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We investigate cosmological dynamics based on fðRÞ gravity in the Palatini formulation. In this study,
we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to
the form of the piecewise smooth dynamical system. This system is reduced to a 2D dynamical system of
the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee C0 extendibility of the
metric similarly as “Milne-like” Friedmann-Lemaître-Robertson-Walker spacetimes are C0-extendible. We
point out that importance of the dynamical system of the Newtonian type with nonsmooth right-hand sides
in the context of Palatini cosmology. In this framework, we can investigate singularities which appear in the
past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan
frames. We show that at each frame the topological structures of phase space are different.
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I. INTRODUCTION

Extended fðRÞ gravity models [1–14] are intrinsic or
geometric models of both dark matter and dark energy.
Therefore, the idea of relational gravity, in which dark
matter and dark energy can be interpreted as geometric
objects, is naturally realized in fðRÞ extended gravity.
The metric formulation of the extended gravity model

gives the fourth order field equations, except for some
cases, namely the Lovelock family of Lagrangians, where
the field equations are second order [15]. This difficulty is
solved by the Palatini formalism where the metric g and
symmetric connection Γ are assumed to be independent
variables. In this case, we get a system of second order
partial differential equations [16]. This formalism also
yields vacuum general relativity equations [17].
They are many papers about the Palatini formalism. In

Olmo’s paper [16], a review of the Palatini fðRÞ theories
appears. Papers [18,19] are about the scalar-tensor repre-
sentation of the Palatini theories. Studies about the exist-
ence of nonsingular solutions in Palatini gravity are in
[20,21]. The papers [22–26] are about black holes and their
singularities in the Palatini approach. Studies about the
choice of a conformal frame in the Palatini gravity are in
[27,28]. Compact stars in the Starobinsky model are
discussed in [29].

Conformal transformations became interesting after the
formulation of Weyl’s theory [30] aimed at unifying
gravitation and electromagnetism. A conformally invariant
version of special relativity was formulated in [31–33].
Another example of the development of Weyl’s theory is
the self-consistent, scale-invariant theory of Canuto et al.
[34]. In this theory, the astronomical unit of length is related
to the atomic unit by a scalar function which depends on the
spacetime point. This theory contains a running cosmo-
logical “constant” ΛðtÞ ¼ Λ0

t2
0

t2.
Recently, the most significant and important achieve-

ments appear in the context of the understanding of the
Palatini theory and their application to the cosmological
problem description of the evolution of the Universe
[1,12,16,35–38]. If we consider Friedmann-Robertson-
Walker (FRW) cosmological models in the Palatini frame-
work in the Einstein frame, one can obtain the exact formula
for the running cosmological constant parameter [39].
Cosmology is the physics of theUniverse but in opposition

to the physical system; we do not know the initial conditions
for theUniverse. Therefore, to explain the current state of the
Universe we consider all admissible physically initial con-
ditions and study all evolutional paths for the evolution of the
Universe in the universal cosmological time.
For this investigation of dynamics, the tools of the

dynamical system theory are especially interesting.
Dynamical system methods in the context of investigation
dynamics of fðRÞ gravity models have been used since
Carroll [14,40]. The dynamical system is a system of
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differential equations which describes the motion of the
points in the phase space [41]. In this approach, the evolution
of the Universe is represented by trajectories in the phase
space (spaces of all states of the system at any time). The
phase space is organized by the singular solution represented
by critical points (points inwhich thederivative of solutions of
the dynamical system is zero), invariant submanifolds (sub-
manifolds which are invariant under the action of the
dynamical system) and trajectories (geometrical representa-
tions of solutions of the dynamical system).Whole dynamics
can bevisualized in a geometrical way on the phase portrait—
a phase space of all evolutional paths for all initial conditions
[41]. We are looking for attractors (repellers) in the phase
space to distinguish some generic evolution scenarios for the
Universe [42].
Wedescribe effectively the cosmic evolution in termsof the

dynamical system of the Newtonian type. In this language,
the motion of a fictitious particle mimics the evolution of the
Universe and the potential contains all information needed for
studying its dynamics. The right-hand side of the system
cannot be a smooth function like for the cosmological
evolution governed by general relativity. However, in any
case, they are piecewise smooth functions. The context of the
application of the Palatini formalism in the investigation of
cosmological dynamics discovers the significance of new
types of dynamical systems with nonsmooth right-hand sides
[43]. It is interesting that cosmological singularities can be
simply characterized in terms of the geometry of the potential
VðaÞ, where a is the scale factor [43].
In this geometrical framework, singularities are mani-

fested by a lack of analyticity of a potential itself or its
derivativeswith respect to the scale factor a and a diagram of
the potential function (or its derivatives) possesses poles at
some values of scale factor a ¼ asing. Because the potential
function is an additive function of energy density compo-
nents, the discontinuities appearing on a diagram of the
potentialVðaÞ can be interpreted as a discontinuous jumping
of a potential part. This idea that a potential form possesses
some part which contains jump discontinuities can be
applied in different cosmological contexts. For example,
it was considered to characterize singularities in phantom
cosmologies [44].
Finite late-time singularities can be classified into six

categories according to divergences of physical character-
istics [45,46]:
(a) Type 0: “Big crunch.” The scale factor a is vanishing

and the Hubble parameter H, effective energy density
ρ and pressure p are blown up.

(b) Type I: “Big rip.” The scale factor a, ρ and p are blown
up. They are classified as strong [47,48].

(c) Type II: “Typical sudden.” The scale factor a, ρ and H
are finite, and _H and p are divergent. Geodesics are
not incomplete in this case [49–51].

(d) Type III: “Big freeze.” The scale factor a is finite and
H, ρ and p are blown up [49] or divergent [52]. In this

case, there is no geodesic incompleteness and they can
be classified as weak or strong [52].

(e) Type IV: “Generalized sudden.” The scale factor a, H,
ρ, p and _H are finite but higher derivatives of the scale
factor a diverge. These singularities are weak [53].

(f) Type V: “w singularities.” The cosmological time t is
finite, the scale factor a and ρ blow up, p vanishes and
a coefficient of the equation of state w ¼ p

ρ diverges.
These singularities are weak [54–56].

