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Wave dark matter (ψDM), which satisfies the Schrödinger-Poisson equation, has recently attracted
substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided
a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key
features of ψDM, further progress in simulations is limited, in that cosmological simulations so far can only
address formation of halos below ∼2 × 1011 M⊙ and substantially more massive halos have become
computationally very challenging to obtain. For this reason, the present work adopts a different approach in
assessing massive halos by constructing wave-halo solutions directly from the wave distribution function.
This approach bears certain similarities with the analytical construction of the particle-halo (cold dark
matter model). Instead of many collisionless particles, one deals with one single wave that has many
noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of
the wave power, and we use several halos produced by structure formation simulations as templates to
determine the wave distribution function. Among different models, we find the fermionic King model
presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for
constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A
Milky Way–sized halo has also been constructed, and the inner halo is found to be flatter than the
NFW profile. These wave-halos have small-scale interferences both in space and time producing time-
dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase
with radius by 1 order of magnitude across the halo.
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I. INTRODUCTION

In past decades, tensions of subgalactic scales between
standard cold dark matter (CDM) predictions and galaxy
observations have attracted much attention. Examples
include the cusp-core problem [1] and the too-big-to-fail
problem [2]. Dissipationless simulations of CDM structure
formation have found cusplike density profiles in central
regions of halos regardless of the halo mass [3,4], while
observations reveal that the density profiles of the innermost
region in dwarf spheroidal galaxies favor flat cores [5–8]. In
addition, the most massive subhalos of Milky Way–sized
halos presented by CDM simulations are too massive to
account for the observed Milky Way’s satellites, dubbed as
the too-big-to-fail problem. While these issues may be
causedby the limitationof the surveymethods, the sensitivity
of observations or some not fully explored astrophysics such
as baryonic feedback that removes the stars [9], these
problems can be signs of trouble against the CDM model,
despite the fact that it works well on much larger scales.

Alternative dark matter models have been proposed to
solve some of these small-scale problems. One example of
these models is the scalar field dark matter (SFDM). It can
be divided into two categories, with [10,11] or without [12–
19] self-interactions. The model without self-interactions,
called the wave dark matter (ψDM) or the fuzzy dark matter
(FDM), is unique and novel, exploiting the difference in
wave and particles dynamics on small scales while keeping
large scales identical. Particles of ψDM are nonrelativistic
extremely light bosons of mass around 10−22 eV, where
wave effects, such as interference, appear on astrophysical
scales. Since the particle mass is so light that the critical
temperature of forming Bose-Einstein condensation (BEC)
exceeds the Planck scale, the ψDM is strongly in the BEC
state with an infinite phase coherence length and all bosons
share the same wave function. The origin of these
extremely light bosons may arise from axions in the string
theory [20,21] or a non-QCD axion mechanism in the dark
sector [22]. The uncertainty principle renders ψDM to
avoid the central cusp formation and helps suppress
small-scale structures such as satellite galaxies. On the
large scales, ψDM behaves like CDM, in agreement with*chiuehth@phys.ntu.edu.tw
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large-scale observations, such as cosmic microwave back-
ground (CMB) observations, where the CDM model is
extremely successful.
The first high-resolution cosmological simulation of

ψDM structure formation was conducted in 2009 [23],
in which the core problem was still elusive. Not until 2014
did the first adaptive-mesh-refinement simulation come
along, able to zoom into the central regions of dwarf
galaxies [14], and discover that the dark matter halo
contains a prominent solitonic core. The core is surrounded
by an extended halo, which consists of many small-scale
density granules. The sizes of the solitonic core and these
granules increase with decreasing halo masses, and are
about kpc for dwarf halos. Though the surrounding halo
contains most of the mass, composed by the excited states
of BEC, the much less massive ground state, i.e., the
solitonic core, contributes to a sizable fraction of the
gravitational potential depth in the halo center, and thus
is a highly nonlinear object. The core and the halo are found
to obey the core mass-halo mass relation [24], a relation
derived from a nonlocal uncertainty principle.
However, ψDM simulations have their own limitations,

most notably the inability to cover a large volume while
maintaining high spatial resolution at the same time.
Particularly troublesome is in the region with the smooth,
low-density infalling matter in the vast cosmic volume that
can normally be handled with relatively low resolution in
ordinary CDM and hydro simulations. This low-density
matter must be captured with high resolution in wave
mechanics simulations to resolve the matter wave oscil-
lation; otherwise the infall velocity will be in large error,
seriously affecting the mass accretion rate. Such a difficulty
has been circumvented by simulating a small spatial
domain, with the drawback that the total mass in the
domain is small and therefore halos so formed are often
limited to dwarf galaxies [14,24,25]. The present work is
motivated by this limitation of wave mechanics simulations
and aims to find a procedure to construct a realistic three-
dimensional virialized halo of arbitrary mass.
This paper is organized as follows. In Sec. II, we provide

a foundation to connect the classical particle distribution
function and the wave distribution function (DF), and then
proceed by analyzing dark matter halos obtained by cos-
mological simulations with the eigenfunction expansion,
assuming dark matter halos are in the steady state and
spherical-symmetric. We fit the wave distribution function
by several classical distribution function models of self-
gravitating collisionless particles [26], and identify the best-
fit distribution function to be the fermionicKingmodel [27].
We develop a novel iteration method to solve self-consistent
solutions in Sec. III A. A series of self-consistent solutions
are shown and discussed in Sec. III B. In Sec. III C, we
demonstrate the stability of these self-consistent halos via
three-dimensional numerical simulations. To understand
dynamical properties of granules, we examine the temporal

and spatial correlation functions of halo density fluctuations
in Sec. IV. Finally, we conclude in Sec. V.

II. WAVE DISTRIBUTION FUNCTION
OF ψ DARK MATTER

The ψDM is described by a wave function, which is a
classical field, obeying the Schrödinger-Poisson equation,

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
∇2ψ þmVψ ; ð1Þ

∇2V
4πG

¼ mjψ j2; ð2Þ

where ℏ is Planck constant, G is Newton’s gravitational
constant, V denotes the gravitational potential of the mass
density mjψ j2 for BEC, and m is the boson mass. We set
m ¼ 8.1 × 10−23 eV=c2 throughout this paper.

