
 

Emerging spatial curvature can resolve the tension between high-redshift
CMB and low-redshift distance ladder measurements of the Hubble constant

Krzysztof Bolejko
Sydney Institute for Astronomy, School of Physics, A28, University of Sydney,

New South Wales, 2006, Australia

(Received 15 March 2018; published 29 May 2018)

The measurements of the Hubble constant reveal a tension between high-redshift (CMB) and low-
redshift (distance ladder) constraints. So far neither observational systematics nor new physics has been
successfully implemented to explain away this tension. This paper presents a new solution to the Hubble
constant problem. The solution is based on the Simsilun simulation (relativistic simulation of the large scale
structure of the Universe) with the ray-tracing algorithm implemented. The initial conditions for the
Simsilun simulation were set up as perturbations around theΛCDMmodel. However, unlike in the standard
cosmological model (i.e., ΛCDMmodelþ perturbations), within the Simsilun simulation relativistic and
nonlinear evolution of cosmic structures lead to the phenomenon of emerging spatial curvature, where the
mean spatial curvature evolves from the spatial flatness of the early Universe towards the slightly
curved present-day Universe. Consequently, the present-day expansion rate is slightly faster compared
to the spatially flat ΛCDM model. The results of the ray-tracing analysis show that the Universe
which starts with initial conditions consistent with the Planck constraints should have the Hubble
constant H0 ¼ 72.5� 2.1 km s−1 Mpc−1. When the Simsilun simulation was rerun with no inhomoge-
neities imposed, the Hubble constant inferred within such a homogeneous simulation was H0 ¼
68.1� 2.0 km s−1 Mpc−1. Thus, the inclusion of nonlinear relativistic evolution that leads to the emergence
of the spatial curvature can explain why the low-redshift measurements favor higher values compared to the
high-redshift constraints and alleviate the tension between the CMB and distance ladder measurements of
the Hubble constant.
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I. INTRODUCTION

For the last 20 years, the ΛCDM model has been a
successful concordance model. A single, spatially flat
model was able to explain properties of a high-redshift
(early times) and low-redshift (late times) Universe.
However, with an increasing precision of measurements
and increasing amount of data, some tensions between
various constraints start to appear [1]. While some of
these tensions are subject to observational biases and
systematics, which means they are likely to be resolved
in the near future, some could pose challenges to the
standard ΛCDM model and point towards various exten-
sions of the standard cosmological model. One of the most
well-known examples of such tensions is the tension in the
measurements of the Hubble constant: low-redshift mea-
surements of the Hubble constant point towards H0 ¼
73.24� 1.74 km s−1Mpc−1 [2] whereas the Hubble con-
stant inferred from the CMB (high-redshift) is H0 ¼
67.81� 0.92 km s−1Mpc−1 [3].
This paper argues that the H0 tension is a manifestation

of rigidity of the FLRW geometry. Within the FLRW
models, if the spatial curvature is flat (the case of the

ΛCDM model), it remains flat and does not change with
time. The spatial flatness of the early Universe is predicted
by inflation [4] and seems to be confirmed by the CMB
constraints [3]. Therefore, if our Universe is correctly
described (from the early Universe till the present day)
by the FLRW geometry, then the spatial flatness of the early
Universe should be preserved. However, if the geometry of
our Universe slightly deviates from the FLRW geometry
(for example due to the evolution of cosmic structures [5]),
then the spatial curvature will not be constrained and spatial
flatness may not be preserved [6,7]. Direct measurements
of the spatial curvature using the low-redshift data (as
opposed to fitting the FLRW model to the data) do not
place tight constraints on the spatial curvature and allow for
large range of possible values, including spatial flatness [8].
Understanding the phenomenon of the emerging spatial