Following Królak [57], types 0 and I are strong, whereas
types II, III and IV are weak singularities.
The main aim of the paper is a study of the cosmological

equations based on fðRÞ gravity in the Palatini formalism
in both Einstein and Jordan frames. We want to show that
the topological structures of phase space are different in
these frames.
The order of this paper is as follows. In Sec. II, we

introduce the Palatini formalism in the context of cosmol-
ogy. We consider the Palatini formalism in cosmology in
the Jordan frame in Sec. III and in the Einstein frame in
Sec. IV. Section V is about differences between these
frames. The last section is our conclusions.

II. PALATINI FORMALISM: INTRODUCTION

The Palatini gravity action of fðR̂Þ gravity in the Jordan
frame is given by

S ¼ Sg þ Sm ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
fðR̂Þd4xþ Sm; ð1Þ

where R̂ ¼ gμνR̂μνðΓÞ is the Ricci scalar and R̂μνðΓÞ is the
Ricci tensor of a torsionless connection Γ [16,58]. To
simplify, we assume that 8πG ¼ c ¼ 1.
After variation with respect to both dynamical variables

g and Γ we obtain the field equations ðδS ¼ 0Þ, which are
the counterparts of the Einstein equations in the Palatini
formalism, and an additional equation which establishes
some relation between the metric and the connection,

f0ðR̂ÞR̂μν −
1

2
fðR̂Þgμν ¼ Tμν; ð2Þ

∇̂αð
ffiffiffiffiffiffi
−g

p
f0ðR̂ÞgμνÞ ¼ 0; ð3Þ

where Tμν ¼ − 2ffiffiffiffi−gp δLm
δgμν

is the matter energy momentum

tensor and ∇μTμν ¼ 0 and ∇̂α means that the covariant
derivative is calculated with respect to connection Γ. The
conservation equation ∇μTμν ¼ 0 is obtained from the
Bianchi’s identities ∇μðf0ðR̂ÞR̂μν − 1

2
fðR̂ÞgμνÞ ¼ 0.

From the trace of the metric field equation (2), we get an
additional equation, which is called the structural equation,
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f0ðR̂ÞR̂ − 2fðR̂Þ ¼ T; ð4Þ

where T ¼ gμνTμν.
The metric g is the FRW metric for which the line

element is given in the following form:

ds2¼−dt2þa2ðtÞ
�

1

1−kr2
dr2þr2ðdθ2þsin2θdϕ2Þ

�
; ð5Þ

where aðtÞ is the scale factor, k is a constant of spatial
curvature (k ¼ 0;�1) and t is the cosmological time.
In this paper, we assume perfect fluid with the energy-

momentum tensor

Tμ
ν ¼ diagð−ρ; p; p; pÞ; ð6Þ

where p ¼ wρ, w ¼ const is a form of the equation of state.
From the conservation equation Tμ

ν;μ ¼ 0 we get that
ρ ¼ ρ0a−3ð1þwÞ. As a result, trace T is in the form

T ¼
X
i

ρi;0ð3wi − 1ÞaðtÞ−3ð1þwiÞ: ð7Þ

In the above equation, parameters wi correspond to differ-
ent fluids described by the equation of state pi ¼ wiρi. We
assume baryonic and dark matter ρm in the form of dust
w ¼ 0 and dark energy ρΛ ¼ Λ with w ¼ −1.
A form of the function fðR̂Þ is unknown. In this paper we

assume that the polynomial form of the fðR̂Þ function is in
the form

fðR̂Þ ¼ R̂þ γR̂2: ð8Þ
The Lagrangian (8) can be treated as a deviation from the
lambda cold dark matter (ΛCDM) model by the quadratic
Starobinsky term. The Starobinsky model in the Palatini
formalism in the cosmological context is considered
in [21,43].
A solution of the structural equation (4) has the follow-

ing form:

R̂ ¼ −T ≡ 4Λþ ρm;0a−3: ð9Þ

Note that solution (9) has the same form in our model as in
the ΛCDM model.
The Friedmann equation in our model is given by

H2

H2
0

¼ b2

ðbþ d
2
Þ2
�
ΩγðΩm;0a−3 þΩΛ;0Þ2

ðK − 3ÞðK þ 1Þ
2b

þ ðΩm;0a−3 þ ΩΛ;0Þ þ
Ωr;0a−4

b
þ Ωk

�
; ð10Þ

where Ωk ¼ − k
H2

0
a2, Ωr;0 ¼ ρr;0

3H2
0

, Ωm;0 ¼ ρm;0

3H2
0

,

ΩΛ;0 ¼ Λ
3H2

0

, K¼ 3ΩΛ;0
ðΩm;0a−3þΩΛ;0Þ, Ωγ ¼ 3γH2

0, b¼f0ðR̂Þ¼1þ
2ΩγðΩm;0a−3þ4ΩΛ;0Þ, d¼ 1

H
db
dt ¼−2ΩγðΩm;0a−3þΩΛ;0Þ

ð3−KÞ, H0 is the present value of Hubble function,
ρr;0 is the present value of the energy density of radiation
and ρm;0 is the present value of the density of matter. For
simplicity, henceforth, we consider the model without
radiation (ρr;0¼0). Note that for γ¼0, we get the ΛCDM
model.

III. TYPES OF SINGULARITIES IN
COSMOLOGY IN THE PALATINI

FORMALISM IN THE JORDAN FRAME

In our model, new types of singularities appear which are
not contained in the classification of Nojiri et al. They are
nonisolated singularities. Our model with such singularities
is an example of a piecewise smooth dynamical system of
the cosmological origin.
Recently, a physically relevant solution of general

relativity of the typical black hole spacetimes which
admit C0-metric extensions beyond the future Cauchy
horizon has focused mathematicians’ attention [59]
because this discovery is related to the fundamental
issues concerning the strong cosmic censorship conjecture.
In his paper, Sbierski [59] noted that the Schwarzschild
solution in the global Kruskal-Szekeres coordinates is
C0-extendible.
Galloway and Ling [60] reviewed some aspects of

