
 

Primordial perturbations with pre-inflationary bounce
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Based on the effective field theory (EFT) of nonsingular cosmologies, we build a stable model, without
the ghost and gradient instabilities, of bounce-inflation (inflation is preceded by a cosmological bounce).
We perform a full simulation for the evolution of scalar perturbation, and find that the perturbation
spectrum has a large-scale suppression (as expected), which is consistent with the power deficit of the
cosmic microwave background (CMB) TT-spectrum at low multipoles, but unexpectedly, it also shows
itself one marked lower valley. The depth of valley is relevant with the physics around the bounce scale,
which is model-dependent.

DOI: 10.1103/PhysRevD.97.103535

I. INTRODUCTION

Inflation [1–4] is the current paradigm of early universe.
It predicts nearly scale-invariant scalar perturbation, which
is consistent with the cosmic microwave background
(CMB) observations [5,6], as well as the gravitational
waves (GWs). However, it is not the final story of the
early universe. As pointed out by Borde, Vilenkin and Guth
[7,8], inflation is past-incomplete, and “inflationary models
require physics other than inflation to describe the past
boundary of the inflating region of spacetime.” [8].
This past-incompletion (singularity) of inflation has

inspired radical alternatives to inflation, e.g., [9–12].
However, how to make inflation happen in a past-complete
scenario is also a noteworthy issue. In certain sense, this
actually requires that the pre-inflationary phase should
be past-complete. One possibility is that it is slow con-
tracting, so that the infinite past is complete Minkowski
spacetime. In such a scenario, a nonsingular bounce
preceding inflation must occur (so-called the bounce-
inflation scenario) [13].
Recently, the Planck collaboration [14,15] has observed

the power deficit of CMB TT-spectrum at large scale. This
might be a hint of the pre-inflationary physics, which
happens around ∼60 efolds, see, e.g., [16]. The idea of
bounce-inflation accounted for not only the power deficit
on large angular scales [13,17,18], but also a large dipole
power asymmetry [17,19] in the CMB fluctuation. Thus we
conjectured that the physics hinted by the CMB anomalies
might be relevant with the pre-inflationary bounce, see
also [20–27].

In physical time t, the equation of motion of scalar
perturbation ζ in momentum space is

ζ̈k þ
�
3H þ

_Qs

Qs

�
_ζk þ c2s

k2

a2
ζk ¼ 0; ð1Þ

where H ¼ _a=a, a dot denotes d=dt, a is the scale factor, k
is the comoving wave number, cs is the sound speed andQs
is a variable with the dimension of mass squared that
depends on the behavior of scalar perturbation. Generally,
Qs=M2

p ∼ ϵcont ¼ const ≫ 1 for the contraction, while
Qs=M2

p ∼ ϵinf < 1 for the inflation, where ϵ ¼ − _H=H2.
Thus Qs inevitably shows itself a jumping around the
nonsingular bounce, even if this phase lasts shortly enough.
Previous studies neglected the effect of Qs on the pertur-
bation spectrum, since this effect is ambiguous without a
fully stable (without the ghost and gradient instabilities)
nonsingular bounce. Since recently, with the effective field
theory (EFT) of nonsingular cosmologies [28–30], we have
been able to stably manipulate the bounce [31,32], see also
[33,34]. This impels us to reconsider the relevant issue.
In this paper, inspired by [28,29,31,32], we build a fully

stable model of bounce-inflation, in which the universe is in
the ekpyrotic contraction initially. By numerically solving
Eq. (1), we find that the pre-inflationary bounce not only
brings the power deficit of the CMB TT-spectrum at low
multipoles (as expected in [13,17]), but unexpectedly, also
provides an explanation to the dip at multipole l ∼ 20
hinted by Planck [6].

II. THE LAGRANGIAN

Recently, it was found that the nonsingular cosmological
models usually suffer from the ghost or gradient instabil-
ities (c2s < 0) [35,36], see also [37,38]. Based on the EFTof
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nonsingular cosmologies [28–30], this no-go result has
been clearly illustrated (see [39] for recent discussions on
the choice of gauge). The cubic Galileon interaction ∼□ϕ
in Horndeski theory [40–42] only moves the period of
c2s < 0 to the outside of bounce phase, but cannot dispel it
completely [43,44]. It was found first in [28,29] that the
operator Rð3Þδg00 in EFT could play significant role in
curing the gradient instability of scalar perturbation.
Recently, we have built fully stable cosmological bounce
models in Ref. [31] by applying the covariant LRð3Þδg00 .
We follow Ref. [31], and after defining ϕμ ¼ ∇μϕ,

ϕμ ¼ ∇μϕ, ϕμν ¼ ∇ν∇μϕ, X ¼ ϕμϕ
μ and □ϕ ¼ ϕμ

μ, write
the effective Lagrangian of nonsingular bounce-inflation as
(ϕ is set dimensionless)