A. Statistical mechanics of a single-particle wave
function in dynamical equilibrium

Here we emphasize that ψðxÞ is a classical field, and the
analysis to follow is different from many-body quantum
mechanics, which addresses many possibly configurations
of the wave function. For equilibrium systems, the number
density of BEC bosons can be expressed as

jψðx; tÞj2 ¼
����Xi

aiΦiðxÞe−iEit=ℏ

����2 ð3Þ

¼
X
i

jaij2jΦiðxÞj2þ
X
i≠j

aia�jΦiðxÞΦ�
jðxÞeiðEj−EiÞt=ℏ

ð4Þ

¼
X
i

Nhxjρ̂iijxi þ
X
i≠j

hxjδ̂ijjxi; ð5Þ

where ΦiðxÞ is the ith eigenfunction, ai is a random
complex coefficient, and jaij2 is the weighting factor,
which is proportional to the probability, of the ith state,
and N is the total number of bosons. The last equality is to
bring out the difference between the many-body quantum
mechanical density matrix ρ̂ and the number density of the
classical field. The first term is identical to the coordinate
space representation of the density matrix in a mixed state.
ρ̂ii ¼

P
iPijΦiihΦij, where Pi is the probability of system

in state jΦii. The second term only exists in the classical
field that represents the interference of different eigenstates,
a time-dependent feature that does not exist in many-body
quantum mechanics. We denote a δ matrix for this
interference term. The interference plays an essential role
in the halo, in that it produces the halo granules and
provides pressure support against self-gravity.
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When we take short-time average and the random-phase
average with respect to ai, the number density hjψðx; tÞj2i
has only the diagonal terms due to the random phase
assumption. That is,

hjψðx; tÞj2i ¼
X
i

jaij2jΦiðxÞj2; ð6Þ

which is independent of time in a steady state. Since jaij2 is
still a random positive factor, we need to further average
over different states to smooth out this random factor. The
average can often be provided by the summation over
degenerate states. However, to do so we need an ansatz. As
ai is a random complex number, we let ai ¼ riσieiϕi , where
ri is a real random number of unity variance, ϕi a random
phase and σi the variance, and we have jaij2 ¼ σ2i r

2
i . The

ansatz is that σi for every degenerate state i is the same.
That is, σi ¼ σI . Hence,

hjψðx; tÞj2i ¼
X
I

σ2I
X
j∈I

r2j jΦjðxÞj2; ð7Þ

where the capital index I refers to eigenvalues and degenerate
states have the same I. For example, wemay take I ¼ E. In a
spherically symmetric potential, the quantum numbers are n,
l,m, where l andm are orbital andmagnetic quantumnumber
of spherical harmonics and n is the principal quantum
number. Eigenstates whose eigenvalues Enl are located
within an interval E − ΔE < Enl < Eþ ΔE are degenerate,
andΦjðxÞ refers to those degenerate states havingEnl in this
energy range. To determine the squared variance σ2E, one can
average the positive random factor jaij2 ¼ σ2Er

2
i over the

degenerate states, thus giving σ2E ¼ hjaij2iE.
From Eq. (5), we know hjψðxÞj2i equals to the density

matrix N
P

ihxjρ̂iijxi, and the density matrix ρ̂ satisfies the
time-independent von Neumann equation when the system
is in equilibrium,

½H; ρ̂� ¼ 0: ð8Þ
In classical mechanics, we have an analogous equation, the
Liouville’s equation,

∂F
∂t þ fF;Hg ¼ 0; ð9Þ

where fg is the Poisson bracket, and F is the phase space
distribution function. In the collisionless limit, F is the one-
particle distribution function f. In equilibrium, ∂f∂t ¼ 0, and
the solution is fðIcÞ, for which Ic is the classical constants
of motion. In the short-wavelength (or high quantum
number) limit, the average density hρi ¼ N

P
ihxjρ̂iijxi ¼P

Iσ
2
I

P
j∈Ir

2
j jΦjðxÞj2 approaches the classical equilibrium

density

ρc ¼
Z

fðIcÞ
�
d3p
dIc

�
dIc; ð10Þ

where d3p is the momentum-space volume element. In the
same limit, we let the summation

P
I →

R
dI and identify

σ2I → fðIcÞ, and the remaining term, the momentum-space
volume per invariant Ic, can be identified as

X
j∈I

r2j jΦjðxÞj2 →
d3p
dIc

: ð11Þ

The space dependence on the left-hand side is embedded in
the right-hand side, due to the fact that for a given constant
of motion Ic, such as the energy, a combination of space
and momentum, the momentum-space volume element d3p
becomes a function of Ic and x.
In the Appendix A, we offer an alternative reduction of

the classical distribution function from wave mechanics
using the Wigner function.

B. Procedure for the determination of the
wave distribution function

With the above fundamentals, we first calculate the
density matrix, or the density profile (the first term of
Eq. (4)), of an equilibrium ψDM halo with the following
procedures. The interference terms in Eq. (5) will be taken
care later in the construction of three-dimensional halos.
(a) Given an assumed or simulation wave function of a

ψDMhalo,we compute the shell-averaged gravitational
potential V̄ðrÞ assuming spherical symmetry. The
typical granules are of small scale but the gravitational
potential is of large scale and smooth, so that V̄ can be
calculated from the density profile using spherical shell
average.