Sbierski’s methodology in the general relativity context
of cosmological solutions, and use similar techniques to
Sbierski in the investigation of the C0 extendibility of open
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmo-
logical models. They found that a certain special class of
open FLRW spacetimes, which we have dubbed “Milne-
like,” actually admits theC0 extension through the big bang.
[60–62].
Sbierski has presented recently a new version of his

original proof of the C0 inextendibility of the maximal
analytic Schwarzschild spacetime [63]. He deviates from
his original proof by using the result, established in
collaboration with Galloway and Ling [63], that given
the C0 extension of a globally hyperbolic spacetime, one
can find a timelike geodesic that leaves this spacetime.
Consequently, this result simplifies greatly the Sbierski
proof of the inextendibility through the exterior region of
the Schwarzschild spacetime.
The above-mentioned fact and phase portraits suggest

that models with the sewn type of singularity can belong to
a new class of metrics which admits C0 extension like in the
Milne-like model.
In our model, we find two new types of singularities,

which are a consequence of the Palatini formalism: the
sewn freeze and sewn sudden singularity. Generally, the
freeze singularity takes place when the scale factor a is
finite and H, ρ and p are blown up [49] or divergent [52],
and the sudden singularity is when the scale factor a, ρ and
H are finite and _H and p are divergent [45]. The freeze
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singularity appears when the expression b
bþd=2, in the

Friedmann equation (10), is equal to infinity. The evolution
of the scale factor of the model (10) through the sewn freeze
singularity is presented in Fig. 1. The sewn sudden
singularity appears when b

bþd=2 is equal to zero. This
condition is equivalent to b ¼ 0. The evolution of the
scale factor of the model (10) through the sewn sudden
singularity is presented in Fig. 2.
When the parameter γ is positive, the sewn freeze

singularity appears. In this case, the evolution of the
universe in our model and ΛCDM model are equivalent,
except the freeze singularity. The evolution starts from the
big bang and follows by the deceleration phase. Then the
acceleration phase appears in the neighborhood of the sewn
freeze singularity. In this singularity, the Hubble function

reaches the infinity value, which corresponds to the pole of
the potential function. In this time, the inflation appears.
After the inflation phase, the universe decelerates and the
evolution is similar to the evolution in the ΛCDM model.
The main physical effect of the sewn freeze singularity is
the inflation, but its influence on the evolution of the
universe is minor because the number of e-folds is too
small [64].
In the case of the negative parameter γ, the big bang does

not appear because it is replaced by the bounce, which
corresponds with the sewn sudden singularity. In this
singularity, the value of the Hubble function is zero.
When the bounce is reached, the acceleration and next
the deceleration phase appears. Afterwards, the behavior of
the universe is like that in the ΛCDM model.
After an explicit application of geodesic equation to the

Friedmann cosmology, one can find out whether geodesics
can be prolonged through a singularity, i.e., about the
geodesic incompleteness of the spacetime. Let us note that
geodesics do not feel a singularity at all—they are not
singular there since, for exampleas ¼ aðtsÞ ¼ const at t ¼ ts
being the time of a singularity, and there is no geodesic
incompleteness [65].
A deeper insight in the structure of singularities can be

obtained from the geodesic deviation equation (which
measures the behavior of a bunch of geodesics). It is
important that this equation does feel singularities since at
t ¼ ts the Riemann tensor Rαβμν → ∞. As an example we
see that with the sudden singularity it is possible to “go
through” the singularity since we have

Rα
0β0 ¼ −

ä
a
δαβ; _ð…Þ ¼ ∂

∂t ; ð11Þ

_uα ¼ −Rα
0β0nβ ∝ ä ∝ −

∂V
∂a ; ð12Þ

where δαβ is the Kronecker delta, uα is the four-velocity
vector and nα is the deviation vector separating neighboring
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FIG. 1. The left panel presents the illustration of the evolution of the scale factor of the model (10) for the positive parameter γ for the
flat universe. The right panel presents a close-up of the left panel in the neighborhood of the sewn freeze singularity (at the vertical

inflection point). The value of the parameter γ is chosen as 10−6 s2 Mpc2

km2 . The cosmological time is expressed in sMpc
100 km.
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FIG. 2. The illustration of the evolution of the scale factor of the
model (10) through the sewn sudden singularity (at the inflection
point) for the flat universe. The model with the negative
parameter Ωγ has a mirror symmetry with respect to the
cosmological time t. The bounce is at t ¼ 0. The value of

parameter γ is chosen as −10−6 s2 Mpc2

km2 . The cosmological time

is expressed in sMpc
100 km.
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geodesics (particle worldlines) which describes the propa-
gation of the distance between geodesics.
The curvature tensor feels, for example, the sudden

singularity because the Riemann tensor diverges to minus
infinity at t ¼ ts.
Physically, it means that the tidal forces which manifest

here as the (infinite) impulse which reverses (or stops) the
increase of separation of geodesics and the geodesics
themselves can evolve further—the universe can continue
its evolution through a singularity.
In our model, the sewn freeze singularity is a solution of

the following algebraic equation:

2bþ d ¼ 0 ð13Þ
or

−3K −
K

3ΩγðΩm þΩΛ;0ÞΩΛ;0
þ 1 ¼ 0; ð14Þ

where K ∈ ½0; 3Þ.
The solution of Eq. (14) is

Kfreeze ¼
1

3þ 1
3ΩγðΩmþΩΛ;0ÞΩΛ;0

: ð15Þ

We obtain an expression for a value of the scale factor at the
freeze singularity from Eq. (15),

afreeze ¼
�

1 −ΩΛ;0

8ΩΛ;0 þ 1
ΩγðΩmþΩΛ;0Þ

�1
3

: ð16Þ

We get the sewn sudden singularity when b ¼ 0. This
gets us the following algebraic equation:

1þ 2ΩγðΩm;0a−3 þ 4ΩΛ;0Þ ¼ 0: ð17Þ

From Eq. (17), we get the formula for the scale factor at a
sewn sudden singularity,

asudden ¼
�
−

2Ωm;0
1
Ωγ

þ 8ΩΛ;0

�
1=3

: ð18Þ

We can rewrite Eq. (10) as a dynamical system. We

choose a and y ¼ a0, where 0 ≡ d
dσ ¼

bþd
2

b
d

dH0t
is a new

parametrization of time, as the variables of the dynamical
system. We derive these variables with respect to the σ time
using Eq. (10) and we get the following equations of the
dynamical system:

a0 ¼ y; ð19Þ

y0 ¼ −
∂VðaÞ
∂a ; ð20Þ

where

V ¼ −
a2

2

�
ΩγðΩm;0a−3 þ 4ΩΛ;0Þ2

ðK − 3ÞðK þ 1Þ
2b

þ ðΩm;0a−3 þ 4ΩΛ;0Þ
�
: ð21Þ

We can treat the dynamical system [(19)–(20)] as a sewn
dynamical system [66,67]. In this case, the phase portrait is
divided into two regions: the first part is for a < asing and
the second part is for a > asing. Both parts are sewn along
the singularity.
For a < asing, we can rewrite the dynamical system