L ∼
M2

p

2
R −

M2
p

2
X − VðϕÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ContractionþInflation

þ P̃ðϕ; XÞ|fflfflfflffl{zfflfflfflffl}
ðGhost freeÞBounce

þ Lδg00Rð3Þ|fflfflffl{zfflfflffl}
Removing c2s<0

þ LδKδg00 ; ð2Þ

where

Lδg00Rð3Þ ¼ f1ðϕÞ
2

δg00Rð3Þ

¼ f
2
R−

X
2

Z
fϕϕd lnX −

�
fϕ þ

Z
fϕ
2
d lnX

�
□ϕ

þ f
2X

½ϕμνϕ
μν − ð□ϕÞ2�

−
f − 2XfX

X2
½ϕμϕμρϕ

ρνϕν − ð□ϕÞϕμϕμνϕ
ν�; ð3Þ

LδKδg00 ¼
g1ðϕÞ
2

δKδg00

¼ g
2

1ffiffiffiffiffiffiffi
−X

p
�
ϕμϕμνϕ

ν

X
−□ϕ

�
−
3

2
g · h; ð4Þ

with Rð3Þ being the 3-dimensional Ricci scalar on the
spacelike hypersurface, Rð3Þδg00 and δKδg00 being the EFT
operators. Though the covariant expression of Lδg00Rð3Þ has
the higher order of the second order derivative of ϕ, it is
Ostrogradski ghost-free [45,46]. In fact, it is straightfor-
ward to check that the resulting covariant action S ¼R
d4x

ffiffiffiffiffiffi−gp
L belongs to the class Ia degenerate higher order

scalar-tensor (DHOST) theories [47], see Appendix A for
details. We briefly review the EFT of nonsingular cosmol-
ogies in Appendix B, see (B3) for the definition of δg00

and δK.
In (3) and (4), f1, g1 and h are (arbitrary) functions of ϕ,

thus are also time dependent since ϕ is a function of t. In the
derivation above, the time dependences of f, g and h should
satisfy

f½ϕðtÞ; XðtÞ�≡ f1ðϕðtÞÞ
�
1þ X

f2ðϕðtÞÞ
�
;

g½ϕðtÞ; XðtÞ�≡ g1ðϕðtÞÞ
�
1þ X

f2ðϕðtÞÞ
�

ð5Þ

and

hðϕðtÞÞ≡HðtÞ; ð6Þ

where f2 is also a function of ϕ and its time dependence
should satisfy f2 ≡ X

δg00−1 ¼ _ϕ2ðtÞ, so that f, g and (h −H)

vanish at background level (see Fig. 9 in Appendix C for
the ϕ-dependences of f1, g1, f2 and h). Hence, Lδg00Rð3Þ and
LδKδg00 have no contribution to the background equations of
motion, like their EFT forms. Therefore, we can construct
background evolution without taking account of Lδg00Rð3Þ

and LδKδg00 , as we will do in Sec. III A.
One can also directly work with the covariant expres-

sions (3) and (4) while disregarding conditions (5) and (6).
In such a case, the construction of background could be
more complicate since g and h do appear in the background
equations. However, because f, g and h are undetermined
functions, one can assume that jgj ≪ M2

pjHj, j_gj ≪ j _HjM2
p

and jH − hj ≪ jHj, i.e., LδKδg00 has no contribution at
background level, for simplicity. The particular solutions of
f, g and h can be obtained once the background evolution is
determined.

III. A STABLE MODEL OF
BOUNCE-INFLATION

A. Background

A sketch of the bounce-inflation scenario is plotted in
Fig. 1. We will show how to build its stable model with the
Lagrangian (2).

FIG. 1. A sketch of the bounce-inflation scenario.
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As a specific model, we set

P̃ðϕ; XÞ ¼ α0
ð1þ ðϕ=λ1Þ2Þ2

M2
pX=2þ

β0
ð1þ ðϕ=λ1Þ2Þ2

X2=4;

ð7Þ

VðϕÞ ¼ −
V0

2
e
ffiffi
2
q

p
ϕ
�
1 − tanh

�
ϕ

λ2

��

þ Λ
2

�
1 −

�
ϕ

λ3

�
2
�

2
�
1þ tanh

�
ϕ

λ2

��
; ð8Þ

with the positive constants λ1;2;3 and q; α0; β0 being
dimensionless. We have P̃ðϕ; XÞ ≠ 0 only around ϕ ≃ 0

[48–50], while P̃ðϕ; XÞ ¼ 0 for jϕj ≫ λ1. Here, the second
term in P̃ðϕ; XÞ is required for avoiding ghost instability, as
will be seen in the next subsection. In addition, as will be
shown, the parameters α0 and β0 together with λ1 are
crucial for setting the duration of the bounce phase.
The first and the second terms in VðϕÞ set the effective

potential of the field ϕ in the contracting phase and the
inflation phase, respectively. The value of λ2 sets the scale
of the intermediate phase, namely, the bouncing phase, in ϕ
space. The values of q and V0 decide the evolutions of the
background and ϕ in the contracting phase, as will be seen.
The parameters Λ and λ3 are responsible for the expansion
rate of inflation.
Thus we have

3H2M2
p ¼

�
1 −

α0
ð1þ ðϕ=λ1Þ2Þ2

�
M2

p
_ϕ2=2

þ 3β0
ð1þ ðϕ=λ1Þ2Þ2

_ϕ4=4þ VðϕÞ; ð9Þ

_HM2
p ¼ −

�
1 −

α0
ð1þ ðϕ=λ1Þ2Þ2

�
M2

p
_ϕ2=2

−
β0

ð1þ ðϕ=λ1Þ2Þ2
_ϕ4=2: ð10Þ

In infinite past, the universe is almost Minkowski,
which will experience the ekpyrotic contraction. In the
ekpyrotic phase (ϕ ≪ −λ1 and −λ2), we have P̃ ¼ 0 and