(b) Solve eigenvalues and eigenfunctions with the gravi-
tational potential V̄ðrÞ�

−
ℏ2

2m
∇2 þ V̄ðrÞ

�
Φ ¼ EΦ: ð12Þ

Thanks to the spherical symmetry of V̄ðrÞ, one
can adopt separation of variables, Φ¼RðrÞYm

l ðθ;ϕÞ.
Equation (12) becomes

sin θ
∂
∂θ

�
sin θ

∂Ym
l

∂θ
�
þ ∂2Ym

l

∂ϕ2
¼ −lðlþ 1Þsin2θYm

l

ð13Þ

and

−
1

2

d2u
dr2

þ
�
V̄ðrÞ þ lðlþ 1Þ

2r2

�
u ¼ Eu; ð14Þ

where Ym
l ðθ;ϕÞ is the spherical harmonics with integer

l and m, and uðrÞ≡ RðrÞr.
(c) Set an upper bound of energy equal to the gravitational

potential energy at the virial radius, and solve Eq. (14)

SELF-CONSISTENT CONSTRUCTION OF VIRIALIZED … PHYS. REV. D 97, 103523 (2018)

103523-3



numerically using LAPACK [28]. For a given l, one can
obtain a series of eigenfunctions and eigenvaluesEnl of
Eq. (14), where a radial quantum number is assigned to
the eigenvalue for labeling. Sort these eigenvalues from
small to large values and label them from 0 toK, where
K is the number of eigenfunctions. In this waywe find a
nearly complete set of eigenfunctions for bound states,
ΦnlmðxÞ ¼ RnlðrÞYm

l ðθ;ϕÞ, which satisfies Eq. (12),
subject to the choice of the eigenvalue upper bound
associated with the virial radius.

(d) Decompose the wave function at t ¼ t0 from the
simulation data using the eigenfunctions determined
above,

ψðx; tÞ ¼
X
nlm

anlmΦnlmðxÞe−iEnlðt−t0Þ=ℏ; ð15Þ

where anlm is the complex coefficient of the eigen-
state Φnlm.

(e) Following the definition above, calculate the distribu-
tion function. For instance, if the DF is only a function
of energy, in a certain energy neighborhood it can be
expressed as

fðEÞjΦEðxÞj2 ¼
P

ΔEjanlmj2jΦnlmðxÞj2
gðEÞ ; ð16Þ

where gðEÞ is the density of states of energy eigen-
values Enl within (E − ΔE

2
, Eþ ΔE

2
), and ΦEðxÞ is the

amplitude weighted sum of eigenfunctions ΦnlmðxÞ in
the same energy range near E, accounting for the
spatial dependence on the right-hand side of Eq. (16).
To make the separation of E dependence and x
dependence more precise, we have

fðEÞ ¼
P

ΔEjanlmj2
gðEÞ ð17Þ

and

jΦEðxÞj2 ¼
P

ΔEjanlmj2jΦnlmðxÞj2P
ΔEjanlmj2

: ð18Þ

[cf. Eq. (A3)]. It is trivial to show thatR
gðEÞfðEÞdE ¼ P

nlmfðEnlÞgðEnlÞ ¼ M, the halo
mass, from Eqs. (6), (16), (17) and (18).

C. Results of wave distribution function

We test three different DFs, the King, the Osipkov-
Merritt King (OMK), and the fermionic King models to
check their fits to simulation halos. The details of the three
models are presented in the Appendix B. We fit the
distribution function by minimizing

χ2 ¼
X
i

�hyii − fMðEi; liÞ
σi

�
2

ð19Þ

where hyii is the average of squared amplitudes over
degenerate states in the Ei and li bin, fM the model DF,
and σi the standard error of the data defined to be

σi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ni − 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hy2i i − hyii2

q
; ð20Þ

which describes the uncertainty of themean.Here,Ei, li, and
Ni are the energy, angular momentum quantum number, and
the number of states of the ith bin, respectively. Notice that
when fitting DFs only depending on energy fMðEÞ, we bin
data in terms of energy. On the other hand, we bin data in
two-dimensional space ðE; lÞwhen fitting the OMKmodel.
The postulate of random phase amplitudes in several

energy bins has been tested by examining the amplitudes on
the complex plane. The distribution in the bin appears
Gaussian-distributed, making it clear that the simulation
halo satisfies the random phase assumption.
We analyze five halos, whose masses are 7×1010 M⊙,

2.2×1010M⊙, 1.7×1010M⊙, 5×109M⊙, and 2.8×109 M⊙,
for the threemodels. The fitting results of these five halos are
similar, and the best-fit reduced chi-square (χ2red) of two
examples of simulation halos, Halo A (2.2 × 1010 M⊙) and
Halo B (7 × 1010 M⊙), are listed in Tables I and II,
respectively. The numbers of eigenstates for Halo A and
Halo B are ∼2.6 × 105 and ∼1.0 × 106, respectively. The
reduced chi-square is defined as

χ2red ¼
χ2

degrees of freedom
; ð21Þ

where the degrees of freedom (DoF) equals to the number of
bins subtracting the number ofmodel parameters.We use 60
bins for Halo A, and 70 bins for Halo B.

TABLE I. Fitting results of Halo A. We have reduced the Qsipkov-Merritt King model to one single variableQ to compute χ2red. These
models are discussed in the Appendix B. The unit of μ is [H2

0ρ0Mpc5h−5mB] and the unit of β is the inverse of that of μ.

Model χ2red Bins DoF Parameters

King 37.81 60 44 ðA; β; EcÞ ¼ ð1.6 × 10−7; 11;−0.049Þ
fermionic King 16.16 60 43 ðA; β; μ; EcÞ ¼ ð2.8 × 10−8; 17;−0.36; 0.0048Þ
Osipkov-Merritt King 4.36 5400 46 ðA; β; ra; EcÞ ¼ ð1.0 × 10−7; 11; 0.052;−0.005Þ

LIN, SCHIVE, WONG, and CHIUEH PHYS. REV. D 97, 103523 (2018)

103523-4



We exclude several high energy bins in some cases. This
is due to higher energy modes having dominant contribu-
tions in larger radii, and we expect regions near virial radius
may not yet reach equilibrium in simulation data. We also
exclude the bins with less than five eigenstates due to the
large sample variance. The ground-state bin is also
excluded from fitting for the following reason. The ground
state solution produces the soliton which is a highly
nonlinear solution, but the probability distribution f is
meant to describe the almost interaction-free, excited-state
wave functions, analogous to the collisionless particles in
classical mechanics. The ground state is hence excluded in
the fit of f; the amplitude of the ground state solution is
instead determined by the soliton mass given by the soliton
mass-halo mass relation [24].
Figures 1(a) and 2(a) demonstrate examples of the best-

fit results of the King model and the fermionic King model
for two simulation halos, Halo A and Halo B. We excluded
9 outermost bins for Halo B when conducting the fitting.
One may notice that the fermionic King model under-
estimates the DF in E≲ −0.4 for Halo A in Fig. 1(a);
however, its χ2red is still smaller than that of the King model.
This is because χ2red is dominated by higher-energy bins
which have smaller standard errors. If we exclude several
higher-energy bins, similar to what we do for Halo B, the
fermionic King model can have a much smaller χ2red,
bringing the model closer to the simulation data.