[(19)–(20)] in the corresponding form

a0 ¼ y; ð22Þ

y0 ¼ −
∂V1ðaÞ
∂a ; ð23Þ

where V1 ¼ Vð−ηða − asÞ þ 1Þ and ηðaÞ denotes the
Heaviside function.
For a > asing, we get in an analogous way the following

equations:

0.2 0.4 0.6 0.8 1.0 a

1.5

1.0

0.5

V a

0.155 0.160 0.165 0.170 0.175 0.180
a

0.65125

0.65120

0.65115

0.65110

0.65105

V a

FIG. 3. The left panel presents the diagram of the potential VðaÞ (21) for the positive parameter γ. The right panel presents a close-up
of the left diagram in the neighborhood of the sewn singularity. The vertical line represents the sewn freeze singularity. The parameter γ

is chosen as 10−6 s2 Mpc2

km2 . Note that for a ¼ asing, VðaÞ is undefined.
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a0 ¼ y; ð24Þ

y0 ¼ −
∂V2ðaÞ
∂a ; ð25Þ

where V2 ¼ Vηða − asÞ.
The diagrams of the potential function VðaÞ (21) are

presented in Fig. 3 for the positive parameter γ and in Fig. 4
for the negative parameter γ. The phase portraits of the

system can be constructed similarly as in classical mechan-
ics due to the particlelike description of dynamics. Phase
trajectories representing evolutionary paths can be obtained
directly from the geometry of potential function VðaÞ by
consideration of constant energy levels ða0Þ2=2þ VðaÞ ¼
E ¼ const ¼ −k=2. The reparametrized time parameter σ is
measured along the trajectories of the corresponding
dynamical system. It has a sense of a diffeomorphic trans-
formation beyond the singularity vertical line.
The potential function (21) is undefined at the singularity

pointa ¼ asing. Therefore, in phase portraits of the system in
the Jordan frame, there are two domains separated by a line
of singularity points. These phase portraits are constructed
by the application of the diffeomorphic reparametrization of
cosmological time beyond this singularity line and then C1

sewing of trajectories. As a result, we obtain that only one
unique trajectory moves at any point in the phase space.
The phase portraits for the system [(19)–(20)] for

positive Ωγ are presented in Fig. 5 and for negative Ωγ

in Fig. 6. The line of singularity points is represented by a
dashed line.
We find that the system [(19)–(20)] for positive Ωγ has a

sequence of three critical points located on the a axis
(saddle-center-saddle sequence). To clarify the behavior of
trajectories in the neighborhood of the saddle located at the
singularity line we present a close-up of this area in Fig. 5
(see the right panel).

0.2 0.4 0.6 0.8 1.0
a

1.5

1.0

0.5

0.5

1.0

V a

FIG. 4. The diagram of the potential VðaÞ (21) for the negative
parameter γ. The vertical line represents the sewn sudden

singularity. The parameter γ is chosen as −10−6 s2 Mpc2

km2 .

FIG. 5. The left panel is the phase portrait of the system [(19)–(20)] with the positive parameterΩγ. The right panel is a close-up of the

left panel in the neighborhood of critical points 2 and 3. The value of parameter γ is chosen as 10−6 s2 Mpc2

km2 . The value ofΩΛ;0 is chosen as
0.7 and the present value of the Hubble function is chosen as 68 km

sMpc. The scale factor a is presented in the natural logarithmic scale.
The spatially flat universe is represented by the red trajectories. The dashed line 2bþ d ¼ 0 represents the freeze singularity. The critical
points 1, 2 and 3 represent the static Einstein universes. The phase portrait belongs to the class of sewn dynamical systems. Note that the
existence of the homoclinic orbit which starts at t ¼ −∞ and approach at t ¼ þ∞. In the interior of this orbit, there are located
trajectories representing oscillating cosmological models. They are free from initial and final singularities.
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In Fig. 6 the critical points at infinity, a ¼ asing; a0 ¼
�∞ represent typical sudden singularities. There are two
types of sewn trajectories: one homoclinic orbit and infinity
of periodic orbits. The homoclinic orbit starts from the
neighborhood of critical point 1, goes to the singularity at
a0 ¼ −∞ and, after sewing with the trajectory which comes
from the singularity at a0 ¼ þ∞, finishes at the saddle
point 1. The periodic orbits are situated inside the domain
bounded by the homoclinic orbit. Similarly to the homo-
clinic orbit, the periodic orbits are sewn when going to the

minus infinity singularity and going out from the plus
infinity singularity. Note that these periodic orbits are
possible only in the k ¼ þ1 universe. There are also
nonperiodic trajectories which lie inside the two regions
bounded by the separatrices of the saddle 1. The trajectories
start at a0 ¼ −∞, approach saddle 1, go to the minus
infinity singularity after sewing go out from the plus
infinity singularity, approach saddle 1 and then continue
to a0 ¼ þ∞. This kind of evolution is possible for the flat
universe as well as k ¼ −1 and k ¼ þ1 universes. Finally,
in the region on the right of the separatrices of saddle 1, the
trajectories start at a0 ¼ −∞ and go to a0 ¼ þ∞, repre-
senting the evolution without a sewn sudden singularity of
the k ¼ þ1 universes.
The critical points of the dynamical system [(19)–(20)]

are completed in Table I.
The action (1) can be rewritten as

S ¼ Sg þ Sm ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
ϕR̂d4xþ Sm; ð26Þ

where ϕ ¼ fðR̂Þ
R̂
. Let Geff mean the effective gravitational

constant. Then ϕ ¼ 1
8πGeff

and in the consequenceGeffðR̂Þ ¼
R̂

8πfðR̂Þ and especially for fðR̂Þ ¼ R̂þ γR̂2 has the following

form:

GeffðR̂Þ
G

¼ 1

1þ γR̂
: ð27Þ

The evolution of Geff is presented in Fig. 7. Note that the
value of Geff for t ¼ 0 is equal to zero and approaches
asymptotically to the value of gravitational constant.