Vekpy¼−V0e
ffiffi
2
q

p
ϕ (q≪ 1). Thus we could write Eqs. (9)

and (10) as

3H2 ¼ _ϕ2=2 −
V0

M2
p
e
ffiffi
2
q

p
ϕ; _H ¼ − _ϕ2=2: ð11Þ

By solving (11), we have

a ∼ ð−tÞ1=ϵ; _ϕ ¼
ffiffiffi
2

ϵ

r
ð−tÞ−1; ð12Þ

and

ϕðtÞ ¼
ffiffiffi
2

ϵ

r
ln

� ffiffiffiffiffiffiffiffiffiffi
ϵ − 3

p

ϵ
ffiffiffiffiffiffi
V0

p
=Mp

ð−tÞ−1
�
; ð13Þ

where ϵ ¼ − _H=H2 ¼ 1=q ≫ 1, which suggests H ¼
−ϵ−1ð−tÞ−1.
When ϕ ≃ λ1, we could have

_H ≃
�
α0
4
−
β0 _ϕ

2

4M2
p
− 1

�
_ϕ2=2 > 0; ð14Þ

the nonsingular bounce will occur. Especially, around the
bounce point, where jϕj ≪ λ1 and V can be negligible with

appropriate V0 and Λ, we have _H ≈ ð1−α0Þ2
9β0

, _ϕ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 2ð1−α0Þ

3β0

q
and ϕ̈ ≈ dV=dϕ

1−α0
. Thus α0 and β0 are crucial for setting the

duration of bouncing phase. The smaller is _H, the longer is
this duration. Therefore, we should set larger ð1 − α0Þ and
even much larger β0.
While after ϕ ≫ λ1; λ2, the field ϕ will be canonical

(P̃ ¼ 0) again. We have

3H2 ¼ _ϕ2=2þ Λ
M2

p

�
1−
�
ϕ

λ3

�
2
�

2

; _H ¼ − _ϕ2=2: ð15Þ

Thus the slow-roll inflation will occur. Actually, after the
nonsingular bounce, the Lagrangian (2) will reduce to
L ∼M2

pR=2 −M2
pX=2 − V inf with V inf being the potential

of slow-roll inflation.
We plot the background evolution in Fig. 2 with

α0 ¼ 20, β0¼5×109, λ1 ¼ 0.224, λ2 ¼ 0.0667, λ3 ¼ 12,
V0 ¼ 5 × 10−9M4

p, q ¼ 0.1, Λ ¼ 2.5 × 10−9M4
p. The ini-

tial values are set by (12) and (13).

B. Simulation for the scalar perturbation spectrum

In unitary gauge δϕ ¼ 0, the quadratic action of scalar
perturbation ζ for (2) is (see Appendix B and also our [28])

Sð2Þζ ¼
Z

a3Qs

�
_ζ2 − c2s

ð∂ζÞ2
a2

�
d4x; ð16Þ

in which

Qs ¼
2 _ϕ4P̃XX −M2

p
_H

γ2
þ 3

�
g1

2γMp

�
2

; ð17Þ

c2sQs ¼
_c3
a
−M2

p; c3 ¼
aM2

p

γ

�
1þ 2f1

M2
p

�
; ð18Þ

with γ ¼ H þ g1
2M2

p
.
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The conditions Qs > 0 and c2s > 0 are required to avoid
the ghost and gradient instabilities, respectively. Generally,
Qs > 0 can be obtained by applying P̃ðϕ; XÞ. However,
around the bounce point, H ≃ 0,

c2s ∼ −_γ
�
1þ 2f1

M2
p

�
þ 2_f1γ

M2
P
− γ2: ð19Þ

Thus, around the bounce point, we will have c2s ∼
−_γ − γ2 < 0 if f1 ≡ 0, and c2s > 0 only if 2f1 < −M2

p,
as has been clarified in Refs. [28–30]. Therefore, the
gradient instability (c2s < 0) could be cured by Lδg00Rð3Þ

with a proper function f1ðϕÞ. There could be infinite many
different f1ðϕÞ that are able to guarantee c2s > 0. From
Eq. (18), we can find the solution of f1ðϕÞ for a given
(specific) c2s (see also [30]), i.e.,

f1ðϕÞ ¼
γ

2a

Z
aðQsc2s þM2

pÞdt −
M2

p

2
: ð20Þ

For simplicity, we will set c2s ≡ 1 in the following.
In conformal time η ¼ R dt=a, the equation of motion of

ζ is

u00 þ
�
c2sk2 −

z00s
zs

�
u ¼ 0; ð21Þ

where u ¼ zsζ and zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2a2Qs

p
. In infinite past, the

universe is almost Minkowski, and will come through the
ekpyrotic phase. The perturbation modes have the wave-
length λ ≃ 1=k ≪

ffiffiffiffiffiffiffiffiffiffiffi
zs=z00s

p
and c2s ¼ 1. Thus the initial state

of the perturbation is

u ≃
1ffiffiffiffiffi
2k

p e−ikη: ð22Þ

The perturbation modes will pass through the ekpyrotic
phase, the bounce phase and the inflation phase, sequen-
tially. The resulting spectrum Pζ of ζ (at −kη ≪ 1) is

Pζ ¼
k3

2π2
jζj2: ð23Þ

In physical time, the equation of motion of ζ is (1). In the

ekpyrotic phase, zs ∼ a ∼ ð−ηÞ
1

ϵekpy−1, since Qs=M2
p ∼

ϵekpy ¼ const ≫ 1. While in the inflationary phase,
ϵinf < 1. This suggests that Qs (or zs ∼ a

ffiffiffiffiffiffi
Qs

p
) will show

(a) (b)

(c) (d)

FIG. 2. The background evolution of our model with α0 ¼ 20, β0 ¼ 5 × 109, λ1 ¼ 0.224, λ2 ¼ 0.0667, λ3 ¼ 12, V0 ¼ 5 × 10−9M4
p,

q ¼ 0.1, Λ ¼ 2.5 × 10−9M4
p.
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itself a jump around the nonsingular bounce, which will
inevitably affect Pζ. Whether the jump of Qs is gentle or
not is model-dependent. We will simulate its effect on Pζ

by numerically solving Eq. (1), with c2s ≡ 1 set by Eq. (20).
It should be mentioned that if g1 ¼ 0 (LδKδg00 is absent),

we will have γ ¼ H ¼ 0 at the bounce point andQs ∼ 1=γ2

is divergent, see (18), so that Eq. (1) is singular. Here, in
order to avoid it, we apply g1ðϕÞ, see also [30].

