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Primordial black holes (PBHs) can be produced by the perturbations that exit the horizon during the
inflationary phase. While inflation models predict the power spectrum of the perturbations in Fourier space,
the PBH abundance depends on the probability distribution function of density perturbations in real space.
To estimate the PBH abundance in a given inflation model, we must relate the power spectrum in Fourier
space to the probability density function in real space by coarse graining the perturbations with a window
function. However, there are uncertainties on what window function should be used, which could change
the relation between the PBH abundance and the power spectrum. This is particularly important in
considering PBHs with mass 30 M⊙, which account for the LIGO events because the required power
spectrum is severely constrained by the observations. In this paper, we investigate how large an influence
the uncertainties on the choice of a window function has over the power spectrum required for LIGO PBHs.
As a result, it is found that the uncertainties significantly affect the prediction for the stochastic gravitational
waves induced by the second-order effect of the perturbations. In particular, the pulsar timing array
constraints on the produced gravitational waves could disappear for the real-space top-hat window
function.
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I. INTRODUCTION

The LIGO-Virgo Collaboration has detected several
events of gravitational waves (GWs) that are produced
through mergers of black holes (BHs) or neutron star(s)
[1–6]. Some events are caused by the mergers of BHs of
which the masses are about 30 M⊙ (GW150914 [1],
GW170104 [3], and GW170814 [4]), which might be
too heavy for the stellar BHs produced in the usual
metallicity environment (Z ∼ Z⊙) [7–9].1 On the other
hand, primordial black holes (PBHs) [11–13] can be
30 M⊙ because the mass of PBHs is determined by the
scale of perturbations producing PBHs. Therefore, PBHs
are good candidates for the 30 M⊙ BHs detected by LIGO
[14–18].
PBHs can be produced by the large perturbations that

exit horizon during inflation [19–21]. If we determine an
inflation model, we can predict the power spectrum of the
perturbations in Fourier space. On the other hand, the PBH
abundance is determined by the probability distribution
function (PDF) of perturbations in real space. To relate the
power spectrum in Fourier space to the PDF in real space,
we must apply the coarse-graining procedure with window
functions. Despite the existence of some window functions,

there is not a broad consensus on what window function
should be used. Moreover, a different choice of a window
function leads to a different relation between the PBH
abundance and the required power spectrum, though, in
realistic situations, the PBH abundance should have a one-
to-one correspondence with the power spectrum. This
causes an uncertainty in the estimation of the PBH
abundance for a given power spectrum. In particular, in
the context of the PBHs for LIGO events, the relation is
essential for predicting the observable quantities such as the
μ-distortion [22–24] and the stochastic GWs [25–30]
produced by the perturbations required for LIGO PBH
formation. The perturbations producing 30 M⊙ PBHs, the
scales of which are k ∼ 106 Mpc−1, cause the μ-distortion
in the cosmic microwave background (CMB) spectrum and
the stochastic GWs from their second-order effect. The
produced μ-distortion and stochastic GWs are constrained
by COBE/FIRAS [22] and the pulsar timing array (PTA)
experiments [31–33], respectively. In the previous paper
[29], the Gaussian window function was used, and it
was shown that the peak of the power spectrum at k ∼
106 Mpc−1 must be rapidly damped on both the larger and
the smaller scales to avoid μ-distortion and the PTA
constraints. This means that, in the case with the
Gaussian window function, the PBH mass spectra must
have a sharp peak around 30 M⊙ and cannot extend to the
lighter mass range such as Oð1Þ M⊙ or the heavier mass

1BHs produced in a low-metallicity environment are one of the
candidates for 30 M⊙ BHs detected by LIGO [10].
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range such as Oð1000ÞM⊙. Since LIGO has a potential to
detect GWs produced by the mergers of such light or heavy
BHs, it is important to make clear how much the power
spectra required for LIGO PBHs change depending on the
choice of window function.
In this paper, we take three commonly used window

functions, the real-space top-hat window function,
Gaussian window function, and Fourier (k)-space top-hat
window function, as concrete examples. We investigate the
uncertainties on the observable quantities originating from
those on the choice of window function by calculating the
necessary perturbations for LIGO PBHs and predicted
observable quantities with each window function.