IV. THE PALATINI FORMALISM IN THE
EINSTEIN FRAME

Scalar-tensor theories of gravity can be formulated in the
Jordan and in the Einstein frames. These frames are
conformally related [68]. We know that the formulations
of a scalar-tensor theory in two different conformal frames
are physically inequivalent. There was a remarkable
progress in the understanding of the geometric features
of the Palatini theories and the role of the choice of a frame
in the last years [69,70]. Considering the model in the

FIG. 6. The phase portrait of the system [(19)–(20)] with the
negative parameter Ωγ. The value of the parameter γ is chosen as

−10−13 s2 Mpc2

km2 . The value of ΩΛ;0 is chosen as 0.7 and the present
value of the Hubble function is chosen as 68 km

sMpc. The scale
factor a is presented in the natural logarithmic scale. The spatially
flat universe is represented by the red trajectories. The dashed line
separates the domain where a < asing from the domain where
a > asing. The shaded region represents trajectories with b < 0. If
we assume that f0ðRÞ > 0, then this region can be removed.
Critical point 1 represents the static Einstein universe. The critical
points at infinity, a ¼ asing, a0 ¼ �∞ represent typical sudden
singularities. The phase portrait belongs to the class of sewn
dynamical systems.

TABLE I. Critical points of the dynamical system [(19)–(20)]. They are also presented in Fig. 5. All three critical points represent a
static Einstein universe.

No. of critical point Coordinates of critical point Type of critical point

1 �
a ¼

�
8γΛ2−Λþ3H2

0
ð1−8γΛÞþð3H2

0
−ΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−24γΛÞ

p
4Λð1þ8γΛÞ

�1=3
; a0 ¼ 0

� saddle

2 �
a ¼

�
8γΛ2−Λþ3H2

0
ð1−8γΛÞ−ð3H2

0
−ΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−24γΛÞ

p
4Λð1þ8γΛÞ

�1=3
; a0 ¼ 0

� center

3
�
a ¼ ðγð3H2

0
−ΛÞÞ1=3

ð1þ8γΛÞ1=3 ; a0 ¼ 0
�

saddle
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Einstein frame in the Palatini formalism, we find that the big
bang singularity is replaced by the singularity of the finite
scale factor and that some pathologies, like degenerated
multiple freeze singularities [64], disappear in a generic case.
If f00ðR̂Þ ≠ 0, then action (1) is dynamically equivalent to

the first order Palatini gravitational action [1,12,36]

Sðgμν;Γλ
ρσ;χÞ

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðf0ðχÞðR̂−χÞþfðχÞÞþSmðgμν;ψÞ: ð28Þ

LetΦ ¼ f0ðχÞ be a scalar field and χ ¼ R̂. Then action (28)
can be rewritten in the following form:

Sðgμν;Γλ
ρσ;ΦÞ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðΦR̂−UðΦÞÞþSmðgμν;ψÞ;

ð29Þ

where the potential UðΦÞ is defined by

UfðΦÞ≡UðΦÞ ¼ χðΦÞΦ − fðχðΦÞÞ; ð30Þ

where Φ ¼ dfðχÞ
dχ and R̂≡ χ ¼ dUðΦÞ

dΦ .
We can get from the Palatini variation of the action (29)

the following equations of motion:

Φ
�
R̂μν −

1

2
gμνR̂

�
þ 1

2
gμνUðΦÞ − Tμν ¼ 0; ð31aÞ

∇̂λð
ffiffiffiffiffiffi
−g

p
ΦgμνÞ ¼ 0; ð31bÞ

R̂ −U0ðΦÞ ¼ 0: ð31cÞ

From Eq. (31b), we get that the connection Γ̂ is a metric
connection for a newmetric ḡμν¼Φgμν; thus, R̂μν ¼ R̄μν; R̄¼
ḡμνR̄μν¼Φ−1R̂ and ḡμνR̄ ¼ gμνR̂. The g trace of (31a) gives
a new structural equation,

2UðΦÞ −U0ðΦÞΦ ¼ T: ð32Þ
The question of whether the metric gμν or ḡμν has the

physical meaning is a problem of the interpretation of these
functions. It is strictly related to the problemof a choice of the
frame (Einstein frame or Jordan frame). Some people claim
that a conformally rescaled metric by a scalar field is only an
mathematical trickwithout a physicalmeaning.However, the
objectivity of investigation requires the consideration of both
cases. In our opinion, only astronomical observations can
resolve this question [71]. In this section, we also consider
that ḡμν has the physical meaning in the Einstein frame. We
are looking for such a choice of the frame in which inflation
can be reproduced in analogy to the Starobinsky model.
Unfortunately, it is not the case of the Jordan case. Azri [72]
tried to answer the question about the reality of conformal
frames in the context of the nonminimal coupling dynamics
of a single scalar field in purely affine gravity. In this
approach, the coupling is performed via an affine connection
and its associated curvature without referring to any metric
tensor. It is interesting that in affine gravity the transition
from nonminimal to minimal couplings is realized by only
field redefinition of the scalar field. As a result, the infla-
tionary models gain a unique description in this context
where observed parameters are invariant under a field
reparametrization. The inflation in the Starobinsky model
is realized in the Einstein frame but it would be nice to find
the realization of the inflation as a phenomenon which is
invariant under the redefinition of the scalar field.
Now Eqs. (31a) and (31c) take the following forms:

R̄μν −
1

2
ḡμνR̄ ¼ T̄μν −

1

2
ḡμνŪðΦÞ; ð33Þ

ΦR̄ − ðΦ2ŪðΦÞÞ0 ¼ 0; ð34Þ
where ŪðϕÞ ¼ UðϕÞ=Φ2, T̄μν ¼ Φ−1Tμν and the structural
equation can be replaced by

ΦŪ0ðΦÞ þ T̄ ¼ 0: ð35Þ
As a result, the action for the metric ḡμν and scalar fieldΦ is
given in the following form:

Sðḡμν;ΦÞ¼1

2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p ðR̄−ŪðΦÞÞþSmðΦ−1ḡμν;ψÞ;

ð36Þ
where a nonminimal coupling is between Φ and ḡμν,

T̄μν ¼−
2ffiffiffiffiffiffi
−ḡ

p δ

δḡμν
Sm¼ðρ̄þ p̄Þūμūνþ p̄ḡμν¼Φ−3Tμν;

ð37Þ

0.0 0.1 0.2 0.3 0.4
t

0.2

0.4

0.6

0.8

1.0

Geff t

G

FIG. 7. The evolution of Geff for the positive parameter γ and
the flat universe. The cosmological time t is expressed in sMpc

100 km.

