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We derive new limits on the elastic scattering cross section between baryons and dark matter using
cosmic microwave background data from the Planck satellite and measurements of the Lyman-alpha forest
flux power spectrum from the Sloan Digital Sky Survey. Our analysis addresses generic cross sections of
the form σ ∝ vn, where v is the dark matter–baryon relative velocity, allowing for constraints on the cross
section independent of specific particle physics models. We include high-l polarization data from Planck in
our analysis, improving over previous constraints. We apply a more careful treatment of dark matter
thermal evolution than previously done, allowing us to extend our constraints down to dark matter masses
of ∼MeV. We show in this work that cosmological probes are complementary to current direct detection
and astrophysical searches.
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I. INTRODUCTION

The standard paradigm for dark matter (DM) in contem-
porary cosmology is that it is cold and collisionless,
interacting only gravitationally with standard model par-
ticles.While successful on large scales [1], the data still allow
for a rich variety of nonminimal models [2–8], and the
particle nature of dark matter is still very much unknown. In
particular, tensions between observations and cold dark
matter (CDM)-based simulations on galaxy scales [9,10]
provide motivation to explore new types of DM interactions
that are not accessed by direct searches: the “core-cusp”
[11–14], “missing satellite” [15,16], and “too big to fail”
[17,18] problems at the small-scale indicate that dwarf
galaxies are fewer and less centrally dense than predicted
by ΛCDM simulations. While these problems may not
necessarily require new physics [19–22], they nevertheless
provide motivation to look at cosmologies beyond the CDM
scenario.
In this work, we explore the cosmological effects of dark

matter interacting with baryons via elastic scattering. We
specifically investigate scenarios in which the DM-proton
elastic scattering cross section σ scales effectively as a
power-law of the baryon–dark matter relative velocity
σ ¼ σ0vn, and we provide constraints independent of the
underlying particle model. This type of relation naturally
occurs in a number of differentmodels, andwewill focus our
analysis on several values of n that are particularly well
motivated: n ¼ f−4;−2;−1; 0; 2g, which can for instance
correspond to DM with fractional electric charge (n ¼ −4)
[23], a Yukawa potential (a massive-boson exchange)
(n ¼ −1) [24,25], velocity-independent scattering (n ¼ 0)
[26], and dark matter with electric and magnetic dipole
moments (n ¼ �2) [27].

Thermal coupling between DM and baryons in early
times dampens the growth of fluctuations in the DM fluid
and modifies the baryon relative velocity. The resulting
power suppression on small scales and acoustic peak shift
in the Cosmic Microwave Background (CMB) temper-
ature and polarization power spectra, as well as the
suppression of the matter power spectrum, allow us to
constrain this type of interaction. We use measurements of
the CMB temperature and polarization power spectra by
the Planck satellite (2015 results) and the Lyman-α forest
flux power spectrum measurements by the Sloan Digital
Sky Survey (SDSS) to obtain limits on DM-baryon elastic
scattering. Similar constraints have been considered also
in Refs. [28–30]; specifically velocity-independent scat-
tering has been investigated in Refs. [26,31,32] and
millicharged DM in Refs. [33–40]. Additional constraints
on DM interactions have been derived from spectral
distortions [41,42], galaxy clusters [43–45], gravitational
lensing [46,47], the thermal history of the intergalactic
medium [48,49], 21 cm observations [50], indirect detec-
tion and gamma rays [51–56], and direct detection searches
[57–64].
We extend previous work done in Ref. [30] by applying

our analysis to lower-mass dark matter particles, down to
order ∼MeV, restricting specifically to nonrelativistic inter-
actions with protons, and by including high-l CMB polari-
zation data from the Planck 2015 release. MeV-scale dark
matter has previously been considered in Refs. [65–70].
Our approach is particularly interesting for the n ¼ 0
scenario given its complementarity to current direct detection
searches that generally target higher DM masses due to
kinematic considerations. We will specifically compare to
recent constraints from direct detection experiments
[58,63,64,71,72] to illustrate this. For the n ¼ −4 scenario,
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constraints on millicharged dark matter have been primarily
derived from astrophysical sources and collider experiments
[38,73–75]. Our results are complementary to those.
This paper is organized as follows: we review the

modified Boltzmann equations including DM-baryon scat-
tering in Sec. II and the equations governing DM and
baryon temperature evolution in Sec. III. A more detailed
treatment, as well as the evolution equations under tight-
coupling approximation, can be found in the Appendix.
Our numerical results are presented in Sec. IV, and we
discuss in detail the improvement for the n ¼ −4 scenario
from including CMB polarization anisotropy data in Sec. V.
In Sec. VI, we provide an extrapolation of our MCMC
results applicable to all DM masses ≳1 MeV. In Sec. VII,
we compare our results for velocity- and spin-independent
scattering to limits from direct detection experiments.
Likewise, in Sec. VIII, we compare our results for milli-
charged DM to existing constraints from other sources.

II. BOLTZMANN EQUATIONS

We review the modifications to the dark matter and
baryon Boltzmann equations to account for DM-baryon
scattering presented in Ref. [30]. We work in a modified
synchronous gauge, allowing for a nonzero peculiar veloc-
ity of dark matter V⃗χ when scattering is turned on. For a
given Fourier mode k, the density fluctuations δχ and δb and
velocity divergences θχ and θb of the DM and baryon fluids
obey the following equations,