curvature requires fully relativistic cosmological simula-
tions. However, such simulations are not easy, and so far
have not been fully developed [9]. Cosmological relativistic
simulations based on the Einstein toolkit [10], which
implements the BSSN formalism [11–13] have difficulties
with shell crossing singularities. Implementations of post-
Newtonian corrections within N-body simulations, do not
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exhibit problems with shell crossings but face a problem of
periodic boundary conditions, which impose a constraint on
the global spatial curvature and force it to vanish [14]. This
paper uses a relativistic simulation that is based on the
approximation of the “silent universes”—the Simsilun
simulation [15]. The Simsilun simulation starts with per-
turbations around the ΛCDM model. These perturbations
are allowed to have a nonzero spatial curvature. Initially,
negative curvature of underdense regions is compensated by
positive curvature of overdense regions. Once the evolution
enters the nonlinear regime, the symmetry between over-
densities and underdensities is broken; consequently the
mean spatial curvature of the Universe slowly drifts from
zero towards a negative curvature induced by cosmic voids.
The results of the Simsilun simulation indicate that the
present-day curvature of our Universe is approximately
Ωkðz ≈ 0Þ ∼ 0.1, as compared to spatial flatness of the early
Universe Ωkðz ≫ 0Þ ¼ 0.
This paper uses the Simsilun simulation (Sec. III) and

implements the ray-tracing algorithm to generate mock data
(Sec. IV). The analysis of the mock catalogs shows that
the Hubble constant inferred from low-redshift data should
in fact be higher compared to high-redshift constraints
(Sec. V).

II. MEASUREMENTS OF THE
HUBBLE CONSTANT

A. The method of inferring the
Hubble constant from CMB

The Hubble constant inferred from the CMB is a highly
model-dependent measurement of the present-day expan-
sion rateH0 [3]. The parameterH0 is not measured directly
but derived from other parameters. The standard practice is
to fit six base parameters of the ΛCDM model and from
them estimate H0. These six base parameters constitute
physical baryon density ωb ¼ Ωbh2, physical cold dark
matter density ωc ¼ Ωch2, optical depth τ, the amplitude of
the dimensional, primordial curvature power spectrum As,
and its spectral index ns. The last sixth parameter is either
the acoustic scale θ (Planck analysis, [3]) or the parameter
ΩΛ (WMAP analysis, [16]).
These two last parameters θ and ΩΛ are not independent

from each other. The acoustic scale is defined as a ratio of
the sound horizon at decoupling rs (which depends on the
physical matter density ωb, ωc, and radiation density ωr) to
the angular distance to the last scattering surfaceDA (which
depends on the physical matter density ωb, ωc, radiation
density ωr, and dark energy density ωΛ ¼ ΩΛh2). Since,
radiation energy density is fixed by the CMB temperature it
is not really a free parameter, so apart from ωb and ωc
(which are already listed above) the only free parameter
that θ depends on is ωΛ.
The Hubble constant is then derived from the depend-

ence of the shape of the CMB power spectrum onΩmh3 and

the relative height of the acoustic peaks that are sensitive to
Ωmh2 (Planck analysis, [3]),

H0 ¼ 100 km s−1Mpc−1Ωmh3=Ωmh2;

or from the condition of the spatial flatness (WMAP
analysis, [16]),

H0 ¼ 100 km s−1Mpc−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωb þ ωc þ ωΛ

p
:

The physical justification of such a measurement is as
follows: the CMBmostly constrains the physical conditions
of the early Universe, i.e., the physical density of baryons,
cold dark matter, and radiation. If one assumes that the
evolution of the Universe after the decoupling instant is
correctly described by the FLRW model then the physical
density can be translated to the expansion rate of the present-
dayUniverse,H0. In order to distinguish this parameter from
the direct measurement of the present-day expansion rate
(i.e., low-redshift observations of the expansion rate) let us
denote it by HCMB

0 . The value of the Hubble constant
estimated based on measurements obtained by the satellite
Planck is HCMB

0 ¼ 67.81� 0.92 km s−1 Mpc−1 [3].