For simplicity, we set

Qs ¼ AQ

�
B − tanh

�
t
t�

��
: ð24Þ

Such a steplike Qs requires a particular g1ðϕÞ, i.e., g1ðϕÞ in
Lagrangian (2) should satisfy the condition

g1ðϕðtÞÞ ¼ −
2HM2

pQs − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3H2M6

pQs þM4
pð3M2

p −QsÞð _HM2
p − 2 _ϕ4P̃XXÞ

q
Qs − 3M2

p
; ð25Þ

which can be derived from (18). We plot the spectrum
Pζ of scalar perturbation in Fig. 3 for the background in

Fig. 2 with different values of B and t�, where Pinf
ζ ¼

H2
inf

8Qinf
s π2M2

p
ð k
Hinf

Þns−1 is that of the inflation, withQinf
s being the

value ofQs during inflation, ns − 1 ≃ 0 (but is slightly red).
The evolutions of Qs, g1 and jζj with respect to t,
respectively, are plotted in Figs. 7 and 8 of Appendix C.
As expected in [13], Pζ shows itself a large-scale cutoff,

but is flat (with a damped oscillation) at small scale.
However, due to the steplike evolution of Qs, the peaks
and valleys of the oscillations are obviously pulled lower.
Actually, after the nonsingular bounce, with Eq. (1), we
shortly have the effective Hubble parameter

Heff
inf ¼ Hinf þ

_Qs

3Qs
< Hinf ; ð26Þ

since _Qs < 0, see Figs. 7(b) and 8(b) in Appendix C. Thus
Pζ is pulled lower at the corresponding scale, since

Pζ ∼ ðHeff
infÞ2. The change rate of Qs is relevant to the

physics of nonsingular bounce, as showed in Eq. (24), so
the depth of valley pulled lower is actually model-
dependent.
In Sec. IV B, we will show that such a marked lower

valley at corresponding scale helps to explain the dip
around l ≃ 20 hinted by Planck [6].

IV. MORE ON THE SPECTRUM

A. Analytical estimation

Wewill attempt to analytically estimate Pζ. The equation
of motion for ζ is (21). In [26], the spectrum of primordial
GWs has been calculated. Here, if the effect of Qs is
neglected, the calculation will be similar.
The bounce phase is the evolution with _H > 0. We define

that it begins and ends at ηB− and ηBþ, respectively, at which
_H ¼ 0. We set that H ¼ 0 at ηB, which corresponds to the
bounce point. Generally, ΔηB ¼ ηBþ − ηB− ≲ 1=HBþ.
In our model (Sec. III), the contracting phase (η < ηB−)

is ekpyroticlike, a is almost constant for ϵekpy ≫ 1.
Considering the continuities of a and H at ηB−, we have

aðηÞ ¼ aB−

�
x

ðϵekpy − 1Þ−1H−1
B−

� 1
ϵekpy−1; ð27Þ

see [26] for the details, whereHB− is the comoving Hubble
parameter at ηB− and x ¼ η − ηB− þ ðϵekpy − 1Þ−1H−1

B−. We
have z00s=zs ¼ a00=a, since Qs is constant. Thus the solution
of (21) is

uk ¼
ffiffiffiffiffiffiffiffi
πjxjp
2

c1;1H
ð1Þ
ν1 ð−kxÞ; ð28Þ

where ν1 ¼ 1=2 for ϵekpy ≫ 1, and the initial condition (22)
has been used.
In the nonsingular bounce phase (ηB− < η < ηBþ), H

should cross 0. We parametrize it as H ¼ αðt − tBÞ [51]
with αM2

P ≪ 1. We have

0.0

0.001 0.010

0.2

0.4

0.6

0.8

1.0

1.2

1.4

–6 –5

FIG. 3. Pζ=Pinf
ζ with background set by Fig. 2, where the

{brown solid, magenta dotdashed, orange dashed, blue dotted,
green long dashed} curves correspond to AQ ¼ f3; 3; 3; 3; 3g,
B¼f1.3;1.8;2;3;2g, t� ¼ f4; 4; 2.5; 4; 1.5g × 104, respectively.
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a ≃ aBe
1
2
αðt−tBÞ2 ≃ aB

�
1þ α

2
ðt − tBÞ2

�
; ð29Þ

where a ¼ aB at the bouncing point t ¼ tB. The conti-
nuities of a and H at ηB− and ηBþ suggest HBþ ¼
HB− þ αa2BðηBþ − ηB−Þ. In our models, jHB−j≲HBþ=4
(see Figs. 7 and 8 in Appendix C), so that we approximately
have