The fitting results of the OMK model are shown in
Figs. 1(b) and 1(c) for Halo A, and Figs. 2(b) and 2(c) for
Halo B. We excluded E > −0.5 bins when fitting the OMK
model for Halo B. The distribution function fðE; lÞ is
plotted in a two-dimensional color diagram to show the
simulation data. The horizontal axis is the orbital angular
momentum quantum number l and the vertical axis the
energy E. The residual is defined as subtracting the
simulation distribution function from the best-fit OMK
model and then dividing it by the best-fit OMK model.
Since the lowest energy eigenvalue increases when l
increases, no solution exists in the bottom-right blank
region in Fig. 1(b). It is clear that the simulation data
deviate from the OMK model by a large margin for both
Halo A and Halo B. The simulation data have prominent
low-l components for E around −0.2 and −0.3 for Halo A
and throughout all energies for Halo B, reflecting that the
simulation data have strong tangential fringes in the outer
halo which will be shown later [in Fig. 5(a)].
Clearly, none of the three models can capture such a

prominent low-l feature. Given this fact, one expects to
obtain bad fits with the simulation data, and indeed three
models have large χ2red, as tabulated in Tables I and II.
Dominant contributions to χ2 come from the outer halo
where states are highly degenerate and energies are densely
packed. With a large number of samples per bin, the error
bars are small thereby strongly constraining the models.

TABLE II. Fitting results of Halo B.

Model χ2red Bins DoF Parameters

King 5.05 70 40 ðA; β; EcÞ ¼ ð3.6 × 10−7; 3.0;−0.17Þ
fermionic King 3.91 70 39 ðA; β; μ; EcÞ ¼ ð1.2 × 10−7; 3.5;−1.9; 0.03Þ
Osipkov-Merritt King 5.86 10990 1322 ðA; β; ra; EcÞ ¼ ð1.1 × 10−12; 2.2; 0.0099;−6.Þ

FIG. 1. Fitting result of Halo A. (a) Energy distribution functions fitted by the King and the fermionic King models separately. Error
bars represent standard error defined in Eq. (23). While the fermionic King model underestimates the DF in E ≲ −0.4, its χ2red is smaller
than that of the King model. This is because χ2red is dominated by higher-energy bins which have smaller standard errors. If we exclude
several higher-energy bins, similar to what we do for Halo B, fermionic King model will follow the DF of lower-energy states.
(b) Distribution function in ðl; EÞ space. The lower-right blank region registers no eigenvalue solution. (c) Residual from the best-fit
OMK model.
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In all tests, we find the fermionic King model fits better
than the other two models, though not significantly better,
and therefore from now on the fermionic King model will
be adopted for our self-consistent solution construction.
We will further demonstrate that halos with the fermionic
King distribution is robust and can be very stable in the
next section.

III. SELF-CONSISTENT SOLUTIONS OF THE
SCHRÖDINGER-POISSON EQUATION

A. Method of self-consistent solutions

The goal in this section is to solve for all excited-state
eigenfunctions that comprise the halo self-consistently. We
have developed a novel iteration method for solving the
self-consistent density and potential pair obeying the
Schrödinger-Poisson equations (1) and (2), assuming that
the halo is spherically symmetric. The self-consistent
solution satisfies

−
ℏ2

2m
∇2ΦnlmðxÞ þmV̄ðrÞΦnlmðxÞ ¼ EnlΦnlmðxÞ ð22Þ

ψðx; tÞ ¼
X
nlm

anlmΦnlmðxÞeiEnlt=ℏ ð23Þ

∇2V̄ðrÞ ¼ 4πGρ̄ðrÞ ¼ Gm
Z

hjψðx; tÞj2idΩ

¼ Gm
X
nlm

janlmj2R2
nlðrÞ ð24Þ

where V̄ðrÞ is the average gravitational potential over solid
angle dΩ, ρ̄ðrÞ is the density profile, andRnlðrÞ are the radial
eigenfunctions. Note that we only consider the potential of
the average density profiles [cf., Eq. (7)], and the halo
granules are averaged out as they are time-dependent, small
compared to the halo size. Note also that the last equality is
computationally far less demanding than the second equality
that requires full three-dimensional wave functions and
suitable for the self-consistent solution search.

For a dark matter halo with mass Mh, we make an initial
guess with an NFW profile for the halo. The soliton of mass
Msol in the core can be specified once the halo mass Mh is
given, following theMsol −Mh relation [24] and the soliton
profile [14]. That is, the initial condition for the iteration is
given by

ρð0ÞðrÞ ¼ Θðre − rÞρsðrÞ þ Θðr − reÞρNFWðrÞ; ð25Þ

where re is the radius at which these two profiles have the
same density, ρsðrÞ is the soliton profile, ρNFW is the NFW
profile, and Θ is the Heaviside step function. The virial
radius is defined as the radius within which the average
density equals 347 times the critical density given by the
spherical collapse model for the ΛCDM universe. Virial
radius is calculated using Eq. (25), and it will be fixed in the
process of obtaining a halo solution.
Given the density, we then compute the corresponding

gravitational potential using the Poisson equation, which we
call the “input potential”. Substituting the input potential
into the Hamiltonian [Eq. (22)], we obtain a set of new
energy eigenfunctions and eigenvalues. Assign the expect-
ation values for the squared amplitudes of eigenfunctions
according to the fermionic King model with given β and μ.
By using these amplitudes, the next step is to construct the
wave function utilizing Eq. (23), and then we calculate the
corresponding gravitational potential by solving the Poisson
equation, Eq. (24), which we call the “output potential.”The
output potential is generally different from the input poten-
tial. If the difference of the input and output potentials is not
large, we can adopt a perturbation method. The zeroth order
Hamiltonian is

H0 ¼ −
ℏ2

2m
∇2 þmΦin; ð26Þ

where Φin is the input potential. We take the difference
between input and output potentials as the first order
perturbation of the Hamiltonian,