B. The method of inferring the Hubble constant
from the distance ladder

At low-redshifts the Taylor expanded FLRW luminosity
distance-redshift relation is

DLðzÞ ¼
cz
H0

�
1þ 1

2
½1 − q0�z −

1

6
½1 − q0 − 3q20 þ j0�z2

�
:

ð1Þ
This low-redshift series is independent of the matter content
of the Universe, and the only free parameter apart from H0

are q0 and j0 that can be fixed by the low-redshift data only.
In Ref. [2] these parameters were set to q0 ¼ −0.55 and
j0 ¼ 1 (any realistic variation in q0 and j0 has a minor
dependence on the inferred value of H0).
Using the distance modulus to replace the distance with

absolute and apparent magnitudes m and M

m −M ¼ 5 log10DL þ 25; ð2Þ
the Hubble constant can be written as [2]

log10H0 ¼
M þ 5aþ 25

5
; ð3Þ

where

a ¼ log10

�
cz

�
1þ 1

2
½1 − q0�z

−
1

6
½1 − q0 − 3q20 þ j0�z2

��
− 0.2m: ð4Þ

KRZYSZTOF BOLEJKO PHYS. REV. D 97, 103529 (2018)

103529-2



Thus, to estimate the Hubble constant H0 one needs
a redshift z, apparent magnitude m and the absolute
magnitude M. While z and m are directly observable,
the absolute magnitude M requires calibrations of standard
(or standarizable) candles. The calibration can be done
using the distance ladder, which uses objects at different
distances to calibrate others. In order to distinguish the
Hubble parameter derived using the distance ladder method
(DL) let us denote it as HDL

0 . The inferred value of the
Hubble constant based on low-redshift data is HDL

0 ¼
73.24� 1.74 km s−1Mpc−1 [2].
As noted in Sec. II A, HCMB

0 ¼ 67.81�
0.92 km s−1 Mpc−1 and so there is a tension between
HDL

0 and HCMB
0 . In the next section it will be argued that

the main difference between HDL
0 and HCMB

0 is not due to
observational systematics. If the average spatial curvature
of our Universe evolves from spatial flatness to non-
negligible negative values at the present day, then one
should in fact expect a difference between HCMB

0 and HDL
0 .

III. MODELING THE RELATIVISTIC
EVOLUTION OF THE UNIVERSE

A. Silent universes

The approximation of the silent universes is derived
within the 1þ 3 split [17,18]. Here, one first introduces
the comoving gauge with the velocity field ua ∼ δa0
and assumes that the gravitational field is sourced by
irrotational and insulated dust. Then applying the
energy-momentum conservation Tab

;b ¼ 0, the Ricci iden-
tities ua;d;c − ua;c;d ¼ Rabcdub, and the Bianchi identities
Rab½cd;e� ¼ 0, and finally assuming with the magnetic part
of the Weyl tensor vanish, one reduces the Einstein
equations to only four equations, which describe the
evolution of dust (with matter density ρ), its velocity filed
(with expansion rate Θ and shear Σ) and the Weyl curvature
W [19,20]

_ρ ¼ −ρΘ; ð5Þ

_Θ ¼ −
1

3
Θ2 −

1

2
κρ − 6Σ2 þ Λ; ð6Þ

_Σ ¼ −
2

3
ΘΣþ Σ2 −W; ð7Þ

_W ¼ −ΘW −
1

2
κρΣ − 3ΣW; ð8Þ

where κ ¼ 8πG=c4. In addition to these equations,
the evolution of the volume V of the fluid’s element is
given by

_V ¼ VΘ: ð9Þ

Apart from the evolution equations there are also spatial
constraints. However, if these constraints are initially
satisfied, they will be preserved in the course of the
evolution [20,21]. Thus, once the initial conditions are
properly set up, the evolution of a relativistic system can be
evaluated based on the above equations only. Finally, there
is also the “Hamiltonian” constraint which can be used to
evaluate the spatial curvature

1

6
R ¼ 1

3
κρþ Σ2 −

1

9
Θ2 þ 1

3
Λ: ð10Þ

1. FLRW limit

In the limit of spatial homogeneity and isotropy the silent
universes reduce to the FLRW models. The condition of
spatial homogeneity and isotropy implies that shear van-
ishes at every point in space and time; hence Σ≡ 0≡ _Σ,
which also implies W ¼ 0 and _W ¼ 0. Thus, the last two
equations of the silent universe are trivial. The condition of
spatial homogeneity and isotropy also leads to Θ → 3_a=a,
where the function aðtÞ depends on time only and is the
FLRW scale factor (thus the scalar of the expansion Θ is 3
times the Hubble parameter). Then the first equation of the
silent universe reduces to ρ ¼ ρia−3, and the second
reduces to

3
ä
a
¼ −

1

2
κρþ Λ; ð11Þ

which is the first Friedmann equation. In the limit of spatial
homogeneity and isotropy, the spatial curvature reduces to
R → 6k=a2 and the Hamiltonian constraint becomes

3
_a2

a2
¼ κρ − 3

k
a2

þ Λ; ð12Þ

which is the first Friedmann equation.