II. FORMULAS FOR PBH FORMATION

In this section, we summarize the basic formulas for
PBH formation.
In this paper, we focus on PBHs produced during the

radiation-dominated era.2 When sufficiently large pertur-
bations reenter the horizon, the gravity of the overdense
regions can overcome the radiation pressure and collapse to
PBHs. The threshold for the PBH formation has been
originally estimated with a simple analysis as δc ¼ 1=3
[13] and then numerically calculated by several authors as
0.4≲ δc ≲ 0.6 [37–40], where δc is the threshold of the
density perturbations in the comoving gauge at the horizon
reentry. We stress again that, although the authors of the
numerical simulations assume density profiles in the real
space and take the real-space top-hat window function
when they relate the density profile to the threshold
[37–40], it is not clear what window function we should
take when we relate the power spectra in the Fourier space
to the PDF. We conservatively take δc ¼ 0.4 as a fiducial
value in the following.3

The mass of a PBH is nearly equal to the horizon mass at
the horizon reentry of the perturbation. The mass is related
to the scale of the perturbation as

M ¼ γρ
4πH−3

3

����
k¼aH
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γMeqffiffiffi
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6.5 × 10−9 Hz

�
−2
; ð2Þ

where the corresponding frequency, f ≡ k=2π, has been
derived for later convenience. The subscript “eq”means the

value at the matter-radiation equality time. For example,
Meq is the horizon mass at the equality time. g� (g�;eq) is the
effective number of relativistic degrees of freedom con-
tributing to the radiation energy density at the PBH
formation (at the equality time). γ indicates the ratio of
the PBH mass to the horizon mass at the horizon reentry.
Although the value of γ is estimated as γ ≃ 0.2 with
the simple analysis [13], γ depends on the detail of the
gravitational collapse and still has uncertainties. There-
fore, in addition to the case with γ ¼ 0.2, we also consider
the cases with γ ¼ 1 for a conservative discussion in
this paper.
If the perturbations follow the Gaussian PDF,4 the PBH

production rate βðMÞ is given by [13]5

βðMÞ ¼
Z
δc

dδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ðMÞ

p e
− δ2

2σ2ðMÞ ≃
1ffiffiffiffiffiffi
2π

p 1

δc=σðMÞ e
− δ2c
2σ2ðMÞ:

ð3Þ

σ2ðMÞ is the mean square of coarse-grained density
perturbations with the smoothing scale k−1 at the horizon
reentry, which is given by [46]

σ2ðMðkÞÞ ¼ hδ2ðR ¼ k−1; x; η ¼ k−1Þi; ð4Þ

where R is the smoothing scale and η is the conformal
time δðR; x; ηÞ is the coarse-grained density perturbations
at η, which is defined with a window function WðR; xÞ as

δðR; x; ηÞ≡
Z

WðR; jx − x0jÞδðx0; ηÞd3x0: ð5Þ

The Fourier component of δðR; x; ηÞ is given by

δðR; k; ηÞ≡
Z

d3xδðR; x; ηÞe−ik·x

¼ W̃ðR; kÞδðk; ηÞ; ð6Þ

where δðk; ηÞ and W̃ðR; kÞ are the Fourier components of
δðx; ηÞ and WðR; xÞ. Then, we finally get [47,48]

σ2ðMðkÞÞ ¼
Z

d ln qW̃2ðk−1; qÞPδðq; η ¼ k−1Þ

¼
Z

d ln qW̃2ðk−1; qÞ 16
81

ðqk−1Þ4

T2ðq; η ¼ k−1ÞPRðqÞ; ð7Þ
2PBHs produced during the matter-dominated era are dis-

cussed in Refs. [34–36].
3If δc ¼ 0.6 is taken instead, the amplitude required for the

LIGO PBHs becomes larger, and constraints from μ-distortion
and PTA observations become more severe.

4The case in which there are non-Gaussianities is discussed in
Refs. [41–45].

5More precisely, β is the production rate per logarithmic
Hubble time interval, i.e., d lnH−1 (¼ d lnM).
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where Tðk; ηÞ is the transfer function defined as

Tðk; ηÞ ¼ 3
sinðkη= ffiffiffi

3
p Þ − ðkη= ffiffiffi

3
p Þ cosðkη= ffiffiffi

3
p Þ

ðkη= ffiffiffi
3

p Þ3 : ð8Þ

The transfer function describes the evolution of the sub-
horizon modes. The expression for the transfer function in
Eq. (8) is valid only during the radiation-dominated era,
which is the case we consider here.6 Pδðk; ηÞ andPRðkÞ are
the power spectra of the density perturbations and curvature
perturbations, where PRðkÞ is the power spectrum in the
superhorizon limit. Although it is not clear what window
function should be used, the value of βðMÞ significantly
depends on the shape of the window function. This is the
main point of this paper.
The current fraction of dark matter (DM) in PBHs is

given by

fðMÞ ≃ ρPBHðMÞ
ρm

����
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ð9Þ

where fðMÞ≡ 1
ΩDM

dΩPBH
d lnM and ρPBHðMÞ≡ d ρPBH

d lnM are the
differential mass function of the PBH DM fraction and
the PBH energy density, respectively. The subscripts “m”
and “DM” mean the matter (baryonþ DM) and DM (DM
only), with ΩDMh2 ≃ 0.12 [49]. TM represents the temper-
ature at which the PBHs with mass M are produced. Since
fðMÞ is the differential mass function, the total fraction of
DM in PBHs is given by