HBþ ≃ αa2BΔηB: ð30Þ

Thus in this phase Eq. (21) is

u00k þ ðk2 − αa2BÞuk ¼ 0; ð31Þ

which has a solution

ukðηÞ ¼ c2;1elðη−ηBÞ þ c2;2e−lðη−ηBÞ; ð32Þ

with l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αa2B − k2

p
. Here, we have neglected the effect of

Qs. Otherwise, Eq. (21) is difficult to be solved.
In inflationary phase (η ≥ ηBþ), Qinf

s is almost constant.
Considering the continuities of a and H at ηBþ, we have

ainfðηÞ ¼ aBþð−yHBþÞ
1

ϵinf−1; ð33Þ

where y ¼ η − ηBþ þ 1=HBþ and HBþ ¼ HBþ=a, Hinf ≲
HBþ. The solution of (21) is

uk ¼
ffiffiffiffiffiffiffiffi
πjyjp
2

½c3;1Hð1Þ
ν2 ð−kyÞ þ c3;2H

ð2Þ
ν2 ð−kyÞ�; ð34Þ

where ν2 ¼ ϵinf−3
2ðϵinf−1Þ.

The power spectrum is

Pζðk;HBþ;HB−;ΔηÞ ≈
H2

inf

8π2Qinf
s M2

p
jc31 − c32j2

¼ Pinf
ζ jc31 − c32j2; ð35Þ

where Pinf
ζ ¼ H2

inf

8π2Qinf
s M2

p
is that of the slow-roll inflation.

Requiring the continuities of ζ and _ζ, we could write the
coefficients as

�
c3;1
c3;2

�
¼ Mð3;2Þ ×Mð2;1Þ ×

�
c1;1
c1;2

�
; ð36Þ

see Appendix E for the matrices Mð2;1Þ and Mð3;2Þ.
The effects of bounce has been encoded in Mð3;2Þ and

Mð2;1Þ (or jc3;1 − c3;2j2). We approximately have

jc3;1 − c3;2j2 ≈ 1−A sin

�
2k
HBþ

�
−A sin

�
2k
HBþ

þ 2kΔηB
�

ð37Þ

for k ≫ HBþ, where

A ¼ HBþ
k

�
1 −

αa2B
2HBþ

ΔηB
�
≃
HBþ
2k

ð38Þ

and (30) is used. This result suggests that on small scale,
i.e., k ≫ HBþ, Pζ is flat with a rapidly damped oscillation
and its maximal oscillating amplitude is around k ≃HBþ.
However, if the bounce phase lasts shortly enough,
ΔηB ≪ 1=HBþ, (37) will be

jc3;1 − c3;2j2 ≈ 1 −
HBþ
k

sin

�
2k
HBþ

�
: ð39Þ

While on large scale, i.e., k ≪ HBþ, Pζ ∼ k2 will have a
strongly blue tilt, since

jc3;1 − c3;2j2 ≈ wðΔηBÞ
�

k
HBþ

�
2

; ð40Þ

where

wðΔηBÞ ¼
��

1 −
l2ΔηB
2HBþ

�
coshðlΔηBÞ

þ l
2

�
1

HBþ
− ΔηB þ l2

4HBþ
Δη2B

�
sinhðlΔηBÞ

�
2

;

ð41Þ

which indicates wðΔηBÞ ≃ 1 for ΔηB ≃ 0.
We plot Pζ for (35) in Fig. 4 for the different values ofΔη

and HB−. We see that for k > HBþ, Pζ ∼ k0 but has a
damped oscillation, while for k < HBþ, Pζ ∼ k2 shows
itself a large-scale cutoff. Thus (35) is consistent with our
simulation result at large and small scales, respectively (see
Fig. 7 in Sec. III).
However, since we have neglected the steplike evolution

ofQs, the pull-lower around k ≃HBþ in Fig. 7(d) cannot be
reflected in (35).

B. Template

To conveniently fit the observational data, a simple
“Template” capturing the essential shape of Pζ is indis-
pensable. Based on the simulation in Sec. III and the
analytical estimate in Sec. IVA, we write the power
spectrum as

Pζ ¼ Fðk;HBþ; Ad;ωdÞ · Pinf
ζ ; ð42Þ
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where Pinf
ζ ¼ Ainfð kk�Þninf−1 is the spectrum predicted by

slow-roll inflation, Ainf is the amplitude at the pivot scale
k�, ninf is its tilt and

Fðk;HBþ; Ad;ωdÞ

¼
�
1þ e−ðk=HBþÞ2

�
k

HBþ

�
2

þ e−ðk=HBþÞ2

−
sinð2k=HBþÞ

k=HBþ

	
·
h
1 − Ad · e

−ωdð k
HBþ−πÞ

2
i
: ð43Þ

Here, the parameter set ðHBþ; Ad;ωdÞ reflects the effect of
pre-inflationary bounce on the spectrum. Around k≳HBþ,
we have

Fðk;HBþ; Ad;ωdÞ ≃ 1 − Ade−Oð1Þωd ; ð44Þ

so Ad and ωd (related with the parameter Δη < 1=HBþ in
Sec. IVA) depict the width and depth of valley around
k≳HBþ, respectively. Here, Ad is related with the change
rate of Qs (which was neglected in Sec. IVA). With
Eq. (26), we have approximately

Ad ≃
2j _Qsjmax

3HinfQs
ð45Þ

noting _Qs < 0. In (43), we have

Fðk;HBþ; Ad;ωdÞ ∼ 1 −
sinð2k=HBþÞ

k=HBþ
ð46Þ

for k ≫ HBþ, which equals to (39), while for k ≪ HBþ, we
approximately have Fðk;HBþ; Ad;ωdÞ ≃ ð k

HBþ
Þ2, which is

consistent with (40). Pζ for the “Template” (43) is plotted
in Fig. 5. We see that (43) has effectively captured the
essential shape of Pζ showed in Fig. 3.