B. Simsilun simulation

The evolutionary equations of the silent universe,
i.e., Eqs. (5)–(8) have been implemented in the code
simsilun [22]. The description of the code, equations,
and applications are described in the “methods paper”
[15]. The methods paper describes how one can use the
Millennium simulation [23–25] to set up the initial con-
dition for the code SIMSILUN. The initial conditions are set
up using the smoothed density field of the Millennium
simulation stored in the MField database [26].
In this paper we apply a slight modification of the

Simsilun simulation discussed in the methods paper [15].
The MField consists of 2563 cells, that contain information
about the matter density field smoothed with Gaussian
kernel of radius 1.25h−1 Mpc, 2.5h−1 Mpc, 5h−1 Mpc, and
10h−1 Mpc. Unlike in the methods paper, where the
smoothing scale was 2.5h−1 Mpc, here we use the matter
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field smoothed with 1.25h−1 Mpc radius, as it reproduces
the parameter σ8 more accurately—the smoothing
decreases the variance of the density filed so the larger
the smoothing radius the smaller the parameter σ8: with
1.25h−1 Mpc smoothing kernel the parameter σ8 is under-
estimated by less than 2%, with 2.5h−1 Mpc by 13%,
5h−1 Mpc by 30%, and with 10h−1 Mpc by almost 60%.
The second change, compared to the methods paper is the
change of the background cosmology. The Simsilun
simulation described in the methods paper is based on
the WMAP1 cosmology, just as the Millennium simulation.
Here we assume that the background model is the Planck’s
ΛCMD model, and we use it to set up the initial conditions
for the Simsilun simulation. The initial background density
ρ̄i and the initial background’s expansion rate Θ̄i are

ρ̄i ¼ Ωm
3H2

0

8πG
ð1þ ziÞ3 ¼ ωm

3

8πG
ð1þ ziÞ3H2

100 ð13Þ

Θ̄i ¼ 3H100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmð1þ ziÞ3 þ ωΛ

q
; ð14Þ

where H100 ¼ 100 km s−1Mpc−1, ωm ¼ Ωmh2 ¼ 0.1415,
and ωΛ ¼ ΩΛh2 ¼ 0.3182 [3]. We then use the initial
perturbations at zi ¼ 80, which follow from the
Millennium’s snapshot no 1, and superimpose them onto
the Planck’s ΛCMD background model ( ρ̄i and Θ̄i). This
serves as the initial conditions for our new simulation that is
based on evolving 16,777,216 worldlines (i.e., 2563 cells)
using Eqs. (5)–(9) up to z ¼ 0.
As discussed in the methods paper, the result of the

evolution of the silent universe is emergence of the spatial
curvature. The emergence of the spatial curvature is
associated with the increase of the mean expansion rate,
which is presented in Fig. 1. The mean expansion rate is
defined as the volume average

HD ¼ 1

3
hΘiD ¼ 1

3

P
nΘnVnP
nVn

; ð15Þ

where the domain D is the whole domain of the Simsilun
simulation, Θn is the expansion rate of a single worldline/
cell, and Vn is its volume, and

P
nVn is volume of the entire

domain of the Simsilun simulation. The parameter ΩD
k of

the spatial curvature is

ΩD
k ¼ −

hRiD
6H2

D
: ð16Þ

In the limit of spatial homogeneity and isotropy, each cell
has the same expansion rate Θi and thus the same volume
[cf. Eq. (9)]. Consequently,HD→HΛCDM andΩD

k →−k= _a2.
Therefore if k ¼ 0 then also ΩD

k ¼ 0. Within the regime
of linear perturbations, all quantities can be expressed in
terms of density perturbations Δρ. Since the average of

linear perturbations vanishes, thus the average expansion
coincides with the background expansion rate, i.e., HD ¼
HΛCDM. Similarly, the average spatial curvature, within the
linear regime is flat ΩD

k ¼ 0. It is only in the nonlinear
regime when the spatial curvature emerges and the
expansion rate increases compared to the ΛCDM model.
This is presented in Fig. 1 where in the nonlinear regime
(t > 1 Gyr) both spatial curvature and the expansion rate
deviate from the ΛCDMmodel. It is interesting to note that
in the dark energy dominated epoch (t > 10 Gyr) both the
spatial curvature and expansion rate do asymptotically
approach the ΛCDM model; this phenomenon is known
as the “cosmic no-hair” conjecture [27].
However, it needs to be stressed that the expansion rate