ΩPBH;tot

ΩDM
¼

Z
d lnMfðMÞ: ð10Þ

III. PROPERTIES OF WINDOW FUNCTIONS

In this section, we discuss the properties of the window
functions. We take the real-space top-hat window function,
Gaussian window function, and k-space top-hat window
function as concrete examples. The window functions are
given as follows,

real-space top-hat window function:

WðR; xÞ ¼
�
4π

3
R3

�
−1
ΘðR − xÞ; ð11Þ

W̃ðR; kÞ ¼ 3

�
sinðkRÞ − kR cosðkRÞ

ðkRÞ3
�
; ð12Þ

Gaussian window function:

WðR; xÞ ¼ ðð2πÞ3=2R3Þ−1 exp
�
−

x2

2R2

�
; ð13Þ

W̃ðR; kÞ ¼ exp

�
−
ðkRÞ2
2

�
; ð14Þ

k-space top-hat window function:

WðR; xÞ ¼ 1

2π2R3

�
sinðxR−1Þ − xR−1 cosðxR−1Þ

ðxR−1Þ3
�
; ð15Þ

W̃ðR; kÞ ¼ ΘðR−1 − kÞ; ð16Þ

where ΘðxÞ is the Heaviside step function. Note that, in
the case of the real-space top-hat window and the Gaussian
window, the normalizations of WðR; xÞ are determined
to satisfy

R
d3xWðR; xÞ ¼ 1. On the other hand, in the

case of the k-space top-hat window, since
R
d3xWðR; xÞ

does not converge, the normalization of WðR; xÞ is deter-
mined by the normalization of W̃ðR; kÞð¼ ΘðR−1 − kÞÞ.
Then, all three window functions given here satisfy
W̃ðR; k ¼ 0Þ ¼ 1.
To see the window function dependence, we consider a

scale-invariant power spectrum of the curvature perturba-
tions, PRðkÞ ¼ As, as a simple toy example. Figure 1
shows the integrand of Eq. (7) in this toy example with each
window function, where As is normalized as As ¼ 1 in this
figure. The integrand with the real-space top-hat window
function extends to the small scale (q > 1). On the other
hand, the integrand with the k-space top-hat window
function has a cutoff at q ¼ 1. The case with the

FIG. 1. The integrands of Eq. (7) with k ¼ 1 and a scale-
invariant power spectrum (As ¼ 1). A blue line shows the case
with the real-space top-hat window function. An orange line
shows the case with the Gaussian window function. A green line
shows the case with the k-space top-hat window function.

6Note that if we take the Gaussian or the k-space top-hat
window function the transfer function is not important. This is
because, in the case with the two window functions, the density
perturbations coarse grained with the horizon scale are insensitive
to the subhorizon modes.
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Gaussian window function corresponds to the intermediate
case. Doing the integral in Eq. (7), we can derive the
relation between σ2ðMðkÞÞ and As with each window
function as

σ2ðMðkÞÞ ¼
8<
:

1.06As ðreal-space top hatÞ
0.0867As ðGaussianÞ
0.0472As ðk-space top hatÞ:

ð17Þ

The difference of the coefficients in front of As is due to the
difference of the integrands on the small scale (q > 1).
Here, let us mention the uncertainties in the relation

between the smoothing scale and PBH mass. The volumes
of the real-space top-hat and the Gaussian window func-
tions are related to the normalized window functions as
[46,50]

WðR; xÞ ¼
8<
:

1
VðRÞΘðR − xÞ ðreal-space top hatÞ
1

VðRÞ exp ð− x2

2R2Þ ðGaussianÞ:
ð18Þ

Then, we get the volumes as

VðRÞ ¼
�
4πR3=3 ðreal-space top hatÞ
ð2πÞ3=2R3 ðGaussianÞ: ð19Þ

On the other hand, it is not straightforward to define the
volume of the k-space top-hat window function becauseR
d3xWðR; xÞ diverges. One way to define the volume is to

use the relationWðR; 0ÞVðRÞ ¼ 1, which is satisfied in the
case of the real-space top-hat and Gaussian window
functions. Following this prescription, we can define the
volume as [50]