_δχ ¼ −θχ −
_h
2
; ð1Þ

_δb ¼ −θb −
_h
2
; ð2Þ

_θχ ¼ −
_a
a
θχ þ c2χk2δχ þ Rχðθb − θχÞ; ð3Þ

_θb ¼ −
_a
a
θb þ c2bk

2δb þ Rγðθγ − θbÞ

þ ρχ
ρb

Rχðθχ − θbÞ; ð4Þ

where overdots denote derivatives with respect to con-
formal time, h denotes the metric perturbation, cχ and cb
refer respectively to the DM and baryon sound speeds, Rγ is
the momentum-transfer rate for baryon-photon coupling (as
set by Thompson scattering), and Rχ is that for DM-baryon
coupling.
The momentum-exchange rate Rχ is set by the cross

section σ0 and power-law index n as

Rχ ¼
aρbσ0cn
mχ þmb

�
Tb

mb
þ Tχ

mχ
þ V2

RMS

3

�nþ1
2

FHe; ð5Þ

where TbðχÞ andmbðχÞ are the baryon (DM) temperature and
particle masses and cn is an n-dependent constant tabulated
in Table II in the Appendix. This expression is valid to
leading order for both early times (z > 104), where the
thermal velocity dispersion dominates over the DM bulk
velocity, and at late times where the peculiar velocity
dominates.
Following Ref. [30], we write V2

RMS, the averaged (with
respect to the primordial curvature perturbation) value of
V2
χ as

V2
RMS ≡ hV2

χi ≃
(
10−8 z > 103

10−8
�
ð1þzÞ
103

�
2

z ≤ 103
: ð6Þ

The peculiar velocity was computed directly for z < 105

in Ref. [30] and extended analytically to higher redshifts.
In early times the RMS peculiar velocity is maintained
by photon pressure support of the baryons; after CMB
decoupling, the relative velocity falls as (1þ z) with the
expansion of the Universe. The factor FHe accounts for the
significant fraction of helium in the baryon population and
can encode different dynamics for scattering off helium.
For the case of no scattering between DM and helium this is
simply FHe ¼ 1 − YHe ≈ 0.76.
A derivation of the form of Rχ from DM-baryon drag,

and a detailed treatment of the Boltzmann equations in the
tight coupling regime is given in the Appendix.

III. THERMAL EVOLUTION OF DM

The temperature evolution of the DM and baryon fluids
with DM-proton scattering is given by

_Tχ ¼ −2
_a
a
Tχ þ

2mχ

mχ þmb
RχðTb − TχÞ; ð7Þ

_Tb ¼ −2
_a
a
Tb þ

2μb
me

RγðTγ − TbÞ

þ ρχ
ρb

2μb
mχ þmb

RχðTχ − TbÞ; ð8Þ

where, again, overdots denote derivative with respect to
conformal time. Here μb denotes the mean molecular weight
for the baryons, μb ¼ mHðnH þ 4nHe

Þ=ðnH þ nHe
þ neÞ.

In Ref. [30], the authors assumed that the DM fluid
remains thermally coupled with baryons until late times
since for DM particle masses heavier than the mass of a
proton the corrections due to a temperature difference
between baryons and dark matter are suppressed. We relax
this assumption to extend the validity of our results to lower
DM masses.
Reference [50] explored numerical solutions to Eq. (7)

for different values of n and σ and calculated the effect on
the 21 cm power spectrum. Reference [76] extended this
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calculation to be valid at late times when the peculiar
velocity dominates over the DM-baryon thermal velocity.
Due to the baryon-dark matter interaction, the baryons are
cooled relative to ΛCDM evolution after decoupling from
photons. Numerical solutions to Eq. (7) show that for
n > −4, dark matter decouples from the photon-baryon
fluid at high redshift for reasonable values of σ. Thus, for
n > −4, rather than solving the full temperature evolution
equations, we can apply the simple approximation that the
dark matter remains thermally coupled with the baryon-
photon fluid until the rate of expansion exceeds the rate of
scattering, at which point the DM component suddenly
decouples and evolves adiabatically:

Tχ ¼
(
Tb; Rχ

mχ

mχþmb
> aH

Tdecðadeca Þ2; Rχ
mχ

mχþmb
< aH;

ð9Þ

where the subscript “dec” denotes the time at which dark
matter decouples from the photons and baryons.
For n ¼ −4, the dark matter-baryon coupling strength

increases with time, and numerical solutions to Eq. (7)
show that the dark matter instead recouples to baryons at
late times for sufficiently strong scattering. In this case, a
sudden decoupling approximation is no longer valid. In
fact, since DM and baryons do not thermally couple via this
interaction at early times at all, the initial condition of Tχ

becomes model dependent. Here, we assume a WIMP-like
scenario: at higher energies DM annihilates to baryons
through weak-scale interactions. After freeze-out, the DM
temperature evolves adiabatically until the n ¼ −4 scatter-
ing (e.g., as induced by millicharge) becomes important.
The DM temperature initial condition is then set by

TχðzÞ ¼ TbðzÞ at HðzÞ ¼ ρχ=mχhσwvi; ð10Þ

where we take a weak scale cross section hσwvi∼
10−26 cm3=s, and choose ρχ such that it matches the DM
relic abundance today. However, in practice, the n ¼ −4
scenario is sufficiently constrained that, at redshifts where
the modes measured by the CMB and Lyman-α re-enter the
horizon (z ∼ 103; 106), the DM is effectively cold and its
temperature makes negligible contribution to Rχ .
The numerically-solved temperature evolution of dark

matter (solid lines), along with our decoupling approxi-
mation (dashed lines) are shown in Fig. 1 for various
choices of n, for a fixed mχ ¼ 1 GeV, using the 95% C.L.
values of σ0 that come as a result of our analysis, quoted in
the last column of Table I (CMBTTEEþ Lyman-α), and
the ΛCDM cosmological parameters fixed to their no-
scattering best fit values. As shown, a sudden decoupling
model is more accurate for more positive n scenarios.
However, for all solutions the dark matter is cold compared
to baryons at z ∼ 103, so the CMB (which most strongly

constrains the n ≤ −2 scenarios) is insensitive to DM
temperature of this amplitude.
In all cases, the relative difference between the exact and

approximate temperature evolutions induced in the temper-
ature and polarization power spectra produce a negligible
likelihood difference.