FIG. 2. Fitting result of Halo B. (a) Energy distribution functions fitted by the King and the fermionic King models separately.
In the fitting, we ignore the outermost 9 bins shown in red dots. (b) Distribution function calculated in ðl; EÞ space. The lower-right
blank region registers no eigenvalue solution. (c) Residual from the best-fit OMK model. We ignore bins whose energy is
larger than −0.5.
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H1 ¼ mðΦout −ΦinÞ: ð27Þ

Perturbation theory demands that the first order correction to
the energy is

ΔEnl ¼ hnlmjH1jnlmi; ð28Þ
and the corrected energy

E0
nl ¼ Enl þ ΔEnl: ð29Þ

There is no correction in the eigenfunction to the first order.
The new energy is for every eigenstate. The shift in energy
changes the expectation values of squared amplitudes
according to fðEÞ, and therefore changes the superposed
density and the potential. We then update the new
Hamiltonian with this new potential to solve eigenfunctions
and eigenvalues again and keep iterating this procedure until
the “input potential” agreeswith the “output potential” to the
desired accuracy. We define a dimensionless quantity

DðVo; ViÞ ¼
2

R

Z
R

0

�
Vo − Vi

Vo þ Vi

�
2

dr; ð30Þ

where Vi and Vo denotes input and output potential,
respectively, and R is the maximum radius for solving the
eigenvalue problemEq. (22).We adoptDðVo; ViÞ < 0.01 as
the limiting value for obtaining a self-consistent nonlinear
solution satisfying Eqs. (22)–(24).
Note that we fix the ground state amplitude and the halo

mass during the iteration. It is worthwhile to point out that
although the ground state amplitude is fixed during the
iteration, the ground state eigenfunction will change
slightly due to the change of the gravitational potential
for every iteration. As the ground state is a highly nonlinear
object and cannot be described by the distribution function,
we set the ground state amplitude from the core-halo mass
relation [24] although the ground state shape may change
during the iteration.
For the iteration method to work, an appropriate initial

choice of the input potential is essential. For given
parameters ðβ; μÞ, one can find an appropriate initial input
potential by trial and error. Specifically, we randomly
choose a concentration parameter c of the NFW profile
in the range 1 ≤ c ≤ 30 until the iteration method men-
tioned above leads to a converged solution. A larger value
of c corresponds to a deeper initial input potential. If the
initial input potential is too deep compared with the correct
self-consistent potential, the output potential would
become ever increasingly deeper with iterations, and the
solution runs away. A similar situation happens when the
initial input potential is too shallow. If the initial input
potential is not far from the correct self-consistent potential,
the correction of eigenvalues ΔEnl flips signs at each
iteration, and this usually warrants convergence for most n
and l. Having said that, this perturbative iteration method

generally speaking has a relatively large converging radius
since the iteration tends to be self-corrective. We find the
potential of the NFW density profile often provides a good
initial guess. For some parameters ðβ; μÞ of the fermionic
King model, the iteration procedure, however, fails to
converge no matter what the initial guess is. We consider
this case to be the termination of steady-state solution.
Finally having the self-consistent profile, we need to

assign random complex amplitude to eigenstates for the
three-dimensional halo wave function. We adopt random
complex amplitudes obeying a two-dimensional Gaussian
probability distribution. The probability distribution of
amplitudes a ¼ ar þ iai of a given energy E is

Pðar; aiÞ ¼
1

2πσ2
exp

�
−
a2r þ a2i
2σ2

�
ð31Þ

where

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
fFKðEÞ

r
ð32Þ

and fFK is the fermionic King’s distribution. From Eq. (31)
and (32), we have the average of squared amplitudes
hjaj2i ¼ fFKðEÞ and ensure the cross term ha1a�2i ¼ 0

for different eigenstates 1 and 2.

B. Comparison of different self-consistent
solutions1

In this section, we will show several examples of self-
consistent solutions with different model parameters,
and illustrate the effects of changing these parameters.
The fermionic King model has four parameters defined in
the Appendix B. The quantity A is fixed for a given halo
mass. Ec is the cutoff energy at which the fermionic King
model drops to zero, and it is in general larger than the
potential energy at the virial radius. In this work, Ec has a
negligible impact on DF since the upper limit of energy
eigenvalues is smaller than Ec. Therefore, we set Ec to zero
when constructing self-consistent solutions. The remaining
two free parameters are β and μ, the inverse temperature
and the chemical potential, respectively. The fermionic
King model reduces to the King model when μ → −∞.

1The scaling relation as presented in [24] has a factor 2
scatters; particularly at z → 0, the soliton mass tends to be higher
than the average. The reason is that in cosmology simulations
while the soliton continues to grow in mass, the halo awaits major
mergers to grow. In the presence of a cosmological constant, the
waiting time is long compared with the simulation sampling time,
thereby yielding a slight deficiency in halo masses of major halos.
The simulation halos we adopted as templetes are these late-time
halos and the soliton mass is roughly a factor of 2 higher than the
core mass-halo mass relation indicates. We hence increase the
core mass defined in [24] by 1.7 to the constructed halos so that
they can be compared with simulation halos.
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A series of self-consistent halo densities with a given halo
mass and μ ¼ −2.5 but different β is shown in Fig. 3(a),
where ρ0 is the background matter density at present.
Moreover, we restrict our discussion to Halo B, which is
one of the most massive virialized halos in our cosmological
simulations. The mass of this halo is 7 × 1010 M⊙, and note
that its core mass is a factor of 1.7 more massive than
predicted by the core-halo mass relation explained earlier.
Plotted in Fig. 3(a) are the density profiles of these