VðRÞ ¼ 6π2R3 ðk-space top hatÞ: ð20Þ

In the context of the halo formation, it is conventional to
relate a mass included in an overdense region to a
smoothing scale as MðRÞ ¼ VðRÞρ̄, where ρ̄ is the mean
mass density at some given time [46,50]. On the other hand,
in the context of the PBH formation, it is conventional to
identify the horizon scale with the smoothing scale and
define the mass of the PBH as Eq. (1) regardless of the
window functions [48,51–53]. In this paper, we follow the
convention of the PBH formation and assume that the value
of γ does not depend on the choice of window function for
simplicity because there is no study discussing how much
the relation between the PBHmass and corresponding scale
depends on the choice of window function so far.
Finally, let us summarize the features of each window

function. The real-space top-hat window function is often
used because the relation between the mass of objects and
the smoothing scale is unambiguously determined.
However, as we can see in Fig. 1, the coarse-grained

density perturbations are sensitive to the modes well inside
the horizon, and the careful treatments about the subhor-
izon evolution of the perturbations are needed, such as
multiplying the transfer function given by Eq. (8). The
Gaussian window function is also often used because it is
easy to handle analytically in both the real space and the
Fourier space. The k-space top-hat window function is used
in the rederivation of the Press-Schechter mass function
[54,55]. This is because if we use the k-space top-hat
window function the trajectories of the density perturba-
tions versus the smoothing scales are a true Brownian
random walk and become easy to treat. However, in the
case of this window function, there is an ambiguity on how
to define the mass of the object with a given smoothing
scale.

IV. CONSTRAINTS ON PBH ABUNDANCE

In this section, we describe the constraints on the power
spectra of the perturbations producing the 30 M⊙ PBHs.
According to Ref. [16], if fð30 M⊙Þ ∼Oð10−3Þ, PBHs can
explain the merger rate expected by LIGO-Virgo Collabo-
ration (12-213 Gpc−3 yr−1 [3]). Substituting fð30 M⊙Þ ¼
10−3 into Eq. (9), we can estimate βð30 M⊙Þ ≃Oð10−11Þ
for LIGO PBHs. From Eq. (7), we can also estimate the
power spectrum required to produce LIGO PBHs as
PRð106 Mpc−1Þ ∼Oð0.01Þ. Since the perturbations for
LIGO PBHs are large, we cannot neglect the second-order
effect of the perturbations, which produces μ-distortion
[22–24] and the stochastic GWs constrained by PTA
experiments [25–28].7

A. μ-distortion

Small-scale perturbations dissipate through the photon
diffusion, which distorts the CMB spectrum and deviates it
from the Planck distribution. The relation between
the perturbation scale and the redshift when the diffusion
of the perturbations occur most efficiently is numerically
calculated as [23]

zpeak ≃ 4.5 × 105
�

k
103 Mpc−1

�
2=3

: ð21Þ

From Eq. (21), we can see that the perturbations on
50 Mpc−1 < k < 104 Mpc−1 are diffused after the turn-off
of the double Compton scattering interaction (z ∼ 2 × 106

[59]) but before the turn-off of the Compton scattering

7In addition to the μ-distortion and PTA constraints, there are
constraints from the current abundance of light elements as PR <
Oð0.01Þ on 104 Mpc−1 ≲ k ≲ 105 Mpc−1 [56–58]. Although the
constrained scale is a little smaller than the scale constrained by
the μ-distortion, the constraint is weak and has some uncertainties
compared to the μ-distortion constraints. Hence, we neglect the
constraints from the current abundance of light elements in this
paper.
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interaction (z ∼ 5 × 104 [59]). During this phase, while the
diffusion of perturbations injects energy from perturbations to
the background and the photon distribution goes to kinetic
equilibrium due to the Compton scattering, the number of
photons remains constant because there is no number-chang-
ing interaction such as the double Compton scattering. This
is the reason why the perturbations on 50 Mpc−1 < k <
104 Mpc−1 make the photon distribution follow the Bose
distribution with a finite chemical potential. The parameter of
μ-distortion, μ, is defined as

f ¼ 1

e
p
T−μ − 1

; ð22Þ

where f is the CMB photon distribution and p and T are the
photon momentum and temperature. This μ parameter is
constrained by COBE/FIRAS as [22]

jμj < 9 × 10−5: ð23Þ

According to Ref. [23], as for the monochromatic power
spectra defined as PRðkÞ ¼ Aδðlog k − log k�Þ, the relation
between the μ parameter and the amplitude A is given by

μ ≃ 2.2A

�
exp

�
−

k̂�
5400

�
− exp

�
−
�
k̂�
31.6

�2��
; ð24Þ

where k̂ ¼ k Mpc.As for general curvature power spectra, the
μ parameter is given by

μ ≃ 2.2
Z

∞

kmin

PRðkÞ
�
exp

�
−

k̂
5400

�

− exp

�
−
�

k̂
31.6

�2��
d ln k; ð25Þ

where kmin ≃ 1 Mpc−1.