IV. NUMERICAL RESULTS

We modify the Boltzmann solver CAMB [77] to include
DM-proton elastic scattering and run a Markov chain
Monte Carlo (MCMC) likelihood analysis using CMB
data (both temperature and polarization power spectra)
from the Planck 2015 data release [1] and measurements of
Lyman-α flux power spectrum from the Sloan Digital Sky
Survey (SDSS) [78].
The cosmological parameters varied in our Markov

chains are the scattering amplitude σ0 along with the
standard ΛCDM parameters: the baryon density, Ωbh2,
the DM density, Ωχh2, the optical depth to reionization, τ,
the angular size of the horizon at the time of recombination,
θs, and the amplitude and the tilt of the scalar perturbations,
lnAs and ns. The power-law index n and the DM particle
mass mχ are fixed within each MCMC run, and runs for
mχ ¼ 10 GeV, 1 GeV, and 10 MeVare completed for each
n ∈ f−4;−2;−1; 0; 2g. We use the Gelman-Rubin criterion
for convergence, and require that the ratio of variance
between chains to the variance of an individual chain is less
than 0.01.
Our 95% C.L. limits on the upper-bound values of σ0 for

all values of mχ are shown in Table I. As shown, scenarios
with increasingly positive values of n induce increasing

FIG. 1. Temperature evolution of dark matter, photons, and
baryons evolved exactly with Eqs. (7) and (8) (solid lines) and
using a sudden decoupling model as in Eq. (9) (dashed lines). The
DM mass is fixed at mχ ¼ 1 GeV and σ0 is fixed at the 95% C.L.
values from the last column of Table I (CMBTTEEþ Lyman-α).
The DM temperature evolution after decoupling is approximated
by a−2 for n > −4. For n ¼ −4 the DM temperature is negligible
compared to the baryons, at the relevant redshifts for the data
considered (z ≈ 103 and z ≈ 106).
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amounts of suppression on small-scale structure, and thus
can be better constrained by LSS data.
The one-dimensional posterior probability distributions

of these various cases are shown in Fig. 2. As can be seen
from Table I, the polarization power spectra are most
sensitive to the n ¼ −4 models; on the other hand,
Lyman-α constrains most strongly models with positive
n. In Fig. 3, we show the fractional difference of the
temperature and polarization CMB power spectra in models
with scattering, relative to a fiducial zero-scattering cos-
mology. Figure 4 similarly compares the matter power
spectra generated by various DM-baryon scattering scenar-
ios. In both Figs. 3 and 4, the values used for σ0 are the
95% C.L. upper bounds from the last column in Table I
(CMBTTEEþ Lyman-α) where mχ ¼ 1 GeV, and the rest
of the cosmological parameters are fixed to the no-scattering
best fit values.

V. CMB POLARIZATION SENSITIVITY TO
DM-BARYON SCATTERING

The addition of high-l CMB polarization data provides a
larger improvement on the constraints for the n ¼ −4

scenario, relative to the other n-scenarios considered in
this work. This is because the CMB E-mode polarization is
directly sourced by the velocity of the baryon-photon fluid,
and it is therefore more sensitive to DM-baryon scattering.
The source functions of CMB temperature and polari-

zation fluctuations are given respectively by [79]

STðk; ηÞ ¼ gðηÞ½Θ0 þ Ψ�

þ d
dη

�
ivbðk; ηÞgðηÞ

k

�
þ e−τ½ _Ψ − _Φ� ð11Þ

SPðk; μ; ηÞ ¼ gðηÞ 3
4
ð1 − μ2ÞðΘ2 þ ΘP0 þ ΘP2Þ; ð12Þ

where the μ term encodes the on-sky geometry, gðηÞ is the
visibility function, ΘðPÞlðk; ηÞ is the power of the temper-
ature (polarization) lth multipole of Fourier mode k at
conformal time η, and Φ and Ψ parametrize the scalar
metric perturbations. Overdots denote derivatives with
respect to conformal time.
The temperature source function is dominated by the

temperature monopole Θ0, whereas that of polarization is

TABLE I. The 95% C.L. upper-bounds on σ0 (in units of cm2) from MCMC analyses with various data sets. DM
particle masses of 10 GeV, 1 GeV, and 10 MeV are shown here for each choice of power-law scattering index.
“TTþ lowP” refers to the high-l and low-l CMB temperature and low-l LFI polarization data, and “TTTEEE”
refers to the complete set of temperature and polarization data provided by the Planck 2015 data release. “Ly-α”
refers to the Lyman-α flux power spectrum data from the SDSS.

σ0 [cm2] (mχ ¼ 10 GeV)

n CMB (TTþ lowP) CMB ðTTþ lowPÞ þ Ly-α CMB (TTEE) CMB ðTTEEÞ þ Ly-α

−4 2.1 × 10−40 2.0 × 10−40 8.6 × 10−41 8.0 × 10−41

−2 5.2 × 10−32 1.0 × 10−32 3.5 × 10−32 9.2 × 10−33

−1 2.9 × 10−28 2.5 × 10−29 2.0 × 10−28 2.0 × 10−29

0 2.5 × 10−24 6.2 × 10−26 1.9 × 10−24 5.8 × 10−26

2 2.7 × 10−18 3.4 × 10−20 2.0 × 10−18 2.4 × 10−20

σ0 [cm2] (mχ ¼ 1 GeV)

n CMB (TTþ lowP) CMB ðTTþ lowPÞ þ Ly-α CMB (TTEE) CMB ðTTEEÞ þ Ly-α

−4 4.3 × 10−41 4.1 × 10−41 1.8 × 10−41 1.6 × 10−41

−2 1.0 × 10−32 2.2 × 10−33 6.8 × 10−33 1.7 × 10−33

−1 5.9 × 10−29 5.0 × 10−30 3.8 × 10−29 3.6 × 10−30

0 5.1 × 10−25 1.3 × 10−26 3.9 × 10−25 1.2 × 10−26

2 5.4 × 10−19 6.8 × 10−21 4.1 × 10−19 4.9 × 10−21

σ0 [cm2] (mχ ¼ 10 MeV)