The parameter γ is chosen as 10−6 s2 Mpc2

km2 . Note that when t → ∞
then Geff ðtÞ

G → 1
1þ4γΛ.
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ūμ ¼ Φ−1
2uμ, ρ̄ ¼ Φ−2ρ; p̄ ¼ Φ−2p, T̄μν ¼ Φ−1Tμν; T̄ ¼

Φ−2T [12,73].
In the FRW metric case, metric ḡμν has the following

form:

ds̄2 ¼ −dt̄2 þ ā2ðt̄Þ½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�; ð38Þ
where dt̄ ¼ ΦðtÞ12dt and new scale factor āðt̄Þ ¼ Φðt̄Þ12aðt̄Þ.
Because we assume the barotropic matter, the cosmological
equations are given by

3H̄2 ¼ ρ̄Φ þ ρ̄m; 6
̈ā
ā
¼ 2ρ̄Φ − ρ̄mð1þ 3wÞ; ð39Þ

where

ρ̄Φ ¼ 1

2
ŪðΦÞ; ρ̄m ¼ ρ0ā−3ð1þwÞΦ1

2
ð3w−1Þ ð40Þ

and w ¼ p̄m=ρ̄m ¼ pm=ρm. The conservation equation gets
the following form:

_̄ρm þ 3H̄ρ̄mð1þ wÞ ¼ − _̄ρΦ: ð41Þ
In the case of the Starobinsky-Palatini model, the

potential Ū is described by the following formula:

ŪðΦÞ ¼ 2ρ̄ΦðΦÞ ¼
�
1

4γ
þ 2λ

�
1

Φ2
−

1

2γ

1

Φ
þ 1

4γ
: ð42Þ

V. A COMPARISON OF THE JORDAN
FRAME AND THE EINSTEIN FRAME

IN THE PALATINI FORMALISM

If we consider dynamics in the Jordan frame, then one
can use a formula for H2 to reduce the dynamics to the
dynamical system of the Newtonian type which possesses
the first integral 1

2
ðdadtÞ2þVðaÞ¼0, where VðaÞ ¼ − 1

2
H2a2.

In this representation of dynamics, singularities for the
finite value of the scale factor a ¼ as are poles of VðaÞ
potential or their derivatives. Stachowski et al. [64] inves-
tigated these type of singularities in detail. The generic
feature of the formulation of dynamics is the appearance of
the freeze or typical sudden type of singularity in the past.
At the freeze singularity point while the scale factor is
finite, its second derivative with respect to the time blows
up, i.e., d2a

dt2 ¼ �∞. In general, all singularities can be
detected from the diagram of the potential function.
If we consider dynamics in the Einstein frame, there are

no such singularities. The big bang singularity present in
the ΛCDM model is replaced by the generalized sudden
singularity of the finite scale factor. Beyond this singularity,
the phase portrait is equivalent to the ΛCDM model.
Two dynamical systems in the phase space are equivalent

if there is a homeomorphism transforming all trajectories
with the preserving of the direction of time measured
along the trajectories. The comparison of dynamics in
both the Jordan and Einstein frames explicitly shows that

corresponding dynamical systems are not topologically
equivalent. Consequently, the physics in both frames is
different.
The cosmological equation for the Starobinsky-Palatini

model in the Einstein frame can be rewritten to the form of
the dynamical system with the Hubble parameter H̄ðt̄Þ and
the Ricci scalar R̂ðt̄Þ as variables,

_̄Hðt̄Þ ¼ 1

6ð1þ 2γR̂ðt̄ÞÞ2 ð6Λ − 6H̄ðt̄Þ2ð1þ 2γR̂ðt̄ÞÞ2

þ R̂ðt̄Þð−1þ 24γΛþ γð1þ 24γΛÞR̂ðt̄ÞÞÞ; ð43Þ

_̂Rðt̄Þ ¼ −
3

ð−1þ γR̂ðt̄ÞÞ H̄ðt̄Þð1þ 2γR̂ðt̄ÞÞð4Λþ R̂ðt̄Þ

× ð−1þ 16γΛþ 16γ2ΛR̂ðt̄ÞÞÞ; ð44Þ

FIG. 8. The phase portrait of system (43)–(44). There are four
critical points: point 1 represents the Einstein universe, point 2
represents the stable de Sitter universe, point 3 represents the
unstable de Sitter universe and point 4 represents the Einstein
universe. The value of the parameter γ is chosen as 10−6 s2 Mpc2

km2 .
The value of ΩΛ;0 is chosen as 0.7 and the present value of the
Hubble function is chosen as 68 km

sMpc. The values of the Hubble

function are given in 100 km
sMpc and the values of the Ricci scalar are

given in 104 km2

s2 Mpc2 in the natural logarithmic scale. The gray color

represents the nonphysical domain. The dashed line represents
the generalized sudden singularity. Note that for the Starobinsky-
Palatini model in the Einstein frame for the positive parameter γ,
the sewn freeze singularity is replaced by the generalized sudden
singularity. A typical trajectory in the neighborhood of the
trajectory of the flat model (represented by the red trajectory)
starts from the generalized sudden singularity then goes to the de
Sitter attractor. The position of this attractor is determined by the
cosmological constant parameter. Oscillating models (blue
trajectory) are situated around critical point 4.
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where a dot denotes the differentiation with respect to
the time t̄. The phase portrait for the dynamical system
[(43)–(44)] is presented in Fig. 8. Here, the periodic orbits
appear around critical point 4. In the Starobinsky-Palatini
model in the Einstein frame appears the generalized sudden
singularity, for which H and _H are finite but Ḧ and its
derivatives are diverge (see Fig. 9). The evolution of the
scale factor begins from a finite value different from zero
(see Fig. 10). In terms of the scale factor, at the singularity
for the finite value of the scale factor ā, a third time
derivative (and higher orders) of the scale factor in Einstein
frame blows up, while first and second order time deriv-
atives behave regularly. The evolution of the scale factor for
one of these periodic orbits is presented in Fig. 11.
When matter is negligible, then the inflation appears. In

this case, a ≈ a0 exp
�
t
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1−32γΛ
p
3γ

q �
, where a0 ¼ að0Þ

and RðtÞ ≈ 1−16γΛþ ffiffiffiffiffiffiffiffiffiffiffiffi
1−32γΛ

p
32γ2Λ [74]. If γ > 1

36Λ, then the non-

physical domain appears for R̂ < 1−16γΛþ ffiffiffiffiffiffiffiffiffiffiffiffi
1−32γΛ

p
32γ2Λ for

which ρm < 0.