B. Stochastic GWs from second order

Although GWs (tensor perturbations) are not produced
by linear curvature (scalar) perturbations, GWs are pro-
duced by the second-order curvature perturbations. In this
subsection, we briefly review the formula for the stochastic
GWs induced by the second-order curvature perturbations
during the radiation-dominated era (see, e.g., Refs. [25–29]
for details).
When the perturbations cross the sound horizon, the

stochastic GWs are efficiently induced by the source terms
from the second-order perturbations. After the perturba-
tions renter the horizon, the source terms are irrelevant to
the GWs, and the induced GWs behave as radiation without
any sources; that is, the energy density of the induced GWs
is proportional to a−4. Therefore, the density parameter of
the induced GWs is given by

ΩGWðη0;kÞh2¼
�
a2cHc

a20H0

�
2

ΩGWðηc;kÞh2

¼
�
g�s;0
g�s;c

�
4=3g�;c

g�;0
Ωr;0h2ΩGWðηc;kÞ

¼0.83

�
gc

10.75

�
−1=3

Ωr;0h2ΩGWðηc;kÞ; ð26Þ

where ΩGWðη0; kÞ is the differential density parameter
related to the total density parameter as

ΩGWðη0Þ ¼
Z

d ln kΩGWðη0; kÞ: ð27Þ

ηc (before the matter-radiation equality time ηeq) represents
the conformal time when the induced GWs start to behave
as radiation without any source. a, H, and g�s are the scale
factor, the Hubble parameter, and the effective number of
relativistic degrees of freedom contributing to the entropy
density. The subscripts “0” and “c” mean the values at the
present and ηc, respectively. We assume that the PBH is
produced before the electron annihilation (T > 0.1 MeV)
and g�;c ¼ g�s;c is satisfied. To derive the third line of
Eq. (26), we have substituted g�;0 ¼ 3.36 and g�s;0 ¼ 3.91
[60]. We take g�;c ¼ 10.75 for LIGO PBHs. Ωr;0h2ð≃4.2 ×
10−5Þ is the current density parameter of radiation.8 The
density parameter at ηc is given by [29]

ΩGWðηc;kÞ¼
8

243

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2−ð1−u2þv2Þ2

4vu

�
2

×PRðkvÞPRðkuÞI2ðv;u;kηcÞ; ð28Þ

where the overline represents the time average over the
oscillations. Iðv; u; xÞ is defined as

Iðv; u; xÞ≡
Z

x

0

dx̄ x̄ sinðx − x̄Þ½3Ψðvx̄ÞΨðux̄Þ

þ x̄fΨðvx̄ÞuΨ0ðux̄Þ þ vΨ0ðvx̄ÞΨðux̄Þg
þx̄2uvΨ0ðux̄ÞΨ0ðvx̄Þ�; ð29Þ

where ΨðxÞ is given by

8In this paper, we assume neutrinos are massless. If we assume
the neutrinos behave as nonrelativistic matter at the present,
Eq. (26) should be modified as

ΩGWðη0; kÞh2 ¼ 1.4

�
gc

10.75

�
−1=3

Ωr;0h2ΩGWðηc; kÞ;

where Ωr;0h2 ¼ 2.5 × 10−5. We can see that the factor in front of
ΩGWðηc; kÞ is the same, even if we assume neutrinos are non-
relativistic at present.
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ΨðxÞ ¼ 9

x2

�
sinðx= ffiffiffi

3
p Þ

x=
ffiffiffi
3

p − cosðx=
ffiffiffi
3

p
Þ
�
: ð30Þ

The frequency of the induced GWs corresponds to the scale
of the perturbations producing PBHs. In the case of 30 M⊙
PBHs, the frequency of the induced GWs is f ∼ nHz [see
Eq. (2)], which is close to the detectable frequency of the
PTA experiments (f ≳ nHz) [31–33].