n CMB (TTþ lowP) CMB ðTTþ lowPÞ þ Ly-α CMB (TTEE) CMB ðTTEEÞ þ Ly-α

−4 2.2 × 10−41 2.2 × 10−41 9.6 × 10−42 9.0 × 10−42

−2 5.1 × 10−33 1.1 × 10−33 3.4 × 10−33 9.2 × 10−34

−1 2.8 × 10−29 2.5 × 10−30 1.9 × 10−29 1.8 × 10−30

0 2.6 × 10−25 6.4 × 10−27 1.8 × 10−25 5.6 × 10−27

2 2.5 × 10−19 3.3 × 10−21 1.9 × 10−19 2.3 × 10−21
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dominated by the much smaller temperature quadrupole
Θ2. Since the polarization source is linearly dependent
on the velocity of the baryon-photon fluid, turning on
DM-baryon interactions results in a more significant change
to the polarization source at every k-mode. Figure 5 shows
the amplitude of the temperature source at some arbitrary
k ¼ 0.06 Mpc−1 (l ≈ 850) and its difference to the no-
scattering case. Figure 6 shows the same for the polarization
source. We can see that the polarization source exhibits a
larger relative change upon allowing DM-baryon scattering.
Figure 7 shows the derivative of both temperature and

polarization spectrawith respect to the DM-proton scattering
cross section, illustrating this difference.

VI. ANALYTIC SCALING OF CONSTRAINTS

In this section, we propose a scaling of our MCMC
constraints on σ0 to apply to all mχ ≳ 1 MeV. The σ0 −mχ

relation is set by two coefficients: the momentum
exchange, given by Rχ, defined in Eq. (5), and the thermal
exchange rate, given by mχ=ðmχ þmHÞRχ, as in Eqs. (7)
and (A23).

FIG. 2. One-dimensional posterior probability distribution functions for σ0=mχ. The addition of Lyman-α forest data provides stronger
constraints for scenarios with increasing (positive) values of n, whereas the inclusion of CMB data provides more stringent constraints
for the more negative-n scenarios.
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We assume that the dark matter scatters only with
protons—that is, we neglect DM-helium and DM-electron
scattering. We also assume nonrelativistic kinematics at
z ¼ 109, the starting point of our numerical analysis; thus,

FIG. 3. Fractional difference in the CMB temperature (above)
and E-mode polarization (below) power spectra of each n-scenario
relative to the fiducial no-scattering case.Here,we fixmχ ¼ 1 GeV
and take σ0 to be the 95% C.L. upper bounds in the last column of
Table I (CMBTTEEþ Lyman-α), with the remaining parameters
fixed to the no-scattering best fit values.

FIG. 4. Matter power spectrum for various n-scenarios and the
fiducial no-scattering case. Here, we fixmχ ¼ 1 GeV and take σ0
to be the 95% C.L. upper bounds from the last column of Table I
(CMBTTEEþ Lyman-α), with the remaining parameters fixed
to the no-scattering best fit values. The data point and violet band
represent the amplitude and tilt, and respective 95% C.L. error
bars, derived from Lyman-α data. The values are quoted from
Ref. [78].

FIG. 5. The temperature anisotropy source function for the
scattering cross section corresponding to the 95% C.L. constraints
derived from CMBTTþ lowP data and the no scattering case, and
their relative difference. We have restricted to the n ¼ −4 scenario
and taken mχ ¼ 1 GeV. As shown, the addition of DM-baryon
interactions changes the source function by order 1%.

FIG. 6. Similar to Fig. 5, but for the CMB E-mode polarization
source function. As shown, the addition of DM-baryon elastic
scattering suppresses the source amplitude by order 4%, showing
a larger sensitivity of the polarization source relative to the
temperature one.
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the maximal lower limit we can extend our results to is
down to mχ ∼ 1 MeV.
For effectively cold DM, Rχ can be approximated as

being proportional to σ0=ðmχ þmHÞ, if Tχ=mχ ≪ TH=mH

holds true. This is because the baryon temperature is largely
unaffected by elastic scattering with DM, for choices of
cross section up to several orders of magnitude above
our 95% C.L. upper bound. This reduces the momentum-
based scaling and the temperature-based scaling to σ0 ∝
ðmχ þmHÞ and σ0 ∝ ðmχ þmHÞ2=mχ , respectively.
Figure 8 shows our 95% C.L. exclusion constraints at

10 GeV, 1 GeV, and 10 MeV. After running our MCMC
likelihood analysis, we find that the DM is sufficiently
cold that the thermalization process is subdominant and
the scaling relation is set almost entirely by the momentum

exchange. A momentum-based extrapolation from 1 GeV
results is also shown to illustrate this.
We note that for n ≥ −1, the scaling of constraints as

σ0 ∝ ðmχ þmHÞ is strictly conservative and valid up to the
nonrelativistic limit, since the temperature-dependent term
in Rχ , ðTχ=mχ þ TH=mHÞðnþ1Þ=2, is given by a positive
power-law.
For n ≤ −2, however, this approximation is not auto-

matic: the temperature-dependent term in Rχ carries a
negative power index and a dominant Tχ=mχ term will
suppress the scattering effect. Since Rχ is found to decrease
with time for n ¼ −2 and increase for n ¼ −4, the former is
predominantly constrained by Lyman-α data, whose modes
re-enter the horizon at redshifts z ≃ 106, and the latter is
predominantly constrained by CMB, with z ≃ 103 being the

FIG. 7. The partial derivative of lnCl with respect to DM-
scattering cross section σ0. We have restricted to the n ¼ −4
scenario and takenmχ ¼ 1 GeV. The E-mode polarization power
spectrum is shown to be a powerful tool for constraining
DM-baryon interactions.