constructed halos. The unit of distance is Mpc/h, where
h ¼ 0.70 is the dimensionless Hubble parameter. As β
increases (or temperature decreases) the inner halo
becomes less concentrated, and the gravitational potential
becomes shallower. This feature is expected for a low
temperature halo of a fixed halo mass, since the potential
must be shallower for a lower temperature virialized
system. On the other hand, Fig. 3(b) shows halo densities
of β ¼ 3.4 but with different chemical potentials μ. We
observe that by increasing chemical potential the density
becomes flatter in r≲ 3 × 10−3 Mpc=h and steeper in
3 × 10−3 Mpc=h≲ r≲ 10−2 Mpc=h. This behavior is what
one would have expected for the fermionic distribution
function where the chemical potential suppresses the ampli-
tudes of eigenmodes when energies are below the chemical
potential. These suppressed eigenmodes are those lowly-
excited states, and thus contribute to the innermost part
of the halo. We surprisingly find that the inverse β is higher
than the virial temperature of this self-consistent halo
roughly by a factor of 3. This may be related to the slightly
nonisothermality of halos elucidated in a later section.
It is important to verify whether the parameters ðβ; μÞ of

the self-consistent solutions are in agreement with the DF
obtained from the simulation halo (Halo B) when the
constructed halo and the simulated halo have almost
identical density profiles, and whether the constructed
profile with the best-fit (β, μ) to the simulated halo
reproduces the density profile of Halo B. Among the
previous self-consistent solutions, we first identify a self-
consistent density profile with β ¼ 3.4 and μ ¼ −2.5 that is
the closest to the simulation density profile. We then
calculate χ2red of the fermionic King model with these values
of β andμ against the simulation data and obtain χ2red ¼ 5.15.
This is to be contrasted with the minimum χ2red ¼ 3.91
obtained by fitting DF directly. On the other hand, we also
construct the self-consistent solution with the minimum
χ2red ¼ 3.91 parameters, β ¼ 3.5 and μ ¼ −1.9. Figure 3(c)
shows the density profiles of these two sets of parameters as
well as the simulation data. Both profiles fairly resemble, but
are not identical to, the simulation density profile. The slight
deviation of these solutions from the simulation data reflects
the lack of a precise functional form of the distribution
function. The checks set an estimate for the limitation of self-
consistent solutions.
Figure 3(c) also provides hints about how to determine β

so that the self-consistent solutions fairly resemble

FIG. 3. (a) Density profiles of self-consistent solutions with
different β. (b) Density profiles of self-consistent solutions with
different chemical potentials (μ). (c) Density profiles of self-
consistent solutions with parameters (β, μ) obtained from (i) the
minimum reduced chi-square against the distribution function
data (green solid line) and (ii) the closest one to the simulation
density profile among Fig. 3 (red solid line). The simulation
density profile is also shown (blue solid line). The power laws r−1

and r−3 are also plotted as references.
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simulation halos. Note that β ¼ 3.2 in Fig. 3(a) is the
lowest value we can construct a self-consistent solution
when fixing μ ¼ −2.5. Since the density profile of self-
consistent solution with β ¼ 3.4 and μ ¼ −2.5 appears
closest to that of simulation, we conjecture that the density
profile is similar to simulation when the value of β is close
to the lowest possible value. This strategy will be adopted
for the construction of halos without templates. On the
other hand, so far there is no clear evidence on how to
determine μ.
The target of this work is to construct the wave function

of massive galaxies, with halo mass around 1012 M⊙, as the
current AMR cosmological simulations are incapable of
running with a sufficient large volume to form such a
massive galaxy [14,24]. We have constructed a series of
self-consistent solutions for a halo of mass 8 × 1011 M⊙, as
shown in Fig. 4. (For these massive-galaxy halos, we let the
soliton mass obey the soliton mass—halo mass relation and
have not modified the soliton mass.) In this case, β ¼ 0.65
is close to the lowest value, below which no solution can be
found. We find that the inner part of the density profile is
already suppressed even for μ → −∞, and therefore this set
of parameters are adopted to solve for the Milky Way–sized
halo wave function. This is basically the King model. A
slightly lower temperature solution is also plotted to show
the trend near this solution. Also plotted in Fig. 4 for
references are two logarithmic slopes of −0.5 and −3 for
the inner and outer halo of these solutions, as well as the
NFW profile of mass 8 × 1011 and concentration parameter
c ¼ 18, according to [29].
Unlike the previous less massive halos, the inner halo of

the massive galaxy is relatively flat compared with the
NFW profile of the CDM model, despite the fact that
the outer halo appears to be consistent with the NFW
profile. We will discuss this difference in Sec. IV, and

three-dimensional simulation tests of these halos will be
conducted in a future work.

C. Stability of constructed halos

Next, we shall examine the stability of the constructed
self-consistent halos. We check three dwarf-galaxy-sized
halos, (i) simulation halo, (ii) self-consistent halo with
β ¼ 3.4 and μ ¼ −2.5, and (iii) self-consistent halo with
β ¼ 4.0 and μ ¼ −2.5. Figure 5(a) shows the slice image of
density for the simulation halo cutting through the halo
center. Figure 5(b) shows the same slice of the self-
consistent halo of β ¼ 3.4 and μ ¼ −2.5. The slice of halo
(iii) is not shown since it is almost indistinguishable from
Fig. 5(b). From these slice images, one sees that the self-
consistent halo has isotropic granules throughout the halo,
whereas the simulation halo has tangentially elongated
granules in the outer halo. This image reveals evidence that

FIG. 4. Density profiles of self-consistent solutions of a 8 ×
1011 M⊙ halo. The inner profile and outer profile are close to
power laws r−0.5 and r−3, respectively.

FIG. 5. (a) Density slice of the simulation ψDM halo.
(b) Density slice of the self-consistent ψDM halo with β ¼ 3.4,
μ ¼ −2.5.
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the distribution function ought to depend on the angular
momentum which is not captured by the fermionic
King model.
We demonstrate the stability by evolving the halos for

one free-fall time Tff defined as

Tff ¼
ffiffiffiffiffiffiffiffiffiffiffi
π2r3vir
8MG

r
; ð33Þ

where rvir is the virial radius, M is the enclosed halo
mass within the virial radius, and G is the Newton’s
constant. The boundary conditions are the isolated boun-
dary condition for gravity and rigid-wall boundary con-
dition for wave function. Box size is 180 kpc=h, with
43 pc=h spatial resolution. The simulations are conducted
by the GPU-accelerated adaptive mesh refinement code
GAMER [30,31].
Figure 6 shows the evolution of these three halos. They

evolve roughly in the same manner, with a stable outer halo
and a mildly fluctuating soliton. The simulation results
demonstrate that our self-consistent halos are stable in the
parameter range investigated. It remains to be seen whether
a halo of the same mass but with very different parameters
is also stable. But for the purpose of this first work toward
the new theoretical approach, we are confined to the
parameter regime where we believe to be physical.