C. Data fitting

We modify the CAMB and COSMOMC code package
and perform a global fitting with Planck2015 data. The
parameter set of the lensed-ΛCDM model is fΩbh2;Ωch2;
100θMC; τ; lnð1010AinfÞ; ninfg, with Ωbh2 the baryon den-
sity,Ωch2 the cold dark matter density, θMC the angular size
of the sound horizon at decoupling and τ the reionization
optical depth. We also include the parameter set fHBþ;
Ad;ωdg (the so-called 3-parameters of bounce) defined in
(43), which captures the physics of pre-inflationary bounce,

0.1 1 10 100

0.5

0.0

1.0

1.5

FIG. 5. The black dotted curve is the spectrum PT=Pinf
T of the

primordial GWs in bounce-inflation scenario, see [26], while the
{green dot-dashed, red dashed, brown solid} curves are those of
the primordial scalar perturbation based on the results of
“Template” (43) with Ad ¼ f0.25; 0.8; 0.8g, d ¼ fπ; π; πg and
ωd ¼ f0.25; 0.25; 0.1g, which are consistent with those in Fig. 3.
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FIG. 4. The power spectrum with different Δη and different HB−=HBþ.
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as has been argued. We set the pivot scale k� ¼
0.05 Mpc−1, roughly in the middle of the logarithmic
range of scales probed by Planck.
With (43), we plot the CMB TT-spectrum DTT

l ≡
lðlþ 1ÞCTT

l =2π and ΔDTT
l in Fig. 6 with the best-fit

parameter set fΩbh2;Ωch2; 100θMC; τ; lnð1010AinfÞ; ninf ;
HBþ; Ad;ωdg. Since WMAP and Planck, some models
aimed at explaining the anomalies of CMB at large scale
(but not solving the initial singularity problem) were
proposed [52–57]. We see that the spectrum (43) of
scalar perturbation predicted by our model could be
consistent with not only the power deficit of the CMB
TT-spectrum at low multipoles, but also the dip at
l ∼ 20. The best-fit values of the parameters in our
bounce-inflation model are displayed in Table I. More
details associate with other interesting numerical results
will be presented an upcoming work [58].

V. CONCLUSION

In bounce-inflation scenario, the inflation is singularity-
free (past-complete). However, its pathology-free model
has been still lacking. Here, we showed such a model. The
nonsingular bounce is implemented by applying P̃ðϕ; XÞ,
see (7), which is ghost-free, while c2s < 0 is dispelled by
Lδg00Rð3Þ [31].
We perform a full simulation for the evolution of scalar

perturbation, and find that the spectrum Pζ has a suppres-
sion at large scale (k ≪ HBþ) but is flat (with a damped
oscillation) at small scale (k ≫ HBþ), which confirms the
earlier results showed in [13,17] and is consistent with the
power deficit of the CMB TT-spectrum at low multipoles
l≲ 30; but unexpectedly, Pζ also shows itself one marked
lower valley at k≳HBþ, though the depth is model-
dependent. We show that this lower valley actually provides
an explanation to the dip at l ∼ 20 hinted by Planck [6].
Based on the simulation and the analytical estimation for
the perturbation spectrum, we also offer a “Template” of Pζ

(effectively capturing the physics of bounce) to fit data.
The equation of motion of GWs mode γij for (2) is

̈γk þ
�
3H þ

_QT

QT

�
_γk þ c2T

k2

a2
γk ¼ 0; ð47Þ

which is unaffected by the operators Rð3Þδg00 and δKδg00,
whereQT ¼ M2

p. We plot the primordial GWs spectrum PT

in Fig. 5 (the black dot curve) with Pinf
T ¼ 2H2

inf
π2M2

p
, see also

[26]. It should be mentioned that if QT ≠ M2
p around the

nonsingular bounce (the gravity is modified completely),
PT will be different. It is also possible that the

(a) (b)

FIG. 6. The green points show the Planck2015 data with 1σ errors. The best-fit values of parameters are lnð1010AinfÞ ¼ 3.091,
ninf ¼ 0.966, lnðHBþÞ ¼ −7.51, Ad ¼ 0.87, ωd ¼ 5.47.

TABLE I. The best-fit values of parameters in bounce-inflation
model.

Parameters Inflation Bounce-inflation

Ωbh2 0.02222 0.02213
Ωch2 0.1198 0.1199
H0 67.31 67.05
τ 0.078 0.079
lnð1010AsÞ 3.089 3.091
ns 0.9655 0.9662
lnðhk MpcÞ � � � −7.51
Ad � � � 0.87
ωd � � � 5.47
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corresponding gravity has a large parity violation [59],
which might be imprinted in CMB.
Our work highlight the conjecture again that the physics

hinted by the large-scale anomalies of CMB is relevant to
the pre-inflationary bounce. The nonsingular cosmological
bounce also has been implemented in some models of
modified gravity [60–73], see also [74,75] for reviews.
Confronting the corresponding models with the CMB data
will be interesting.
Additionally, in the scenario considered here, it is

actually not required that the contracting phase is ekpyrotic
scenario. In our scenario, the large-scale cutoff in pertur-
bation spectrum is induced by the contracting phase,
while the valley in perturbation spectrum is induced by
the step-like evolution of Qs=M2

p around the bounce
phase. Consider other than the ekpyrotic bounce, we have
ϵcont ≃Oð1Þ in the contracting phase, so Qs=M2

p ∼ ϵcont ¼
const ≃ 1 for the contraction, while Qs=M2

p ∼ ϵinf ≪ 1 for
the inflation. Thus our results on the perturbation spectrum
would be also applicable for the corresponding scenario,
though the details might be slightly different. In such a
case, the model might be simpler than that with the
ekpyrotic scenario, which is worth further studying.
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APPENDIX A: CORRESPONDENCE WITH
A SUBCLASS OF DHOST THEORIES