For comparison of the dynamical systems in both frames,
we obtain the dynamical system for the Starobinsky-Palatini
model in the Jordan frame in the variables HðtÞ and R̂ðtÞ

_HðtÞ ¼ −
1

6

�
6ð2ΛþHðtÞ2Þ þ R̂ðtÞ

þ 18ð1þ 8γΛÞðΛ −HðtÞ2Þ
−1 − 12γΛþ γR̂ðtÞ −

18ð1þ 8γΛÞHðtÞ2
1þ 2γR̂ðtÞ

�
;

ð45Þ
_̂RðtÞ ¼ −3HðtÞðR̂ðtÞ − 4ΛÞ; ð46Þ

where a dot means the differentiation with respect to time t.
The phase portrait for the dynamical system (45)–(46) is
shown inFig. 12 (see left panel). Thisphaseportrait represents
all evolutionary paths of the system in the Jordan frame
without adopting the time reparametrization. Along the
trajectories is measured the original cosmological time t.
The system[(45)–(46)] constitutes a two-dimensional autono-
mousdynamical system.Let us note thatwhile theRicci scalar
R̂ is related with a second time derivative of the scale factor a,
the Hubble functionH is related with a first time derivative of
the scale factor a. The oscillating orbits appear around critical
point 4 (see Fig. 12). The evolution of the scale factor for one
of these periodic orbits is presented in Fig. 13.
For a deeper analysis of the behavior of the trajectories of

system (45)–(46) in the infinity, we introduce variables R̂
and W ¼ Hffiffiffiffiffiffiffiffiffi

1þH2
p and rewrite Eqs. (45)–(46) in these

variables. Then we get the following dynamical system:

_WðtÞ¼
_HðtÞ

ð1þHðtÞ2Þ3=2¼−
ð1−WðtÞ2Þ3=2

6

"
6

�
2Λþ WðtÞ2

1−WðtÞ2
�

þR̂ðtÞþ
18ð1þ8γΛÞ

�
Λ− WðtÞ2

1−WðtÞ2
�

−1−12γΛþγR̂ðtÞ

−
18ð1þ8γΛÞ WðtÞ2

1−WðtÞ2

1þ2γR̂ðtÞ

#
; ð47Þ

0.0 0.2 0.4 0.6 0.8 1.0
a

2 109

4 109

6 109

8 109

1 1010
H a

FIG. 9. The relation ḦðāÞ for the Palatini formalism in the
Einstein frame. The value of the parameter γ is chosen as

10−9 s2 Mpc2

km2 . The values of the ḦðāÞ are given in km3

s3 Mpc3. The

dashed line represents the generalized sudden singularity. Note
that, in the generalized sudden singularity, H and _H are finite but
Ḧ and its derivatives are divergent.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
t

0.05

0.10

0.15

a t

0.005 0.010 0.015 0.020
t

2 1049

4 1049

6 1049

8 1049

1 1050

a t

FIG. 10. The illustration of the evolution of the scale factor for the Palatini formalism in the Einstein frame for the flat universe. The
left panel presents the case when matter is not negligible. The right panel presents the case when matter is negligible. The value of
parameter γ is chosen as 10−9 s2 Mpc2

km2 . The cosmological time is expressed in sMpc
km . Note that the evolution of the scale factor begins from

a finite value different from zero. Note that when matter is negligible, then the inflation appears (see the right panel). In this case, the
number of e-folds is equal to 50.
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_̂RðtÞ ¼ −3
WðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −WðtÞ2
p ðR̂ðtÞ − 4ΛÞ: ð48Þ

The phase portrait for dynamical system (47)–(48) is
presented in Fig. 12 (the right panel). This portrait is a
good illustration of how trajectories are sewn at the points at
infinity (points 5 and 6). For expanding models situated on

the upper part of the domain, where W is positive, all the
trajectories pass through point 6. This continuation of
trajectories is the class ofC0. The singularity line represents
the freeze type of singularity. There are some differences in
the behavior of trajectories of the samemodel represented in
Figs. 5 and 12.While the continuation on the singularity line
in Fig. 5 is smooth of C1 class and the Cauchy problem is
correctly solved in Fig. 12, all trajectories from separated
regions focused at the degenerated point 6 (and point 5 for
contracting models) represent the freeze type of singularity.
It has a consequence for the solution of the Cauchy problem.
Therefore, the representation of dynamics in the reparame-
trized time seems to be more suitable than in the original
cosmological time.
For the Eqs. (43)–(44) and (45)–(46), we can find the

first integrals. In the case of Eqs. (43)–(44), the first integral
has the following form:

H̄ðt̄Þ2 þ Λ −
R̂ðt̄Þð2þ γR̂ðt̄ÞÞ
6ð1þ 2γR̂ðt̄ÞÞ2 þ k

ā2
¼ 0: ð49Þ

Because

0 2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

a t

FIG. 11. The diagram presents the evolution of the scale factor
for trajectory of the oscillating orbit in the neighborhood of
critical point 4 (see Fig. 8). The cosmological time is expressed in
sMpc
100 km. Here, amin ¼ 1.

FIG. 12. The left panel is the phase portrait of system (45)–(46) and the right one is the phase portrait of system (47)–(48). There are
four critical points in both systems: point 1 and 2 represent the Einstein universe, point 3 represents the unstable de Sitter universe and
point 4 represents the stable de Sitter universe. For illustration, the value of the parameter γ is chosen as 10−6 s2 Mpc2

km2 . The value of ΩΛ;0 is
chosen as 0.7 and the present value of the Hubble function is chosen as 68 km

sMpc. The values of the Hubble function are given in
100 km
sMpc and

the values of the Ricci scalar are given in 104 km2

s2 Mpc2 in the natural logarithmic scale. The dotted line, representing a line of discontinuity,

separates the domain where R̂ < R̂sing ¼ R̂ðasingÞ from the domain where R̂ > R̂sing ¼ R̂ðasingÞ. In the right panel, points 5 and 6
represent points where the right and left side of the phase space is sewn (some trajectories pass through the sewn singularity–points 5 and
6). Note that oscillating models exist (blue trajectory) and are situated around critical point 2. They represent oscillating models without
the initial and final singularities. The green line represents the separatrix trajectory, which represents the only case for which the
trajectory can pass from the left side of the phase portrait to the right one without the appearance of the sewn freeze singularity during the
evolution. It joins saddle points in a circle at infinity. This line separates trajectories going to the freeze singularity from the bouncing