IV. TEMPORAL AND SPATIAL CORRELATION
FUNCTIONS OF HALO GRANULES

An important issue, which can hardly be addressed by
simulations but can be addressed by our theoretical model,
is the time dependence of halo granules [25]. We introduce
the time correlation function for granules as a function of
radius, which is defined as

Cðri; τÞ ¼
Z

riþΔr=2

ri−Δr=2
δðr; 0Þδðr; τÞd3r ð34Þ

and

δðr; tÞ ¼ ρðr; tÞ − ρ̄ðrÞ
ρ̄ðrÞ ; ð35Þ

where ρðr; tÞ is the density, ρ̄ðrÞ is the average density over
a narrow shell, and ri is the radius of the ith shell with a
small width Δr. The time correlation function measures the
granule coherence time at a fixed position. As granules can
die out but will also move around, the coherence time may
not be the granule lifetime, but may better be interpreted as
the travel time across a granule if the lifetime is longer than
the travel time. When so, we can estimate the granule travel
speed if the typical granule sizes as a function of radius
are known.
We examine the 7 × 1010 M⊙ self-consistent halo with

β ¼ 3.4 and μ ¼ −2.5. Halo time correlation functions at
various radii are shown in Fig. 7(a). The width of thin shells
is 1=300 virial radius, about three cells of our computation
box. The unit of time is the ground state period, which is
3.6 × 10−4H−1

0 ¼ 5.0 × 106 yrs for this 7 × 1010 M⊙ halo.
Notice that the ground state (soliton) is excluded from
the calculation of the halo time correlation function.
Figure 7(a) shows that the correlation time of the inner
halo, in between r ≈ 0.02rvir − 0.14rvir, is roughly the
same, whereas the correlation time rapidly increases with
radius. This trend is actually expected since highly excited
bound states that contribute to the outer halo have energies,
thus eigenfrequencies, close to zero.
By defining the correlation time τ as the time when the

peak correlation drops to half of its maximum value, we plot
τ as a function of radius in Fig. 7(b). The correlation time τ at
0.59rvir in the outer halo can be nearly 1 order of magnitude
larger than that in r < 0.14rvir (inner halo), indicating
relatively slow potential fluctuations in the outer halo.
The correlation functions at inner radii are seen to still

fluctuate with low-level but finite amplitudes even after 20
ground state periods in Fig. 7(a), while those at the larger
radii monotonically decrease to zero. These residual
fluctuations arise from the fact that lowly excited states,
dominant at small radius, do not have a sufficient number of
states to decorrelate the fluctuations, and granules in the
inner halo have long-term memory.
The thermal property of ψDM is ultimately related to the

granule size, as the ψDM halo relies on granules to counter
self-gravity. The typical granule size can be evaluated by
spatial Fourier transform. The halo is divided into several
thick shells, with width about 17 cells centered around the
narrow shells mentioned above. We also include a central
sphere of radius r1 just enclosing the central soliton.
Figure 7(c) shows the arbitrarily normalized spatial power
spectra of the density fluctuations [δ of Eq. (35)] in these
thick shells and the central soliton. The peak position of the

FIG. 6. Density profiles of two self-consistent halos (red and
green lines) and simulation halo (blue lines) evolved for one halo
free-fall time (Tff). It demonstrates that the self-consistent halos
are very stable.

LIN, SCHIVE, WONG, and CHIUEH PHYS. REV. D 97, 103523 (2018)

103523-10



power spectrum reflects the typical size of structure in the
shell, and we see the granule size increases with the radius
very mildly, changing only by a factor of 2 over the entire
halo. The average size of granules in the inner halo is about
the soliton size, rsol ¼ 0.39 kpc/h, supporting the claim
made by [24]. The slightly nonuniform granule size over
the halo may explain why the virial temperature is smaller
than 1=β of the distribution function found in Sec. III.
The traveling speed of the granule is about Δr=2τ, where

Δr ≈ π=kpeak is the typical size of granules, and kpeak is the
corresponding wavenumber at the peak of the power
spectrum [Fig. 7(c)]. We divide Δr=2 instead of Δr over
τ since the correlation time τ is the time when granules shift
a distance roughly half of their characteristic length. On the
other hand, we can define the “thermal” speed of ψDM as
ℏkpeak=m arising from the quantum pressure. Both speeds
are shown in Fig. 7(d) as a function of r. Clearly, the
“thermal” speed dominates the traveling speed over the

entire halo by a large margin. Thus if the ψDM halo can be
regarded as in a turbulent state, the turbulence is at most
subsonic. In fact the low travelling speed of granules
requires a relatively long correlation time, which in turn
is simply a reflection of small energy gaps between
spatially adjacent eigenstates relative to the eigenenergy.

V. DISCUSSIONS AND CONCLUSION

We have successfully devised a novel method to con-
struct self-consistent solutions of density and potential for
the ψDM halo where the distribution function is described
by the fermionic King model. The self-consistent solutions
are very stable in dynamical simulation tests. We have also
examined the time correlation function for the halo gran-
ules and found that the granule coherence time can increase
by 1 order of magnitude from the inner halo to the outer
halo, despite the fact that the granule size changes little.

