in determining the angle of
deflection of a light ray, the boundary conditions are
determined by assuming that (i) the source is located at
r → ∞ such that uðr → ∞Þ → 0 and ϕ ¼ −δ1, and (ii) the
observer is localized at r → ∞ such that uðr → ∞Þ → 0
and ϕ ¼ þδ2, so the total angle of deflection is given by
δ ¼ δ1 þ δ2. By using these boundary conditions in
Eq. (90) and taking into consideration l ≪ 1 and δ1,
δ2 ≪ 1, the first-order equation gives

δ1 ¼
M
d
ð2þ AÞ; ð91Þ

δ2 ¼
M
d
ð2 − AÞ þ πl

2
: ð92Þ

Hence, the light-ray deflection angle in the metric (42) is

δ ¼ δGR þ δLV ¼ 4GNm
c2d

þ πl
2
; ð93Þ

where m is the mass of the deflecting body and d is the so-
called impact parameter (defined as the distance of closest
approach of the light ray to the center of mass of the
deflecting body). The first term δGR gives the usual
deviation of light predicted by GR,

δGR ¼ 4GNm
c2d

: ð94Þ

The second term δLV,

δLV ¼ πl
2
; ð95Þ

is the correction coming from the Lorentz-violating effects.
Of course, by taking the limit l → 0 in Eq. (93) we recover
the usual result established by GR for the bending of light.
For a ray grazing the Sun we havem ¼ M⊙ and d ≈ R⊙.

Using, e.g., the values from Ref. [43], one can verify that
GR predicts an angle given by δGR ¼ 4GNM⊙=c2R⊙ ≈
1.7516687200. Therefore, if there is indeed Lorentz viola-
tion in nature, the effects arising from the term δLV must be
smaller than the observational errors for the bending of
light. The error bars obtained in recent measurements of
existing and future light-bending tests [44–52] allow us to
provide an interesting sensitivity for Lorentz violation in
the gravity sector.
The analysis of available data from recent observations

of very-long-baseline radio interferometry (VLBI) [49] for
light deflection yielded an agreement with GR to 0.01%.
Taking this accuracy, the upper bound will satisfy the
inequality δLV < 0.000105100, which allows to establish
the constraint l < 3.2 × 10−10. In addition, detailed sim-
ulations for future missions, e.g., the proposed Laser
Astrometric Test of Relativity (LATOR) [47], can also
lead to interesting estimates of the sensitivities for Lorentz

EXACT SCHWARZSCHILD-LIKE SOLUTION IN A … PHYS. REV. D 97, 104001 (2018)

104001-9



violation; namely, LATOR may achieve sensitivities to
coefficients for Lorentz violation at the level of 10−15.
In Table III we provide upper-bound estimates for

available data from past and future missions in addition
to those described above. We have included the GAIA
astrometric mission [44,48] which provides an accuracy to
GR of 10−5% of unity, the optical astrometry satellite
mission Hipparcos [50] with measurements reaching 0.1%
of uncertainty, and past ground-based optical observations
[51] with an error bar of 11%. All values computed
correspond to the Lorentz-violating parameter l and are
based on the accuracy of each experiment referenced.
Note that, if future experiments can be used for these
measurements, the peak constraints of l could lead us to
reach the 10−15 level, providing even more sensitive
Lorentz-violating parameters than previous tests.

C. Time delay of light

A further measurable relativistic phenomenon involving
light rays is the Shapiro time-delay effect [53]. The Solar
System tests involving this effect can yield interesting
sensitivities to Lorentz violation. For this purpose we will
derive an expression involving the Lorentz-violating cor-
rections for the time-delay effect from the result already
obtained in Sec. IV B. Namely, we are interested in an
equation providing the change in the round-trip travel time
of light to an object due to the influence of a massive body
such as the Sun.
By considering the motion of light in the equatorial plane

(θ ¼ π=2) and because it travels along a null geodesic in the
spacetime (42), i.e., the condition ds2 ¼ 0 is satisfied, we
can write

−
�
1 −

2M
r

�
dt2 þ ð1þ lÞ

�
1 −

2M
r

�
−1
dr2 þ r2dϕ2 ¼ 0:

ð96Þ

Next, we consider the zeroth-order solution (87) character-
izing the straight-line approximation,

r sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
�

¼ d; ð97Þ

and we use it to establish the following relation:

r2dϕ2 ¼ ð1þ lÞ
�

d2

r2 − d2

�
dr2: ð98Þ

Thus, Eq. (96) can be rewritten as

dt2 ¼ 1þ l
1 − 2M=r

�
1

1 − 2M=r
þ d2

r2 − d2

�
dr2: ð99Þ

Expanding it in terms of M=r and considering the con-
tributions at first order, we get

dt ≃�
ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − d2

p
�
1þ 2M

r
−
Md2

r3

�
rdr: ð100Þ

The setup for the Shapiro delay effect involves two
stations at large distances from the massive source (or
curvature source). By assuming a light ray (or radar signal)
from an emitter located at rE traveling to a receiver at rR,
the travel time is given by

t ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p �
t0 þ 2M ln

�
rE þ ðr2E − d2Þ1=2

d

�

þ 2M ln

�
rR þ ðr2R − d2Þ1=2

d

�

−M
�ðr2R − d2Þ1=2

rR
þ ðr2E − d2Þ1=2

rE

��
; ð101Þ

where t0 represents the travel time in flat spacetime,

t0 ¼ ðr2R − d2Þ1=2 þ ðr2E − d2Þ1=2: ð102Þ

It should be noted that in the absence of the Lorentz
violation, l ¼ 0, Eq. (101) recovers the time-delay expres-
sion predicted by GR, as expected. It is evident that the first
term t0

ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
stands for the travel time of a radar signal

along a straight line including Lorentz-violating corrections
in a flat spacetime (special relativity). The other terms
represent time-delay contributions due to both the curved
spacetime and Lorentz violation. Such a delay effect may
be interpreted as an effective increase in the distance
between the emitter and receiver of the radar signal.
With the aim of using the result (101), we explore the

Solar System by considering the round-trip of a light signal,
under the influence of a gravitational field (e.g., that of the
Sun), emitted from a source (e.g., the Earth) towards a
reflective body (e.g., a planet or a spacecraft) and returning
to the source. So, we take the spacetime near the Sun
(M ¼ M⊙) and a radar signal emitted from the Earth
located at rE traveling towards a receiver (a planet or a
spacecraft) at rR; both distances are measured respectively
from the Sun’s center. The time-delay effect is maximum
when the spacecraft is at superior conjunction and the radar

TABLE III. Estimates of sensitivities in current and future
light-bending tests for the Lorentz-violating parameter l.

Experiment Upper bound References

LATOR 7.3 × 10−15 [47]
GAIA 8.1 × 10−13 [48]
VLBI 3.2 × 10−10 [49]
Hipparcos 8.1 × 10−9 [50]
Optical 5.9 × 10−7 [51]
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signal just grazes the Sun’s surface such that the radius of
closest approach is d ∝ R⊙, satisfying the condition
d ≪ rE; rR. Therefore, from Eq. (101) the total round-trip
time for a radar signal traveling from the emission source to
another planet (or spacecraft) and returning is approxi-
mately given by

T ≈
ffiffiffiffiffiffiffiffiffiffiffi
1þ l

p �
T0 þ

4GNM⊙

c3

�
ln

�
4rErR
d2

�
− 1

��
; ð103Þ

where d stands for the impact parameter and T0 is the total
travel time in flat spacetime,

T0 ¼
2

c
ðr2R − d2Þ1=2 þ 2

c
ðr2E − d2Þ1=2: ð104Þ

Similarly to what is done in GR, from Eq. (103) we
define, in this Lorentz-violating framework, the total excess
delay as

δT ¼ T − T0 ¼ δTGR þ δTLV; ð105Þ
where we have considered only first-order terms in l ≪ 1.
The quantity δTGR representing the excess delay due to
pure GR is given by

δTGR ¼ 4GNM⊙

c3

�
ln

�
4rErR
d2

�
− 1

�
: ð106Þ

The term δTLV representing the Lorentz-violating contri-
bution to the excess delay reads

δTLV ¼ l
2
ðδTGR þ T0Þ ≈

l
2
T0: ð107Þ

This will be used to obtain estimates of the sensitivities
to Lorentz violation which could be achieved from
the passive radar measurements of the inner planets
or active ranging experiments of interplanetary space-
crafts. For example, the measurements of radar signals
reflected by Venus have provided an excess-delay
predicted by GR within the experimental uncertainty
of 20% [54] and, subsequently, within 2% [55]. We take
this latter as an upper bound for Lorentz-violating
effects which would correspond to a sensitivity of
l♀ < 5.0 × 10−9.
Time-delay effects have also been measured using arti-

ficial satellites as active retransmitters of the radar signals,
such as the Mariner 6 and 7 spacecrafts in orbit around the
Sun. An analysis of the Mariner 6 (M6) and 7 (M7) data
suggest that a realistic estimate of the total uncertainty, for
both cases, is perhaps less than 3% [56], so that the estimates
of the sensitivities for the Lorentz violation parameters lM6

and lM7 are 2.2 × 10−9 and 1.6 × 10−9, respectively.
Another major advance was made using an active

transmitter on a spacecraft stationed on a planet. An
example can be given by experiments conducted during

the mission of the Viking spacecraft to Mars. This consisted
of space probes that orbited Mars, equipped with a lander to
study the planet at its surface. The measurement from the
Viking Mars (VM) landers resulted in an estimated accu-
racy of 0.1% [57], which allows us to establish a sensitivity
of lVM < 1.8 × 10−10.
The most precise measurement of the Shapiro time delay