HD (presented in Fig. 1) is not the same as the Hubble
constant inferred from the distance ladder HDL

0 —it is only
in the FLRW limit where the expansion rate and the slope
of the distance-redshift relation are equivalent to each other
[28]. Therefore, in order to estimate the Hubble parameter
based on the distance ladder HDL

0 one needs to implement
the ray-tracing method to the Simsilun simulation, which is
described in the next section.

IV. LIGHT PROPAGATION

A. Distance and redshift

Apart from the evolution of the Universe the ray-tracing
is implemented within the Simsilun simulation. The light
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FIG. 1. Evolution of the global (mean) expansion rate (Upper
panel) and the spatial curvature (Lower panel) within the
Simsilun simulation. The initial conditions for the Simsilun
simulation have been set up using density fluctuations from
the Millennium simulation imposed on the Planck’s ΛCDM
model at zi ¼ 80. As long as perturbations remain within the
linear regime (t < 1 Gyr) the mean evolution follows the ΛCDM
model. Once the system enters a nonlinear regime the spatial
curvature emerges and the expansion rate slightly increases
compared to the ΛCDM model.
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propagation is based on the Sachs optical equations [29].
The angular diameter distance DA follows from

d2DA

ds2
¼ −

�
σ2 þ 1

2
Rabkakb

�
DA; ð17Þ

where σ is the shear of the null bundle ka, and s is the affine
parameter. The redshift follows from

dz
ds

¼
�
1

3
Θþ Σabnanb

�
ð1þ zÞ2; ð18Þ

where Σab the shear of the matter filed and na is a unit
vector in the direction of propagation. For comoving dust
Rabkakb ¼ ρð1þ zÞ2 and for nonextreme cases (strong
lensing) the null shear does not affect the distance-redshift
relation [30]. Additionally, since there is no preferred
direction, the average contribution from matter shear to
the distance relation vanishes, as it only contributes via the
trace [31].
Solving the above equations within the Simsilun simu-

lation we find the relation between the angular diameter
distance and redshift. Then using the reciprocity theorem
[17] the luminosity distance is

DL ¼ ð1þ zÞ2DA: ð19Þ

B. Generating the mock catalogs

In Ref. [2] the Hubble constant estimated based on low-
redshift data was inferred using a two-stage analysis. First,
the parameter a of Eq. (4) was inferred from 217 supernova
Ia with redshifts 0.0233 < z < 0.15. Then various anchors
were used to perform a simultaneous fit of supernova and
Cepheid data to infer M, which in turn via (3) constrained
the Hubble constant HDL

0 .
Within the Simsilun simulation the implemented ray-

tracing algorithm provides the distances; consequently the
last step of the calibration ofM for the Simsilun simulation
is not needed, and the Hubble parameter HDL

0 can be
estimated from

log10HDL
0 ¼ log10

�
cz

�
1þ1

2
½1−q0�z

−
1

6
½1−q0−3q20þj0�z2

��
− log10DL; ð20Þ

or in terms of the distance modulus from

log10HDL
0 ¼ log10

�
cz

�
1þ1

2
½1−q0�z

−
1

6
½1−q0−3q20þj0�z2

��
−0.2μþ5; ð21Þ

where the distance modulus is μ ¼ 5 log10DL þ 25.