FIG. 8. Constraints for DM-baryon scattering at the 95% C.L.
in the mχ − σ0 parameter space from Planck temperatureþ
polarization and Lyman-α forest data and our proposed
extrapolation.

FIG. 9. Contours of TχmH=ðTHmχÞ in the σ0 −mχ plane for the
n ¼ −2 scenario, evaluated at z ¼ 106 (Lyman-α modes re-
entry). For Tχ=mχ ≪ TH=mH, the scaling σ0 ∝ ðmχ þmHÞ is
valid (the solid curve represents this limit). Data points (blue
circles) are 95% C.L. results from our MCMC likelihood
analysis.

FIG. 10. Similar to Fig. 9, but for the n ¼ −4 scenario,
evaluated at z ¼ 103 (time of decoupling of the CMB).
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relevant redshift. For n ¼ −4 in particular the peculiar
velocity term V2

RMS=3 is important for redshifts z < 104.
Figure 9 shows, for the n ¼ −2 scenario, the region in
σ0 −mχ parameter space where Tχ=mχ ≪ TH=mH is valid
at z ¼ 106; Figure 10 does the same for n ¼ −4 at z ¼ 103.
In these figures, we also show our MCMC results at
mχ ¼ 10 GeV, 1 GeV, and 10 MeV, as well as the
extrapolation by σ0 ∝ ðmχ þmHÞ. As shown, the proposed
extension lies comfortably in the range of Tχ=mχ ≪
TH=mH down to mχ ≈ 1 MeV as well.

VII. CASE STUDY: VELOCITY AND SPIN-
INDEPENDENT SCATTERING

In this section, we apply our results to the specific case of
spin-independent n ¼ 0 elastic scattering, a particularly
well-motivated effective interaction (cf. for instance
[26,31,32,80]) and probed extensively in nuclear-recoil
type experiments.
Since specializing in this model allows us to write down

the DM-helium scattering cross section σHe as a specific
function of the DM-proton cross section, we can extend our
previous results to account for DM-helium interactions as
well. Rχ is now an effective momentum-transfer rate that
encompasses both DM-proton and DM-helium momentum
transfer: Rχ ¼ Rχ;p þ Rχ;He, where, in the n ¼ 0 case,

Rχ;i ¼
ac0ρiσi
mχ þmi

vχ;i: ð13Þ

Here, c0 is a numerical factor shown in Table II in the
Appendix, and vχ;i is the relative velocity of DM and
particle species i, that can be either unbound protons or
helium.
Following the treatment of Refs. [32,81], we can write

the DM-helium momentum transfer rate as

Rχ;He ¼
ac0ρHe

mχ þmHe
σHevχ;Heð1þ ð2μχHeaHevχ;HeÞ2Þ−2

≃
ac0ρHe

mχ þmHe
σHevχ;He; ð14Þ

and

σHe ¼ 4
μ2χHe

μ2χH
σH: ð15Þ

Here, μχi ¼ mχmi=ðmχ þmiÞ is the reduced mass of the
DM-i system, and aHe ≃ 1.5 fm is nuclear shell length

parameter for helium [32,80]. The simplification in the
second line is based on the assumption that we are in the
nonrelativistic regime, vχ;He ≪ 1. Similarly, we assume
that all baryons share the same temperature and peculiar
velocity relative to DM, and use vχHe ≳ 1

2
vχp. The total

momentum transfer is then

Rχ ¼
ac0ρbvχ;HFHe

mχ þmH
σ0

≳ ac0nbvχ;H

�
mHσHFHe

mχ þmH
þmHeσHeð1 − FHeÞ

2ðmχ þmHeÞ
�

≃
ac0ρbvχ;HFHe

mχ þmH
σH

�
1þ 1 − FHe

FHe

2μ3χHe

μ3χH

�
: ð16Þ

This provides a straightforward, albeit conservative,
relation between our numerical variable σ0 and the
“helium-subtracted” cross section σH in the case of spin-
independent n ¼ 0 scattering. This improves our results by
as much as a factor of 20 in the high-mass regime.
Figure 11 shows the regions we have excluded at the

2 − σ level in the mχ − σH parameter space compared to
regions explored by direct detection experiments
XENON-1T [72], LUX [58], XQC [71,82], CRESST-II
[63], the CRESST ν-cleus Surface Run [64,83], and the
CDMS-I re-analysis [84]. While nuclear recoil experi-
ments provide high sensitivity at high masses, direct
detection limits towards sub-GeV dark matter are cur-
rently restricted to DM-electron scattering, [85–87], and
sensitivity of underground experiments in particular are
cut off at high cross sections by scattering through the
rock overburden [83,88]. Cosmological observables are
thus especially complementary in this regime.

TABLE II. Integration constants cn for different values of n.

n −4 −3 −2 −1 0 1 2
cn 0.27 0.33 0.53 1 2.1 5 13

FIG. 11. Constraints on n ¼ 0 DM-baryon scattering in the
mχ − σH parameter space for underlying theory with (solid lines)
and without (dashed lines) helium scattering. Limits from direct
detection searches are quoted from Refs. [58,63,64,72,82–84].
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VIII. CASE STUDY: MILLICHARGED DM

We will now consider the scenario of millicharged DM,
explored previously in Refs. [33–39]. For this case, we
assume that allDM is chargedunder somehiddenU(1) gauge
with a “dark photon”, which kinetically mixes with the
standard model photon such that DM particles carry a
fractional electromagnetic charge ϵe. The nonrelativistic
DM-proton scattering thus follows a Coulomb cross section,

dσ
dΩ

¼ ϵ2α2EM
4sin4θ=2

μ−2χb v
−4; ð17Þ

and we see that our n ¼ −4 constraints are applicable here.
To regulate the divergence at small scattering angles, we

impose a minimum scattering angle θmin set by the Debye
screening length of the baryon plasma,

θmin ¼
2ϵαEM
3TλD

; λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T
4παEMne

s
; ð18Þ

such that we can apply our results:

σðvÞ ¼ 2π

Z
π

θmin

ð1 − cosðθÞÞdθ sin θ dσ
dΩ

: ð19Þ

We obtain the approximate numerical bound:

ϵ < 1.0 × 10−6
�

mχ

GeV

�
1=2

�
μχb
GeV

�
1=2

: ð20Þ

Constraints on millicharged DM particles in the low-
mass ≲1 MeV regime come predominantly from cooling
dynamics of stars and supernovae, as well as constraints on
the effective neutrino number Neff during big bang nucleo-
synthesis (BBN) and CMB epochs [38,73]. Limits arise
also from collider experiments such as from LHC and
SLAC [35,74,75,89]. An additional constraint comes from
rapid annihilation of high-mass DM inducing premature
closure of the Universe [89]. Figure 12 compares the
bounds from this work with the previously mentioned
results. As shown, CMB temperature and polarization data
together with Lyman-α flux power spectrum measurements
provide sensitive constraints to the scenario where all DM
carries a millicharge.

IX. CONCLUSIONS

In this work, we consider a general class of elastic
DM-proton interaction scenarios where the scattering
cross section scales phenomenologically as a power of
relative velocity between protons and dark matter. We
perform an MCMC likelihood analysis and obtain con-
straints on the scattering cross section σ0 for 10 GeV,
1 GeV, and 10 MeV dark matter particle masses and a
range of power laws n ∈ f−4;−2;−1; 0; 2g, using CMB

temperature and polarization data from the Planck satellite,
and Lyman-α flux power spectrum data from the SDSS.
We extend previous results with the addition of CMB

polarization data, and find that it has a larger impact (relative
to Lyman-α) on scenarios with n ≤ −2 because these
scenarios are more sensitive to the evolution of perturbations
at z < 104. For positive-n scenarios, large-scale structure
data remains the limiting source of constraint.
Extrapolating our MCMC results to lower masses, we

propose the scaling σ0 ∝ ðmχ þmHÞ, and show that this is
valid until mχ ≈ 1 MeV, where the assumption of non-
relativistic kinematics breaks down. This allows us to
explore lower-mass regions of the σ0 −mχ parameter
space, which are difficult to access with nuclear recoil
experiments due to kinematic limitations.
Allowing for relativistic scattering dynamics will be

necessary to extend this approach below the MeV scale.
We leave this to future work.
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APPENDIX: BOLTZMANN EQUATIONS FOR
DM-BARYON SCATTERING

In this Appendix, we review the formulation of the
modified Boltzmann equations in the presence of
DM-baryon interactions, specifically with cross sections

FIG. 12. Constraints from this work on millicharged DM
scattering (corresponding to the n ¼ −4 scenario) in ϵ −mχ

space compared to bounds from other areas: cooling of giants,
white dwarfs, and supernovae and constraints on Neff from BBN
and CMB [38,73], overclosure of the Universe [89] and various
collider experiments [35,74,75,89]. We have assumed here that
all DM is millicharged.
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that scale with relative DM-baryon velocity v as σ ∝ vn for
some index n. A more detailed treatment can be found
in Ref. [30].
We assume nonrelativistic kinematics for both DM and

baryons, which is accurate for mχ above the MeV scale
and z≲ 109.

1. Dark matter–baryon drag force

Here we review the modifications to the standard
Boltzmann equations derived in Ref. [30]. For baryons
and DM we assume a Maxwell distribution for their
velocity distributions in the early Universe,

fbðvbÞ ¼
ffiffiffiffiffiffiffiffiffi
2m3

b

πT3
b

s
exp

�
−

v2b
2ðTb=mbÞ2

�
ðA1Þ

fχðvχÞ ¼
ffiffiffiffiffiffiffiffiffi
2m3

χ

πT3
χ

s
exp

�
−
ðv⃗χ − V⃗χÞ2
2ðTχ=mχÞ2

�
; ðA2Þ

where we take the baryon distribution to be isotropic and
the DM population to be boosted with peculiar velocity V⃗χ

relative to this frame. The baryon particle mass mb is taken
to be the proton mass. Elastic collisions with the baryon
fluid will eventually drive the DM population to isotropy.
A given DM particle with velocity vχ elastically colliding
with a baryon of velocity vb experiences a change of
momentum

Δp⃗χ ¼
mχmb

mχ þmb
jv⃗χ − v⃗bj

�
n̂ −

v⃗χ − v⃗b
jv⃗χ − v⃗bj

�
; ðA3Þ

with n̂ being the outgoing direction of the scattered DM
particle.
Taking the momentum-transfer scattering cross section

as

σðvÞ ¼ σ0vn; ðA4Þ

and integrating over the entire baryon fluid, the overall
deceleration of the DM particle can be written as

dv⃗χ
dt

¼ −
ρbσ0

mχ þmb

Z
d3v⃗bfbðvbÞ

× jv⃗χ − v⃗bjnþ1ðv⃗χ − v⃗bÞ ðA5Þ

where ρb is the baryon mass density. The latter integral
encodes the dependence on power-law index n. In turn,
integrating over the DM velocity distribution, we obtain the
induced deceleration of the peculiar velocity

dV⃗χ

dt
¼

Z
d3v⃗χ

dv⃗χ
dt

fχðvχÞ: ðA6Þ

dV⃗χ=dt is dominated by two velocity scales. The first is

V⃗χ itself, and the second is the averaged velocity dispersion

hjΔv⃗j2i ¼ hjv⃗χ − v⃗bj2i ¼ 3

�
Tb

mb
þ Tχ

mχ

�
: ðA7Þ

In the early Universe, when thermal dispersion domi-
nates, the integral Eq. (A5) gives

dV⃗χ

dt
¼ −V⃗χ

ρbσ0cn
mχ þmb

�hjΔv⃗j2i
3

�ðnþ1Þ=2
; ðA8Þ

valid to leading order in V2
χ=hðΔv⃗Þ2i. The constants cn are

computed for the values of n of interest and tabulated
below.
At later times (after z ≃ 104) the peculiar velocity

dominates and the integral Eq. (A5) gives for the DM
deceleration, to leading order

dV⃗χ

dt
¼ −V⃗χ

ρbσ0
mχ þmb

Vnþ1
χ : ðA9Þ

At this point, the dependence becomes nonlinear (unless
n ¼ −1), and, following Ref. [30], we will include a mean-
field term for peculiar velocity when calculating the
momentum transfer [see Eq. (6)].