from spacecraft measurements so far was made by the
Cassini mission during its trip to Saturn [58]. Performing a
detailed analysis of the data obtained in the 2002 superior
conjunction of Cassini, it is verified that the resulting
measurement error must be within at most 0.0012% of
unity. From this value, we obtain an attainable sensitivity
of lCassini < 5.9 × 10−13.
We now consider some future key experiments which

can also provide reasonable estimates of the upper bounds
for the parameter l of this current treatment. Some
proposed methods of measuring the time delay of light
at high accuracies are the missions Astrodynamical Space
Test of Relativity using Optical Devices (ASTROD) and
Beyond Einstein Advanced Coherent Optical Network
(BEACON), which will allow for the search for new
physics beyond general relativity by measuring the curva-
ture of relativistic spacetime. The ASTROD mission
expects an accuracy at the level of 10−8 [59], while the
BEACON mission expects an accuracy at the 10−9 level
[60], in agreement with GR. We should point out that the
BEACON mission is an attempt to measure the spacetime
warping due to Earth’s gravitational field.
The values of the upper bounds for the Lorentz-violating

parameter l, concerning all experiments related to the time
delay of light discussed here, are listed in Table IV. There
are additional experiments whose data could be of interest
to perform a similar analysis [60–64].

V. CONCLUSIONS AND REMARKS

We have achieved a new static and spherically symmetric
vacuum solution by investigating a Lorentz-violating grav-
ity contained in the framework of a Riemannian bumblebee
gravity model. Such a new vacuum solution looks like the
Schwarzschild one; however, its Kretschmann invariant
(43) guarantees that they are very different.

TABLE IV. Estimates of attainable sensitivities in some gravi-
tational time-delay tests for the Lorentz-violating parameter l.

Experiment Upper bound References

BEACON 3.0 × 10−19 [60]
ASTROD 3.8 × 10−15 [59]
Cassini 5.9 × 10−13 [58]
Viking Mars 3.2 × 10−10 [57]
Mariner 6 2.2 × 10−9 [56]
Mariner 7 1.6 × 10−9 [56]
Venus 5.0 × 10−9 [55]
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We have studied its implications by exploring three
classical gravitational tests: the advance of perihelion, the
bending of light, and Shapiro’s time delay. We have noted
that the tests have corrections coming from Lorentz
violation even in the absence of a massive gravitational
source, which is compatible with a Kretschmann invariant
(43) that is nonvanishing in the limit M → 0. This result
indicates that the Lorentz-violating background also
deforms spacetime; nevertheless, it remains asymptotically
flat due to the fact that the deformation is very small.
We have analyzed the match between the Lorentz-

violating parameter l and the pure-gravity sector of the
minimal SME. For this purpose, we have considered the
weak-field limit in the isotropic coordinates. It has been
verified that the nonzero components of the tensor hs̄μνiΩ
represent an isotropic form of the gravity sector of the SME
similar to the one discussed in Ref. [30]. In this way, we
conclude that the estimates of the attainable experimental
sensitivities for Lorentz violation associated with the non-
zero components of hs̄μνiΩ have approximately the same
order of magnitude as the parameter l. On the other hand,
we have verified that the weak-field limit of our solution
(42) does not admit a PPN version due to the emergence of
logarithmic contributions in the metric series.
In all of the classical tests considered, the effect induced

by Lorentz violation can be interpreted as a correction

to GR’s result. The additional terms carrying Lorentz-
violating signals are given explicitly by Eqs. (82), (95), and
(107), and they clearly vanish in the limit l → 0. The
Lorentz-violating contribution obtained in each classical
test together with the accuracy of the corresponding
experimental data allow to estimate attainable sensitivities
for the parameter l (see Table V).
Among the perihelion-shift data of the inner planets of

the Solar System that we analyzed, the high experimental
accuracy for Mars and Earth have provided the most
stringent upper bound, reaching the 10−12 level.
Furthermore, for light-bending tests we have used data
from key existing and future experiments, which have
constrained the Lorentz-violating parameter l at the
10−7–10−15 level. The relativistic effect involving the
Shapiro time delay also yields estimates of the sensitivities
that might be attainable for the parameter l. The Cassini
spacecraft has provided the most accurate measurement to
date, yielding an upper bound of l < 10−13, while the
future experiment with BEACON mission predicts an
upper bound with an order of magnitude of about 10−19.
The upper bounds for the Lorentz-violating parameter l
achieved by means of the three tests are summarized in
Table V.
We are currently exploring other possible vacuum

configurations of the bumblebee field that produce new
Lorentz-violating solutions. One of them is exploring the
effect of the bumblebee field on some black hole solutions,
such as the charged and rotating ones. The results of these
studies will be reported elsewhere.
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