To estimate the Hubble constant HDL
0 within the

Simsilun simulation we generate 217 light rays with
redshift 0.0233 < z0;i < 0.15 and calculate the luminosity
distance D0;i. To apply some realistic uncertainties we use
the Union2.1 set [32]. We take uncertainties and covariance
matrix from the Union2.1 data set [33] for 217 supernova
with z < 0.2 (Union2.1 consists of 580 supernova with
redshift up to z ¼ 1.414) and apply them to the Simsilun
simulation distances. While this procedure is not ideal, it
does provide “realistic” uncertainties, that can be applied to
the “ideal” data generated using the Simsilun simulation.
First, the uncertainty in the distance modulus is trans-
formed to uncertainty in each distance D0;i

ΔDi ¼ 0.2ΔμiD0;i log10 10;

and then the distances are Gaussian scattered

DL;i ¼ N ðμ ¼ D0;i; σ ¼ ΔDiÞ;

where N ðμ ¼ D0;i; σ ¼ ΔDiÞ is a random number drawn
from a Gaussian distribution whose mean value is D0;i and
standard deviation is equal to a distance uncertainty ΔDi.
Once the mock catalog is generated, we perform the
MCMC analysis. The likelihood at each step is evaluated
based on Eq. (21) with the covariance matrix taken from the
Union2.1 set. The MCMC analysis allows us to estimate
the mean as well as uncertainties in HDL

0 while treating the
parameters q0 and j0 as the nuisance parameters. An
example of a single mock catalog (the next section
considers multiple mocks) together with the residuals from
the best-fit are presented in Fig. 2.

V. RESULTS

The results for the Hubble constant HDL
0 estimated using

Eq. (21) based on the ray-tracing within the Simsilun
simulation are presented in Fig. 3. The results include the
cosmic variance which was estimated using 10,000 mock
catalogs with random observers. The Hubble constant is
HDL

0 ¼ 72.5� 2.1 km s−1Mpc−1, and its probability den-
sity function (pdf) is presentedwith a red solid line inFig. 3. It
should be noted that the initial conditions for the Simsilun
simulation were set up using the Planck data. When the
Simsilun simulation was rerun with no inhomogeneities
imposed, the Hubble constant inferred within such a homo-
geneous simulation [34] (using the mock catalogs gene-
rated as described in Sec. IV B) was found to be
HDL

0 ¼ 68.1� 2.0 km s−1Mpc−1. The pdf of the Hubble
constant inferred from a homogeneous Simsilun simulation
is presented with a purple dashed line in Fig. 3. This shows
that relativistic nonlinear evolution of a cosmic system,
which allows for the emergence of the spatial curvature can
solve the problem of the tension between high-redshift
(CMB) and low-redshift (distance ladder) measurements
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of H0. For comparison the pdfs of these two measurements
are presented in Fig. 3 using dotted lines [35].

VI. DISCUSSION ON THE ORIGIN
OF THE EFFECT

The reason why the Simsilun simulation predicts a
higher expansion rate has been partially explained in
Sec. III B. However, there is an additional subtlety that
needs to be discussed in regards to the results obtained
in Sec. V.
The expansion rate of space follows from Eq. (6). As

seen from Eq. (6), in the linear regime the only factor that
causes the departure from the background’s expansion rate
Θ̄ is the fluctuation in the density field ρ ¼ ρ̄þ Δρ. Since
the global average of density fluctuations vanishes, i.e.,R
dVΔρ ¼ 0, a faster expansion rate of voids (where

Δρ < 0) is compensated by a slower expansion rate of
overdense regions (where Δρ > 0); consequently the aver-
age expansion rate coincides with the background’s expan-
sion rate.
Once the evolution becomes nonlinear, the symmetry

between underdense and overdense regions starts to break.
On the one side, as the underdense regions become emptier
they expand faster; on the other side, the buildup of the
shear Σ2 within overdense regions slows down their
expansion rate more efficiently than just the density
perturbations alone. Consequently, the average expansion
rate is faster compared to the ΛCDM model, i.e.,
HD > ð _a=aÞΛCDM.
For comparison, this effect is not present within the

standard N-body simulations. Within the N-body simula-
tions, matter is inhomogeneously distributed, and even
though one could map these fluctuations onto the shear and
Weyl curvature, these quantities do not affect the overall
expansion rate of the Universe. Within the standard N-body
simulations the expansion rate is given by Eq. (12), and it is
uniform everywhere, i.e., H0 ¼ ð _a=aÞΛCDM.
Within the Simsilun simulation cosmic voids occupy

more volume than other regions; as a result if one picks a
random line of sight, then along such a line of sight light
most likely propagates through underdense regions.
Although it sounds similar, this is not the Dyer-Roeder
effect [36,37], which is related to pure density fluctuations
[38]. Here the effect is related to propagation through
regions that expand faster than the background [39,40].
Most importantly though, the effect reported in Sec. V
should not be mistaken and contribute to “insufficient
randomization” of the line of sights [41,42]. On the
contrary, had the insufficient randomization been the issue,
i.e., had we chosen light rays that propagate only through
underdense regions then HDL