According to the classification of degenerate theories in
[47], the covariant action S ¼ R d4x ffiffiffiffiffiffi−gp

L based on (2)
belongs to class Ia of DHOST theories. In order to clearly
demonstrate this point, we will use the notation of [47] but
will rewrite the fðϕ; XÞ in [47] into Fðϕ; XÞ in this
Appendix. From (2) to (4), we find that our action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L ¼ Sg þ Sϕ þ Sother; ðA1Þ

where

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Fðϕ; XÞR; ðA2Þ

Sother ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
M2

P

2
X−VðϕÞþ P̃ðϕ;XÞ

−
X
2

Z
fϕϕd lnX−

�
fϕþ

Z
fϕ
2
d lnX

�
□ϕ

þgðϕ;XÞ
2

1ffiffiffiffiffiffiffi
−X

p
�
ϕμϕμνϕ

ν

X
−□ϕ

�
−
3

2
gðϕ;XÞhðϕÞ

�
;

ðA3Þ

Sϕ ¼
X5
I¼1

Z
d4x

ffiffiffiffiffiffi
−g

p
αIL

ϕ
I ; ðA4Þ

Fðϕ; XÞ ¼ M2
p þ f

2
; ðA5Þ

α1 ¼ −α2 ¼
f
2X

; α3 ¼ −α4 ¼
f − 2XfX

X2
; α5 ¼ 0;

ðA6Þ

with

Lϕ
1 ¼ ϕμνϕ

μν; Lϕ
2 ¼ ð□ϕÞ2; Lϕ

3 ¼ ð□ϕÞϕμϕμνϕ
ν;

Lϕ
4 ¼ ϕμϕμρϕ

ρνϕν; Lϕ
5 ¼ ðϕμϕμνϕ

νÞ2: ðA7Þ

It is straightforward to check that α1 to α5 and Fðϕ; XÞ
satisfy the degenerate conditions given by Eqs. (3.17) to
(3.19) in [47]. Thus, our action belongs to the class Ia
DHOST theories and does not contain any extra degree of
freedom.

APPENDIX B: THE EFT OF
NONSINGULAR COSMOLOGIES

In this Appendix, we briefly review the EFT of non-
singular cosmologies, see [28] for the details.
With the ADM 3þ 1 decomposition, we have

gμν ¼
�
NkNk − N2 Nj

Ni hij

�
;

gμν ¼
 
−N−2 Nj

N2

Ni

N2 hij − NiNj

N2

!
; ðB1Þ

and
ffiffiffiffiffiffi−gp ¼ N

ffiffiffi
h

p
, where Ni ¼ hijNj. The induced metric

on 3-dimensional hypersurface is hμν ¼ gμν þ nμnν,
where nμ ¼ n0ðdt=dxμÞ ¼ ð−N; 0; 0; 0Þ, nν ¼ gμνnμ ¼
ð1=N;−Ni=NÞ is orthogonal to the spacelike hypersurface,
and nμnμ¼−1. Thus

hμν ¼
�
NkNk Nj

Ni hij

�
; hμν ¼

�
0 0

0 hij

�
: ðB2Þ
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The EFT is [28]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

p

2
fðtÞR − ΛðtÞ − cðtÞg00

þM4
2ðtÞ
2

ðδg00Þ2 −m3
3ðtÞ
2

δKδg00

−m2
4ðtÞðδK2 − δKμνδKμνÞ þ m̃2

4ðtÞ
2

Rð3Þδg00

− m̄2
4ðtÞδK2 þ m̄5ðtÞ

2
Rð3ÞδK þ λ̄ðtÞ

2
ðRð3ÞÞ2 þ � � �

−
λ̃ðtÞ
M2

p
∇iRð3Þ∇iRð3Þ þ � � �

�
; ðB3Þ

where δg00 ¼ g00 þ 1, Rð3Þ is the 3-dimensional Ricci
scalar, Kμν ¼ hσμ∇σnν is the extrinsic curvature,
δKμν ¼ Kμν − hμνH.
Here, we focus on building a stable model of

bounce inflation. We only consider the coefficients set
ðf; c;Λ;M2; m3; m̃4Þ, and set other coefficients in (B3)
equal to 0. We always could set f ¼ 1, which suggests
cðtÞ ¼ −M2

p
_H and cðtÞ þ ΛðtÞ ¼ 3M2

pH2.