V. SHARPNESS OF POWER SPECTRUM

In the previous section, we have showed that the
perturbations producing 30 M⊙ PBHs (k ∼ 106 Mpc−1)
are constrained by μ-distortion observations from the larger
scale (k < 104 Mpc−1) and PTA observations from the
smaller scale (k > 106 Mpc−1 or f > nHz). Hence, the
power spectrum must have a peak at k ∼ 106 Mpc−1. We
show that the required sharpness of the peak depends on the
choice of a window function.
In this section, we investigate how sharp the power

spectrum should be in each window function. To discuss
this issue quantitatively, we parametrize the shape of the
power spectrum around the peak scale as

PR;peakðkÞ ¼
(
A�ð kk�Þx ðk < k�Þ
A�ð kk�Þ−y ðk > k�Þ;

ð31Þ

where k� and A� are the pivot scale and the amplitude of the
power spectrum at the pivot scale. The parameters x and y
indicate the tilts of the spectrum. We take 0 < x < 8 and
0 < y < 8 as concrete values. Since the power spectrum on
the large scale (k < 1 Mpc−1) is determined by the CMB
and the large-scale structure (LSS) observations as PR ≃
2 × 10−9 [61–63], we assume this parametrization is valid
only on the small scale (k > 1 Mpc−1). We take the shape
of the power spectrum on all scales as

PRðkÞ ¼
�
2 × 10−9 ðk < kcÞ
PR;peakðkÞ ðk > kcÞ;

ð32Þ

where kc is defined as the scale on which PR;peakðkcÞ ¼
2 × 10−9 and the tilt of the power spectrum on large scales
is neglected for simplicity. To be consistent with the
observations on large scales, the parametrized power
spectrum must be

kc > 1 Mpc−1

⇒ A�

�
1 Mpc−1

k�

�
x

< 2 × 10−9: ð33Þ

Here, we explain the procedure. First, we input the
values of x and y and search for k� and A� in which fðMÞ

has its maximum at 30 M⊙,
9 and the maximum height is

fð30 M⊙Þ ¼ 10−3 [16]. Next, using Eq. (31) and the
derived parameter sets, ðx; y; k�; A�Þ, we calculate the μ
parameter with Eq. (25) and the stochastic GWs with
Eq. (28). Comparing the resultant values of μ and ΩGWh2

with the observational constraints, we check whether or not
the inputs x and y are consistent with the observations. In
addition, we check whether the derived parameter sets,
ðx; y; k�; A�Þ, are consistent with Eq. (33). Then, we change
the inputs x and y and repeat the above steps. Finally, we
derive the allowed parameter region of x and y in which
30 M⊙ PBHs for LIGO events can exist without contra-
dicting the observations.
To take into account the uncertainties of the PBH

formation other than those originating from the choice
of a window function, we take the values of γ as

case ðiÞ∶ γ ¼ 0.2;

case ðiiÞ∶ γ ¼ 1:

A. Concrete examples

Before we discuss the main results of the allowed
parameter region of x and y, we consider an example with
concrete values, x ¼ 1.5 and y ¼ 1.5, in order to show the
part of the procedure. Figures 2 and 3 show the power
spectra of the curvature perturbations with x ¼ 1.5 and
y ¼ 1.5 for LIGO PBHs and the induced stochastic GWs.
In Fig. 2, we can see that the values of k� and A� depend

on the choice of a window function. This is because the
contribution from the subhorizon modes depends on the
window function. For example, in the case of the real-space
top-hat window function, the subhorizon modes have a
large contribution to the coarse-grained density perturba-
tions compared to the case with the other window functions
(see Fig. 1), and therefore k� is large, and A� is small.
In Fig. 2, for comparison, we also show the μ-distortion
constraints on the monochromatic power spectra with a red
shaded region using Eq. (24). Although, in the case of
nonmonochromatic power spectra, the intersection between
the lines and the red shaded region does not necessarily
mean an inconsistency with the observations and vice
versa, the intersection can be used for a rough estimate
of the consistency with μ-distortion observation even in this
case. For example, as for the solid lines in Fig. 2 [case (i)],
the μ parameters are μ ¼ 6.0 × 10−6 for the real-space top-
hat window function (blue solid), μ ¼ 1.8 × 10−4 for the
Gaussian window function (orange solid), and μ ¼ 4.9 ×
10−4 for the k-space top-hat window function (green solid).
In this case, only the result with the real-space top-hat