0 would have been up to 30%
higher (instead of 6.5% higher) compared to the ΛCDM
model. The fact that the Hubble constant inferred from the
distance-redshift relation HDL

0 is so similar to the average
expansion rate of space HD empirically confirms results
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FIG. 3. The Hubble constant evaluated within the Simsilun
simulation (red solid line). The constraints are inferred from the
slope of the distance-redshift relation (21) and result with
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0 ¼ 72.5� 2.1 km s−1 Mpc−1. If the Simsilun simulation is
run with no inhomogeneities imposed (i.e., the FLRW case) then
the Hubble constant inferred from the slope of the distance-
redshift is HDL

0 ¼ 68.1� 2.0 km s−1 Mpc−1 (purple dashed line).
For comparison, the green dotted line (on the left) presents the
Gaussian profile with the mean 67.81 and the standard deviation
0.92 (cf. CMB constraints [3]) and the blue dotted line (on the
right) shows a Gaussian profile with a mean 73.24 km s−1 Mpc−1

and a standard deviation 1.74 km s−1 Mpc−1 (cf. distance ladder
constraints [2]).
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FIG. 2. A single mock supernova catalog generated within the
Simsilun simulation. 217 generated distance-redshift relations
has been Gaussian scattered using uncertainties from the
Union2.1 data set. Upper panel shows the luminosity distance
DL; middle panel shows distance residuals ΔDL from the best-fit
distance-redshift relation (1); lower panel shows residuals in
brightness Δμ ¼ 5 log10ð1þ ΔDL=DLÞ.

KRZYSZTOF BOLEJKO PHYS. REV. D 97, 103529 (2018)

103529-6



obtained in Refs. [30,43,44], which suggest that the
average distance-redshift relation should follow the average
expansion rate.
As seen from Fig. 1, once the evolution becomes

nonlinear, the average expansion rate starts to deviate from
the background’s ΛCDM model; thus the present-day
expansion rate inferred from the distance-redshift relation
should be higher than the Hubble constant inferred from the
conditions of the early Universe, i.e., HDL

0 > HCMB
0 . This

expectation is indeed confirmed by the results presented
in Fig. 3.

VII. CONCLUSIONS

The history of measurements of the Hubble constant
shows how its value, at various stages of time, was
susceptible to a number of observational biases. During
the 20th century thevalue of theHubble constantwas subject
to a number of changes: misclassification of Cepheids,
confusion between stars and HII regions, and especially the
Malmquist bias [45] often led to overestimation of its value.
However, when at the turn of the century the HST Key
Project settled its value to 72� 8 km s−1Mpc−1 [46] it
seemed that most systematics got under control. Yet when
ten years later, the 7-year WMAP data pointed towards
HCMB

0 ¼ 70.2� 1.4 km s−1Mpc−1 [47] and the distance
ladder method towards HDL

0 ¼ 73.8� 2.4 km s−1Mpc−1

[48], the debate on the Hubble constant got revived. The
tension between high-redshift measurements (CMB) and
low-redshift (distance ladder) got further widened with the
Planck measurements, which constrained it to HCMB

0 ¼
67.3� 1.2 km s−1 Mpc−1 [49]. The inconsistency between
these measurements seems to be statistically significant and
does not seem to appear simply because we have two
different types of measurements [50]. This suggest there
must be some mechanism behind this inconsistency,
be it either unaccounted systematics or some physical
phenomenon.
The issue of systematics in the distance ladder method

resurfaced when it was pointed out that various assumptions
regarding the calibrations can shift the value of the Hubble
constant by 2 km s−1Mpc−1 [51]. Given the lack of com-
pelling evidence for “new physics” [52] it seemed likely that
once again (as often in the past) the systematics were to be
blamed for overestimating the Hubble constant. However, a
careful analysis of the distance ladder using multiple
anchors resulted with HDL

0 ¼ 73.24� 1.74 km s−1Mpc−1

[2], which confirmed the tension. The tension was
further solidified with the latest Planck measurements,
which set the high-redshift Hubble constant to HCMB

0 ¼
67.81� 0.92 km s−1Mpc−1 [3].
This paper explored an extension of the ΛCDM model.