As pointed out in Ref. [33], the Rð3ÞδK operator in EFT
could play similar role as Rð3Þδg00, which we will consider
elsewhere. Mapping (2) into the EFT (B3), we have
M4

2ðtÞ ¼ X2P̃XX, m3
3ðtÞ ¼ −g1ðϕÞ and m̃2

4 ¼ f1ðϕÞ. Only
with ðM2; m3; m̃4Þ ≠ 0, the quadratic action of scalar
perturbation ζ is (see, e.g., our [28])

Sð2Þζ ¼
Z

d4xa3Qs

�
_ζ2 − c2s

ð∂ζÞ2
a2

�
; ðB4Þ

where

Qs ¼
2M4

2

γ2
þ 3m6

3

4M2
pγ

2
−

_HM2
p

γ2
; ðB5Þ

c2sQs ¼
_c3
a
−M2

p ðB6Þ

c3 ¼
aM2

p

γ

�
1þ 2m̃2

4

M2
p

�
; ðB7Þ

where γ ¼ H −m3
3=ð2M2

pÞ. Only ifQs > 0 and c2s > 0, the
nonsingular cosmological model is healthy. In models with

(a)

(c) (d)

(b)

FIG. 7. We set AQ ¼ 3, B ¼ 2, t� ¼ 4 × 104 and the background is given by Fig. 2.
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the operator ðδg00Þ2, Qs > 0 always can be obtained, since
ðδg00Þ2 contributes _ζ2. While c2s > 0 requires _c3 > aM2

p,
which is

c3jtf − c3jti > M2
p

Z
tf

ti

adt: ðB8Þ

The inequality (B8) suggests that c3 must cross 0
(m̃2

4 ¼ −M2
p=2 or γ is divergent), since the integral

R
adt

is infinite. Thus if the Rð3Þδg00 operator is absent, c2s > 0

throughout is impossible. We can set c2s ≃ 1 by

m2
4 ¼

γ

2a

Z
aðQsc2s þM2

pÞdt −
M2

p

2
: ðB9Þ

APPENDIX C: MORE ON THE SIMULATION

We plot the evolutions ofQs, g1, jζj with respect to t, and
also PζðkÞ for the background in Fig. 2, with different
values of B and t� in this Appendix. We see how jζj evolves
with a in different phases. Theoretically, ζ ∼ 1=a for the
perturbation modes with k ≫

ffiffiffiffiffiffiffiffiffiffiffi
z00s=zs

p
, while ζ ∼ const. for

the perturbation modes with k ≪
ffiffiffiffiffiffiffiffiffiffiffi
z00s=zs

p
, which is con-

sistent with our Figs. 7(c) and 8(c).

APPENDIX D: EVOLUTIONS OF f 1, g1, f 2,
AND h WITH RESPECT TO ϕ

We plotted f1, g1, f2, and h with respect to ϕ in Fig. 9.
Here, f1ðϕÞ guarantees c2s ≡ 1 [see, Eq. (20)], while g1ðϕÞ
gives the particular time dependence of Qs given by
Eq. (24) [see, Eq. (25)]. The particular evolutions of f2

0.0
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0.4

0.6

0.8

1.0

–6

(a)

(c) (d)

(b)

FIG. 8. We set AQ ¼ 3, B ¼ 1.6, t� ¼ 3 × 104 and the background is given by Fig. 2.

6

2f

h

20

30 f

FIG. 9. The evolutions of f1, g1, f2, and h with respect to ϕ
while we set c2s ≡ 1, AQ ¼ 3, B ¼ 2 and t� ¼ 4 × 104.

PRIMORDIAL PERTURBATIONS WITH PRE- … PHYS. REV. D 97, 103535 (2018)

103535-11



and h guarantee that Lδg00Rð3Þ and LδKδg00 has no contribu-
tion at background level.

APPENDIX E: THE MATRICES ELEMENTS
OF M(2;1) AND M(3;2)

We define l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αa2B − k2

p
, x1 ¼ 1=jHB−j, x2 ¼ HBþ,

y1;2 ¼ ðηB∓ − ηBÞ, and have

Mð2;1Þ
11 ¼

ffiffiffiffiffiffiffi
πx1

p
4l

½ðlþαa2By1ÞHð1Þ
ν1 ðkx1Þ−kHð1Þ

ν1−1ðkx1Þ�e−ly1 ;
ðE1Þ

Mð2;1Þ
12 ¼

ffiffiffiffiffiffiffi
πx1

p
4l

½ðlþαa2By1ÞHð2Þ
ν1 ðkx1Þ−kHð2Þ

ν1−1ðkx1Þ�e−ly1 ;
ðE2Þ

Mð2;1Þ
21 ¼

ffiffiffiffiffiffiffi
πx1

p
4l

½ðl − αa2By1ÞHð1Þ
ν1 ðkx1Þ − kHð1Þ

ν1−1ðkx1Þ�ely1 ;
ðE3Þ

Mð2;1Þ
22 ¼

ffiffiffiffiffiffiffi
πx1

p
4l

½ðl − αa2By1ÞHð2Þ
ν1 ðkx1Þ − kHð2Þ

ν1−1ðkx1Þ�ely1 ;
ðE4Þ

Mð3;2Þ
11 ¼ i

ffiffiffiffiffiffiffi
πx2

p
2

½ðl− αa2By2ÞHð2Þ
ν2 ðkx2Þ þ kHð2Þ

ν2−1ðkx2Þ�ely2 ;
ðE5Þ

Mð3;2Þ
12 ¼ i

ffiffiffiffiffiffiffi
πx2

p
2

½−ðlþ αa2By2ÞHð2Þ
ν2 ðkx2Þ

þ kHð2Þ
ν2−1ðkx2Þ�e−ly2 ; ðE6Þ

−Mð3;2Þ
21 ¼ i

ffiffiffiffiffiffiffi
πx2

p
2

½ðl−αa2By2ÞHð1Þ
ν2 ðkx2ÞþkHð1Þ

ν2−1ðkx2Þ�ely2 ;
ðE7Þ

−Mð3;2Þ
22 ¼ i

ffiffiffiffiffiffiffi
πx2

p
2

½−ðlþ αa2By2ÞHð1Þ
ν2 ðkx2Þ

þ kHð1Þ
ν2−1ðkx2Þ�e−ly2 : ðE8Þ
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