9Although LIGO-Virgo has detected several light BHs with
∼10 M⊙ so far [2], we focus on only the 30 M⊙ BHs in this
paper.
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window function is consistent with the μ-distortion obser-
vation by COBE/FIRAS (jμj < 9 × 10−5) [22]. In Fig. 2,
we can also find that the peak scales of the curvature
perturbations in case (ii) are smaller than those in case
(i) because the relation between the PBH mass and the
perturbation scale depends on the value of γ as Eq. (1).
In Fig. 3, we plot the PTA constraints with a red shaded

region. Unlike in the case of the μ-distortion constraints, the
intersection between the lines of the induced stochastic
GWs and the red shaded region means that the prediction of
induced GWs is inconsistent with the observations.10 In
particular, in case (ii), the peak scale is almost in the
observable range of the PTA, and therefore the PTA
constraints become more severe than those in case
(i) (see the results in the next subsection).
From Figs. 2 and 3, we can see that the required

amplitude of the power spectrum is smallest in the case
of the real-space top-hat window function and hence the
induced GW is smallest, too. This means that the

perturbations with the real-space top-hat window function
can avoid the constraints more easily than those with the
other window functions.

B. Results

Now, let us discuss the main results of the allowed region
of x and y. Figure 4 shows the summary of the constraints
on the sharpness of the power spectra of the curvature
perturbations. The lower bounds on x and y come from the
μ-distortion/CMB anisotropy observations and the PTA
observations, respectively. Note that, in Fig. 4, there is no
lower bound on y for the real-space top-hat window
function. This is because the induced GWs at the peak
frequency in both cases (i) and (ii) are smaller than the
upper limits from the PTA observations. Therefore, if the
real-space top-hat window function is taken, the power
spectrum needs no suppression on the smaller-scale side of
the peak scale, and therefore the PBH mass spectrum could
extend from 30 M⊙ to the lighter mass range. On the other
hand, in the case of the Gaussian and the k-space top-hat
window functions, the value of y is constrained by the PTA
observations. In particular, in case (ii), the PTA observa-
tions severely constrain the value of y and exclude all the
parameter region (0 < x < 8 and 0 < y < 8).
Finally, let us summarize the constraints on x and y:
case (i):

x≳ 1.1 ðreal-space top-hat windowÞ;
x≳ 1.7; y≳ 3.1 ðGaussian windowÞ;
x≳ 2.0; y≳ 2.2 ðk-space top-hat windowÞ;

FIG. 3. Energy density parameters of the GWs induced by the
curvature perturbations shown in Fig. 2. The colors of lines in this
figure correspond to the colors of lines in Fig. 2. For example, the
blue solid line shows the GWs induced by the curvature
perturbations plotted in Fig. 2 with the blue solid line. The
red shaded region is excluded by the current PTA observations
[31–33]. The cyan shaded region is excluded by the current big
bang nucleosynthesis observations [64,65], and the cyan dashed
line shows the upper bound on the GW density parameter from
the CMB observations [65]. A black dashed line shows the future
prospects of SKA [66,67].

FIG. 2. Power spectra of the curvature perturbations required
for LIGO PBHs (fð30 M⊙Þ ≃ 10−3) with each window function.
In this figure, we take x ¼ 1.5 and y ¼ 1.5. The blue solid
(dotted) line shows the power spectra with the real-space top-hat
window function with γ ¼ 0.2 (γ ¼ 1). The orange solid (dotted)
line shows the power spectra with the Gaussian window function
with γ ¼ 0.2 (γ ¼ 1). The green solid (dotted) line shows the
power spectra with the k-space top-hat window function with
γ ¼ 0.2 (γ ¼ 1). The gray shaded region is excluded by the CMB
and LSS observations, which are given by Eq. (33). For
comparison, we show the constraints from μ-distortion observa-
tions by COBE/FIRAS (jμj < 9 × 10−5 [22]) in the case of the
monochromatic power spectrum with the red shaded region,
which is given by Eq. (24). Note that, since the power spectra we
consider are not monochromatic functions, the intersection
between the lines and the red shaded region does not necessarily
mean an inconsistency with the observations and vice versa.

10If the frequency dependence of the stochastic GWs is
ΩGWh2 ∝ f2=3, which is predicted from the supermassive BH
binaries, the PTA constraints could possibly become more severe
[31–33]. In this paper, since we consider the peaklike GW
spectra, we take the results of the general spectra.
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case (ii):

x≳ 1.0 ðreal-space top-hat windowÞ;
no allowed region ðGaussian windowÞ;
no allowed region ðk-space top-hat windowÞ:

From these results, we can see that x≳ 1 is needed for any
window functions. This means that a single-field slow-roll
inflation is not likely to be appropriate for the LIGO PBHs
because, during the usual slow-roll period, the tilt of curvature
perturbations ns is described with the slow-roll parameters
[ϵ; ηð≪ 1Þ] as ns ¼ 1 − 6ϵþ 2η. Thens corresponds to the x
and y as ns − 1 ¼ x or y, and it is difficult to achieve x > 1
during the usual slow-roll period. Instead, inflation models
with multiple fields [19,29,68] and inflation models that
violate the usual slow-roll conditions [69–75] are favored.