2. Modified Boltzmann equations

In this subsection, we modify Boltzmann equations to
account for DM-baryon scattering. We will work in syn-
chronous gauge, following formulations in Ref. [30,90],
but allowing for nonzero peculiar velocity in dark matter.
For a given Fourier mode k the density fluctuations δχ and δb
and velocity divergences θχ and θb of the DM and baryon
fluids obey the evolution equations presented in the main
text,

_δχ ¼ −θχ −
_h
2

ðA10Þ

_δb ¼ −θb −
_h
2

ðA11Þ

_θχ ¼ −
_a
a
θχ þ c2χk2δχ þ Rχðθb − θχÞ ðA12Þ

_θb ¼ −
_a
a
θb þ c2bk

2δb þ Rγðθγ − θbÞ

þ ρχ
ρb

Rχðθχ − θbÞ; ðA13Þ
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where overdots denote derivatives with respect to con-
formal time, h is the metric perturbation, cχ and cb refer
respectively to the DM and baryon sound speeds, Rχ is the
momentum-transfer coefficient for DM-baryon coupling,
and Rγ is the coefficient for baryon-photon coupling
(Ref. [90]),

Rγ ¼
4ργ
3ρb

aneσT; ðA14Þ

where ργ is the photon energy density, ne is the electron
number density, and σT is the Thomson cross section.
The DM-baryon coupling term arises from the deceler-

ation of the DM bulk velocity, given to leading order by
Eq. (A8) in the limit of Vχ ≪ hjΔv⃗j2i,

Rχ ¼
aρbσ0cn
mχ þmb

�
Tb

mb
þ Tχ

mχ

�ðnþ1Þ=2
FHe; ðA15Þ

and the corresponding factor contributing to _θb is weighted
by the DM mass density.
The above equation is valid strictly for the z > 104

regime, when the thermal velocity dispersion dominates
over the DM bulk velocity (see Ref. [30]). In order to
extend the validity of our approach beyond z ≃ 104, we add
in by hand the averaged value of V2

χ ,

V2
RMS ≡ hV2

χi ≃
(
10−8; z > 103

10−8
�
ð1þzÞ
103

�
2
; z ≤ 103;

ðA16Þ

to approximate Rχ at late times, where the thermal velocity
is no longer dominant. The modified momentum-exchange
coefficient is then

Rχ ¼
aρbσ0cn
mχ þmb

�
Tb

mb
þ Tχ

mχ
þ V2

RMS

3

�nþ1
2

FHe: ðA17Þ

The factor FHe is a corrective factor to account for the
helium fraction in baryons, and encodes dynamics for DM
scattering off of helium. Assuming the baryons share a
temperature and have no relative bulk velocity between
species, this is given by

FHe ¼ 1 − YHe þ YHe
σHe

σH

mχ þmH

mχ þmHe

×

0
B@

Tχ

mχ
þ Tb

mH
þ V2

RMS

Tχ

mχ
þ Tb

mHe
þ V2

RMS

1
CA

nþ1
2

; ðA18Þ

where YHe ≈ 0.24. For this work we conservatively assume
that FHe ≈ 0.76.
The DM and baryon fluid temperatures evolve as

_Tχ ¼ −2
_a
a
Tχ þ

2mχ

mχ þmb
R0
χðTb − TχÞ ðA19Þ

_Tb ¼ −2
_a
a
Tb þ

2μb
me

R0
γðTγ − TbÞ

þ 2μb
mχ þmb

ρχ
ρb

R0
χðTχ − TbÞ; ðA20Þ

where the nonadiabatic terms are due to DM-baryon scatter-
ing (thermalization rate R0

χ) and photon-baryon coupling
(Compton term R0

γ). Here, μb ≃mbðnH þ 4nHeÞ=ðnH þ
ne þ nHeÞ is the baryon mean molecular weight.
To derive the DM-baryon thermalization rate R0

χ , note
that the change in DM energy upon nonrelativistic collision
with a baryon is Δϵχ ¼ Δp⃗χ · v⃗, where v⃗ is the center-of-
mass velocity. The specific heating rate of DM can then be
found by integrating over the Maxwellian distributions of
baryon and DM velocities in Eqs. (A1)–(A2),
dQχ

dt
¼ −

mχρbσ0
ðmχ þmbÞ2

Z
d3v⃗χfχðvχÞ

×
Z

d3v⃗bfbðvbÞjv⃗χ − v⃗bjnþ1ðmχ v⃗χ −mbv⃗bÞ

· ðv⃗χ − v⃗bÞ: ðA21Þ
Integrating similarly to Eq. (A8), restricting to specific

case of σHe ¼ 0. and taking once more the limit of low
peculiar velocity,

dQχ

dt
¼ −

3acnmχρbσ0
ðmχ þmbÞ2

�
Tb

mb
þ Tχ

mχ

�nþ1
2 ðTχ − TbÞ: ðA22Þ

Taking the DM fluid as an ideal gas Qχ ¼ 3Tχ=2, and
adding in the corrective factors for helium fraction and
VRMS as before, we obtain the contribution on DM temper-
ature evolution made by DM-baryon scattering,

_Tχ;bχ ¼ −
2acnmχρbσ0
ðmχ þmbÞ2

FHeðTχ − TbÞ

×

�
Tb

mb
þ Tχ

mχ
þ V2

RMS

3

�ðnþ1Þ=2

≡ 2mχ

mχ þmb
R0
χðTb − TχÞ ðA23Þ

and thus the thermalization rate R0
χ , equal to the

momentum-exchange rate Rχ for σHe ¼ 0. Note the corre-
sponding baryon temperature term is weighted relative to
the DM term by both μb=mχ and ρχ=ρb.