This extension does not require any new physics in terms
of the dark sector (e.g., evolving dark energy or interact-
ing dark matter) or in terms of the modification of gravity.

The solution that this paper provides is more prosaic. It
relies on the fact that the Einstein equations are nonlinear,
and therefore the evolution of an inhomogeneous
nonlinear system that only in a statistical sense is
homogeneous and isotropic (i.e., after averaging over
sufficiently large domains) is not exactly the same as the
evolution of an exactly homogeneous and isotropic
system [5].
This paper uses the Simsilun simulation that solves the

Einstein equations within the approximation of the silent
universes [15]. Within the framework of the Simsilun
simulation the spatial curvature evolves from a spatial
flatness of the early Universe to a slightly negative values at
the present day. A slight increase of the spatial curvature
speeds up the expansion rate, which is presented in Fig. 1.
The implementation of the ray-tracing algorithm within the
Simsilun simulation allowed us to generate mock super-
nova data, which were used to estimate the low-redshift
Hubble constant HDL

0 directly from the distance-redshift
relation. The initial conditions for the Simsilun simulation
has been setup in the early Universe around the Planck’s
ΛCDM model [3]. Ten thousand mock catalogs have been
generated (an example of a mock catalog with uncertainties
imposed from a Union2.1 set [32] is presented in Fig. 2).
The analysis showed that the phenomenon of emergence of
the spatial curvature can solve the Hubble constant prob-
lem. As shown in Fig. 3, if the evolution of the Universe
follows exactly the equation of a purely homogeneous and
isotropic universe (FLRW case) then the tension between
the low-redshift and high-redshift Hubble constant appears.
If however, relativistic corrections due to nonlinear cosmic
evolution are included, then the tension is alleviated.
The results of the evolution and ray-tracing algorithms
within the Simsilun simulation show that starting from
the initial conditions as prescribed by the Planck satellite
(ωm ¼ Ωmh2 ¼ 0.1415, and ωΛ ¼ ΩΛh2 ¼ 0.3182 [3])
the present-day expansion rate should in fact be H0 ¼
72.5� 2.1 km s−1 Mpc−1, which is in agreement with the
low-redshift distance ladder measurements of HDL

0 ¼
73.24� 1.74 km s−1Mpc−1 [2].
While these results are encouraging, it needs to be noted

that the Simsilun simulation is not a fully relativistic
simulation of our Universe, but it relies on the approxi-
mation of the silent universe [15]. Other approaches and
approximations to the relativistic numerical cosmology,
such as the one based on the weak-field limit do not show
the phenomenon of emerging spatial curvature [14] and
therefore do not provide the solution of the Hubble constant
problem. At this stage, the phenomenon of the emerging
spatial curvature does seem to be a viable and attractive
explanation of the Hubble constant problem. In fact, one
can turn the argument around and argue that the presence of
the tension between low and high-redshift measurements is
moderate (indirect) evidence for the phenomenon of
emerging spatial curvature. From the point of view of
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astronomical observations, we still do not have a direct
measurement of the spatial curvature at low-redshifts.
Currently, the low-redshift measurements do not provide
any direct measurement of the spatial curvature (available
constraints merely result from fitting the FLRW geometry
to the data, which is not equivalent to a direct measure-
ment). The situation will change in a few years time with
the data from the satellite Euclid [8,53].
In summary, the results presented in this paper show that

the phenomenon of emerging spatial curvature can provide
the solution the Hubble constant problem and alleviate the
tension between the low and high-redshift measurements,
but it will take a few more years of theoretical and
observational work before we will be able to confirm with

full certainty that this phenomenon does in fact occur in our
Universe.
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