FIG. 7. (a) Halo time correlation function for the self-consistent solution of β ¼ 3.4 and μ ¼ −2.5 at different radii. The inset shows
the correlation function within 0 ≤ t ≤ 3Tg, where Tg is the ground state period. (b) Correlation time as a function of radius. (c) Power
spectrum of halo granules at different radii [same as those in Fig. 7(a)]. The unit of k is the inverse of grids length (lg ¼ 0.17 kpc=h). The
typical size of granules increases as radius increases. The amplitudes of granules power spectrum are normalized to one, while that of
the soliton is set to a higher value to distinguish the soliton from granules. We find the spectral peaks differ by only a factor of 2 from the
innermost radius to the outermost radius. (d) Thermal speed and traveling speed as functions of radius.
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In this work, we also construct a Milky Way–sized halo
of 8 × 1011 M⊙. This inner halo has a flatter profile than
the CDM inner halo, though the outer halo appears similar.
Recent modeling of observational data of Milky Way bulge
with star surface brightness and kinematics does not
favor the NFW profile with low concentration parameters
ðc ∼ 10Þ conventionally expected for the 1012 M⊙ halo [32].
This is consistent with our result that our Milky Way–sized
halo appears to agree better with a high-concentration NFW
profile with c ∼ 20, despite the fact that our inner halo
significantly deviates from the NFW −1 power-law profile.
It is known that the inner halo of CDM is built sequentially at
ever increasing radius when the cosmic average density is
high and minor mergers are abundant. However, ψDM
suppresses small galaxies and hence the galaxy assembly
history is different. Moreover, CDM has a cold inner halo,
butψDMhas a hot inner halo characterized by the inner halo
granule size. These considerations point to an inevitable
difference in the inner halo profiles of the two models.
The fact that the granule size only changes by a factor of

2 across the ψDM halo indicates that the ψDM halo has
better thermal conductivity than the CDM halo. And the
fact that the inner ψDM halo is hot as opposed to the cold
inner CDM halo is caused by the ’hot’ central soliton, with
which the innermost halo has thermal contact. The soliton
serves as a ’heat’ engine. As the soliton grows in mass
along with the halo and its size is reduced, the soliton must
release heat and this amount of heat is to be absorbed by
the halo.
This project is not complete without a dynamical test of

the massive galaxy by simulations. However, the granule
size, in this case, is about 150 pc and the halo size over
150 kpc. The entire halo needs to be resolved below 50 pc
to be able to accurately capture the granules. This is a
highly nontrivial task and will be left as a separate future
work as this project continues.

ACKNOWLEDGMENTS

S.-C. L. is grateful to Yu-Ching Shen for discussions, to
Shan-Wei Lin for helping him debug and to Dr. James H. H.
Chang for providing his power spectrum code. This work is
supported in part by MOST of Taiwan under Grant
No. MOST 103-2112-M-002-020-MY3.

APPENDIX A: WIGNER FUNCTION

From a different perspective fromSec. II A,wemay relate
Eq. (11) to theWigner function, a representation of thewave
(or quantum) mechanical phase space distribution function
analogous to fðx;pÞ of classical mechanics. We have

σ2I
X
j∈I

r2j jΦjðxÞj2 ≈ jψ IðxÞj2; ðA1Þ

where ψ IðxÞ ¼
P

j∈IσIrjΦjðxÞ, since the random number
rirj in the cross termwith i ≠ j can be averaged to zero in the

cross-term summation
P0

i;j∈I . Now it is straightforward to
show that

jψ IðxÞj2

¼
Z

d3p

�
1

ð2πℏÞ3
Z

d3yψ Iðxþy=2Þψ�
I ðx−y=2Þeip·y=ℏ

�
;

ðA2Þ

where ℏ is the Planck constant. The integrand in the
squared bracket on the right-hand side is nothing more
than theWigner function near the constant of motion I. The
integration

R
d3p in Eq. (A2) simply gives the phase

volume near I. Therefore, Eq. (A1) is indeed the distribu-
tion function f(I) multiplied by the spatial-dependent
phase space volume near I, which we denote by ΩIðxÞ.
We can further separate the magnitude from the spatial
dependence, i.e., ΩIðxÞ ¼ gðIÞh2I ðxÞ. Here, h2I ðxÞ is the
weighted average of all jΦjðxÞj2 within I, thus h2I ðxÞ ¼P

j∈Ir
2
j jΦjðxÞj2=

P
j∈Ir

2
j , and hence

R
h2I ðxÞd3x ¼ 1. At

the end, we arrive at

hρiðxÞ ¼
X
I

fðIÞgðIÞh2I ðxÞ: ðA3Þ

APPENDIX B: DISTRIBUTION FUNCTIONS
OF SELF-GRAVITATING SYSTEMS

In this work, we consider a few well-known distribution
functions, which are either a function of energy or a
function of both energy and angular momentum. We briefly
describe these distribution functions for references in the
main text.

1. Models as functions of energy

The first model is the King model [33], or the lowered
isothermal model, which behaves like Maxwell-Boltzmann
distribution when energy is far below the negative escape
energy. The density profile does not extend to infinity. That
is, the system is truncated at a certain escape energy to have
a finite mass. The distribution function of the King model is

fKing ¼
(
Aðe−βðE−EcÞ − 1Þ; if E ≤ Ec

0; otherwise
ðB1Þ

where Ec is the escape energy, and β can be interpreted as
inverse temperature.
The second model is the fermionic King model, which is

proposed by Ruffini and Stella [34], and can be derived
from classical kinetic theory [27]. This model is motivated
by the Lynden-Bell’s distribution for collisionless particles
which in some simplified cases is described by Fermi-Dirac
distribution. The fermionic King model differs from the
King model only by dividing a Fermi-Dirac factor. That is,
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fFK ¼
(
A e−βðE−EcÞ−1

e−βðE−Ec−μÞþ1
; if E ≤ Ec0;

0; otherwise
ðB2Þ

where μ is the chemical potential. If μ → −∞, the fer-
mionic King model reduces to the King model. The
amplitudes of lower excited states in the model are sup-
pressed in the presence of chemical potential.

2. Models as functions of energy and
angular momentum

Spherical-symmetric self-gravitating system can have
anisotropic velocity dispersion if the distribution function is
a function of both energy and orbital angular momentum
L2; that is,

f ¼ fðE;L2Þ: ðB3Þ

We consider the Osipkov-Merritt model, which is gener-
ated by replacing the argument of the distribution function
from energy E to Q, where Q is defined as

Q≡ −E −
L2

2r2a
; ðB4Þ

where ra is a constant scale radius. The velocity dispersion
inside ra is isotropic, whereas it becomes radially biased in
the region outside ra [26]. The Osipkiv-Merritt version of
the King model is

fOMK ¼
�
Aðe−βðQ−QcÞ − 1Þ; if Q ≤ Qc

0. otherwise
ðB5Þ
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