3. Tight coupling approximation with DM-baryon drag

Following Refs. [27,90], we derive equations for evolving
the coupled DM, baryon, and photon fluids through the era
of tight coupling,when the photon scattering rate τ−1c ≫ _a=a.
We first rewrite the baryon evolution equation given in
Eqs. (A12)–(A13) in terms of characteristic time scales:

_θb ¼−
_a
a
θbþc2bk

2δbþ
R
τc
ðθγ −θbÞþ

S
τχ
ðθχ −θbÞ: ðA24Þ
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We define R (not to be confused with Rγ or Rχ) as R ¼
4ργ
3ρb

∝ a−1 and S ¼ ρχ
ρb
¼ constant. The conformal time scale

of Thomson scattering is τc ¼ ðaneσTÞ−1 is the conformal
time scale of Thomson scattering, and similarly τχ ¼ R−1

χ

gives the conformal time scale of the dark matter-baryon
interaction.
We will also need the photon velocity divergence

equation (Ref. [90]):

_θγ ¼ k2
�
1

4
δγ − σγ

�
−

1

τc
ðθγ − θbÞ: ðA25Þ

In the tight-coupling regime, τc is small compared to
the conformal Hubble time, and the above differential
equations become stiff. In order to solve these tightly
coupled equations numerically, we find equations for _θb
(and consequently also for _θγ) in terms of the slip derivative
_Θγβ ¼ _θγ − _θb, which we solve for in powers of τc.

Adding Eqs. (A24) and (A25), and multiplying by τc,
gives an exact equation for the photon-baryon slip
Θγb ¼ θγ − θb,

Θγb ¼
τc

1þ R

�
_−Θγβ þ

_a
a
θb þ k2

�
1

4
δγ − c2bδb − σγ

�

−
S
τχ
ðθχ − θbÞ

�
ðA26Þ

From Eq. (A26), we verify that the slip is first order in τc.
Differentiating, dropping terms of order τ2c (i.e., Θ̈γβ) and
using _R ¼ − _a

a R and _S ¼ 0, we have

_Θγβ ¼
�
_τc
τc

þ R
1þ R

_a
a

�
Θγβ þ

τc
1þ R

×

�
− _X −

S
τχ
ð_θχ − _θbÞ þ

S_τχ
τ2χ

ðθχ − θbÞ
�
; ðA27Þ

where to first order in τc,

− _X ¼ _a
a
_θb þ

ä
a
θb −

�
_a
a

�
2

θb þ k2
�
1

4
_δγ − _σγ − c2b _δb

�

¼ 2
_a
a
_θb þ

ä
a
θb þ k2

�
1

4
_δγ −

_a
a
c2bδb − c2b _δb − _σγ

�
−
R
τc

_a
a
Θγb −

S
τχ

_a
a
ðθχ − θbÞ

¼ ä
a
θb − k2

�
c2b _δb −

1

4
_δγ −

1

2

_a
a
δγ þ _σγ þ 2

_a
a
σγ

�
−
2_a
a

_Θγb −
2þ R
τc

_a
a
Θγb −

S
τχ

_a
a
ðθχ − θbÞ: ðA28Þ

In the first line, we used _a
a c

2
b − _c2b ¼ 0, since in the tight

coupling limit c2b ∝ Tb ∝ a−1. In the second line, we used
Eq. (A24) to substitute for ð _aaÞ2θb, and in the third we used

Eq. (A25) to add and subtract 2 _a
a
_θγ .

Plugging _X back into Eq. (A27), we drop the terms
involving Θ and σγ , since they are already first order in τc
[90]. We get

_Θγβ ¼
�
_τc
τc

−
2

1þ R
_a
a

�
Θγb

þ τc
1þ R

�
ä
a
θb − k2

�
c2b _δb −

1

4
_δγ −

1

2

_a
a
δγ

�

−
S
τχ

�
_a
a
−
_τχ
τχ

�
ðθχ − θbÞ −

S
τχ
ð_θχ − _θbÞ

�

¼ Θ1 − β

�
ð_θχ − _θbÞ þ

�
_a
a
−
_τχ
τχ

�
ðθχ − θbÞ

�
; ðA29Þ

where Θ1 is the first-order slip without DM-baryon
scattering and β ¼ S

1þR
τc
τχ
.

We see that because of the DM-baryon scattering, the
slip derivative contains a remaining factor of _θb. To get rid
of this extra term, we use the exact equation obtained from
Eqs. (A24) and (A25):

_θb ¼ −
1

1þ R

�
_a
a
θb − c2bk

2δb − Rk2
�
1

4
δγ − σγ

�

−
S
τχ
ðθχ − θbÞ þ R _Θγβ

�
: ðA30Þ

Plugging the slip derivative Eq. (A29) into Eq. (A30), we
collect all the factors of _θb and solve to find the tight-
coupling expression for _θb.

_θb ¼ −
1

1þ Rþ Rβ

�
_a
a
θb − c2bk

2δb − Rk2
�
1

4
δγ − σγ

�

þR _Θ1 − Rβ

�
_a
a
−
_τχ
τχ

�
ðθχ − θbÞ

−
S
τχ
ðθχ − θbÞ − Rβ _θχ

�
: ðA31Þ

Then, once we have _θb in the tight coupling approxi-
mation, we use the following exact expression to obtain _θγ .

_θγ ¼ −
1

R

�
_θb þ

_a
a
θb − c2bk

2δ2b

�
þ k2

�
1

4
δγ − σγ

�

þ S
Rτχ

ðθχ − θbÞ: ðA32Þ
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