solutions. For this case Ωk ¼ −ΩγðΩm;0a−3 þ 4ΩΛ;0Þ2 ðK−3ÞðKþ1Þ
2b − ðΩm;0a−3 þ 4ΩΛ;0Þ when a ¼ asing.
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ā ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C0ð1þ 2γR̂ðt̄ÞÞ

e
−
arctan

�
−1þ16γΛþ32γ2ΛR̂ðt̄Þffiffiffiffiffiffiffiffiffiffi

−1þ32γΛ
p

�
3
ffiffiffiffiffiffiffiffiffiffi
−1þ32γΛ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Λþ R̂ðt̄Þð−1þ 16γΛþ 16γ2ΛR̂ðt̄ÞÞ

q
vuuuuut

; ð50Þ

where C0 ¼ ā2
0
e
−

arctan

�
−1þ16γΛþ32γ2ΛR̂ðt̄0Þffiffiffiffiffiffiffiffiffiffi

−1þ32γΛ
p

�
3
ffiffiffiffiffiffiffiffiffiffi
−1þ32γΛ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΛþR̂ðt̄0Þð−1þ16γΛþ16γ2ΛR̂ðt̄0ÞÞ

p
ð1þ2γR̂ðt̄0ÞÞ with ā0 as the present value of the scale factor, we get the

first integral in the following form:

H̄ðt̄Þ2 þ Λ −
R̂ðt̄Þð2þ γR̂ðt̄ÞÞ
6ð1þ 2γR̂ðt̄ÞÞ2 þ k

e
−
arctan

�
−1þ16γΛþ32γ2ΛR̂ðt̄Þffiffiffiffiffiffiffiffiffiffi

−1þ32γΛ
p

�
3
ffiffiffiffiffiffiffiffiffiffi
−1þ32γΛ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Λþ R̂ðt̄Þð−1þ 16γΛþ 16γ2ΛR̂ðt̄ÞÞ

q
C0ð1þ 2γR̂ðt̄ÞÞ ¼ 0: ð51Þ

As a result, the potential VðR̂Þ is given by

VðR̂Þ ¼ a2

2

�
Λ −

R̂ðt̄Þð2þ γR̂ðt̄ÞÞ
6ð1þ 2γR̂ðt̄ÞÞ2

�
: ð52Þ

Because we know the form of VðR̂Þ and āðR̂Þ, we can get the potential VðāÞ in a numerical way. VðāÞ potential is
demonstrated in Fig. 14.
Equations (45)–(46) have the following first integral given by

HðtÞ2 −
ð1þ 2γR̂ðtÞÞ2

�
−3Λþ R̂ðtÞ − kð−4ΛþR̂ðtÞÞ2=3

C0
þ γð12Λ−3R̂ðtÞÞR̂ðtÞ

2ð1þ2γR̂ðtÞÞ

�
ð1þ 2γR̂ðtÞ − 3γð−4Λþ R̂ðtÞÞÞ2 ¼ 0; ð53Þ

where C0 ¼ a20ð−4Λþ R̂ðt0ÞÞ2=3. Here, a0 is the present
value of the scale factor.

VI. CONCLUSIONS

In this paper, the main conclusion is that the Starobinsky
models in the Palatini formalism in the Jordan and Einstein

frames are not physically equivalent. There are a few
qualitative differences between the models in these frames.
The most important difference is that the sewn freeze
singularity in the Jordan frame is replaced by the gener-
alized sudden singularity in the Einstein frame. Other
differences between these frames are the lack of the big
bang in our model in the Einstein frame and the fact that

0.0 0.5 1.0 1.5 2.0
t

0.2

0.4

0.6

0.8

1.0

a t

FIG. 13. The diagram presents the evolution of the scale factor
for the trajectory of the oscillating orbit in the neighborhood of
critical point 2 (see Fig. 12). The cosmological time is expressed
in sMpc

100 km. Here, amin ¼ 1.
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FIG. 14. The potential VðāÞ for the Palatini formalism in the
Einstein frame. The value of the parameter γ is chosen as

10−9 s2 Mpc2

km2 . The values of the VðāÞ are given in 104 km2

s2 Mpc2 . The

dashed line represents the generalized sudden singularity. The
value of the potential at the singularity is finite.
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phase portraits in these frames are not qualitatively equiv-
alent. It is consistent with results obtained that models in
the Jordan frame are not physically equivalent to those in
the Einstein frame [75–79].
From the detailed analysis of cosmological dynamics in

the Palatini formulationwe derive the following conclusions:
(1) If we consider the cosmic evolution in the Einstein

frame we obtain inflation as an endogenous effect
from the dynamical formulation in the Palatini
formalism [74].

(2) If we consider the cosmic evolution in the Jordan
frame we obtain an exact and covariant formula for
the variability of the gravitational constant Geff
parametrized by the Ricci scalar.

(3) Given two representations of our model in the
Einstein and Jordan frames, we found that its
dynamics are simpler in the Einstein frame as being
free from some obstacles related to an appearance of
bad singularities. It is an argument for the choice of
the Einstein frame as physical.

(4) In our model considered in the Einstein frame, we
have both the inflation as well as the acceleration
[74]. While the inflation in the model is obtained as
an inherited dynamical effect, the acceleration is
driven by the cosmological constant term.

(5) In the model under consideration, we include effects
of matter. This enables us to study the fragility of the
inflation with respect to small changes of the energy
density of matter [74].

(6) In the obtained evolutional scenario of the evolution
of the Universe in the Einstein frame in the Palatini
formalism we found the singularity of the finite scale
factor (generalized sudden singularity) and the phase
of the acceleration of the current Universe. Note that
in [74] it was found the inflation in this model with
the sufficient number of e-folds in the case when the
matter is negligible.

(7) In the context of the Starobinsky model in the
Palatini formalism we found a new type of double
singularities beyond the well-known classification of
isolated singularities.

(8) The phase portrait for the Starobinsky model in the
Palatini formalism with a positive value of γ is
equivalent to the phase portrait of the ΛCDMmodel.
There is only a quantitative difference related to the
presence of the nonisolated freeze singularity.

(9) For the Starobinsky-Palatini model in the Einstein
frame for the positive parameter γ, a sewn freeze
singularity is replaced by a generalized sudden
singularity. As a result, this model is not equivalent
to the phase portrait of the ΛCDM model.
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