VI. CONCLUSIONS

The LIGO-Virgo Collaboration has detected 30 M⊙
BHs, and PBHs are good candidates for such BHs.
PBHs can be produced by the large curvature perturbations
that exit the horizon during the inflation era and reenter the
horizon during the radiation-dominated era. The power
spectrum of the curvature perturbations for LIGO PBH
formation has a peak at k ∼ 106 Mpc−1, and its amplitude
is PR ∼Oð0.01Þ. Such power spectra are severely
constrained by the μ-distortion and PTA observations.

Therefore, when we discuss the PBHs for LIGO events,
it is important to investigate the relation between the PBH
abundance and the power spectrum.
While we can observe the mass spectra of BHs through

GW detections, inflation models predict the power spec-
trum of the curvature perturbations. There are some
uncertainties in the formulas that relate the power spectrum
to the mass spectrum of PBHs. In particular, since the PBH
abundance depends on the PDF of the density perturbations
in real space, we must calculate the coarse-grained density
perturbations with a window function. However, it is
nontrivial what window function should be used.
Although the PBH abundance should have a one-to-one
correspondence with the power spectra in realistic situa-
tions, there are uncertainties on the relation between the
PBH abundance and the power spectra due to the uncer-
tainties on the choice of a window function. In this paper,
we have investigated how much the uncertainties on the
choice of a window function affect the power spectra
required for LIGO PBHs and the induced observable
quantities such as the μ-distortion and stochastic GWs.
As a result, we have found that the uncertainties on the

choice of a window function lead to large uncertainties on
the power spectrum required for LIGO PBHs and the
induced observable quantities. In particular, if we take the
real-space top-hat window function, there are no constraints
from the PTAobservations on the power spectra. Thismeans
that there is a possibility of the PBHmass spectra extending
from 30 M⊙ to the lighter mass range. In other words, when
we discuss the possibility of the GWdetection by the PTA in
the context of LIGO PBHs, we should take care of the
uncertainties on the choice of the window functions.
Finally, let us mention some uncertainties that we do not

take into account in this paper. First, as we mentioned in
Sec. III, there are uncertainties on the relation between the
PBH mass and the smoothing scale. If we take the
convention used in the study of the halo formation unlike
the main body of this paper, the PTA constraints become
relatively severe in the case of the Gaussian and the k-space
top-hat window function. This is because the PBH with a
given mass should be produced by the smaller-scale
perturbations. Second, throughout this paper, we have
assumed that if fð30 M⊙Þ ∼Oð10−3Þ is satisfied, PBHs
can explain the LIGO events [16,76]. However, the results
in Refs. [16,76] are based on the assumption of the
monochromatic mass function of PBHs. In the case of
the broad mass spectrum, which corresponds to the case
with small x and y in Eq. (31), the relation between the
PBH abundance and the expected merger rate could
possibly be modified [76].11 Third, although we have

FIG. 4. Constraints on the sharpness of the power spectra of the
curvature perturbations [see Eq. (31) for the definition of x and y].
Each color corresponds to each window function: blue is the real-
space top-hat window, orange is the Gaussian window, and green
is the k-space top-hat window. Case (i): the shaded regions show
the regions excluded by the observations. The solid lines show
the boundaries of the excluded regions in case (i). Case (ii): the
hatched regions show the regions excluded by the observations.
The (blue) dotted line shows the boundary of the excluded region
in case (ii). Note that, in the case of the Gaussian and k-space top-
hat window function, all of the region is excluded by the
observations. (Hence, orange or green dotted lines are not plotted
in this figure.)

11Although the result strongly depends on the properties of the
PBH clustering, which have some uncertainties, the merger rate
in the case of the broad mass spectrum is calculated in
Refs. [77,78].
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assumed the Gaussian PDF in this paper, the non-
Gaussianity could change the results. If we consider the
non-Gaussianity, the relation between the PBH abundance
and the required power spectrum changes [41,42].
Depending on the amount of the non-Gaussianity, the
constraints from the PTA and the μ-distortion could be
significantly weakened [43–45].
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