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Using N-body simulations we study the impact of various systematic effects on the low-order moments
of the cosmic velocity field: the bulk flow (BF) and the cosmic Mach number (CMN). We consider two
types of systematics: those related to survey properties and those induced by the observer’s location in the
Universe. In the former category we model sparse sampling, velocity errors, and survey incompleteness
(radial and geometrical). In the latter, we consider local group (LG) analogue observers, placed in a specific
location within the cosmic web, satisfying various observational criteria. We differentiate such LG
observers from Copernican ones, who are at random locations. We report strong systematic effects on the
measured BF and CMN induced by sparse sampling, velocity errors and radial incompleteness. For BF
most of these effects exceed 10% for scales R ≲ 100h−1 Mpc. For CMN some of these systematics can be
catastrophically large (i.e., > 50%) also on bigger scales. Moreover, we find that the position of the
observer in the cosmic web significantly affects the locally measured BF (CMN), with effects as large as
∼20% (30%) at R ≲ 50h−1 Mpc for a LG-like observer as compared to a random one. This effect is
comparable to the sample variance at the same scales. Such location-dependent effects have not been
considered previously in BF and CMN studies and here we report their magnitude and scale for the first
time. To highlight the importance of these systematics, we additionally study a model of modified gravity
with ∼15% enhanced growth rate (compared to general relativity). We found that the systematic effects can
mimic the modified gravity signal. The worst-case scenario is realized for a case of a LG-like observer,
when the effects induced by local structures are degenerate with the enhanced growth rate fostered by
modified gravity. Our results indicate that dedicated constrained simulations and realistic mock galaxy
catalogs will be absolutely necessary to fully benefit from the statistical power of the forthcoming peculiar
velocity data from surveys such as TAIPAN, WALLABY, COSMICFLOWS-4 and SKA.
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I. INTRODUCTION

The standard model of cosmology—Lambda cold dark
matter (LCDM)—is extremely successful in explaining a
plethora of observations. These include the features of the
cosmic microwave background, i.e., [1,2], the primordial
nucleosynthesis and light element abundances [3,4], the
growth of primordial density perturbations into the present-
day large-scale structure (LSS) [5–7], as well as the late-
time accelerated expansion of the Universe [8–11].
However, since LCDM is mostly phenomenological in
its nature, this spectacular success comes at a price of
accepting that the main contributors to the cosmic energy
budget are dark matter (DM) and dark energy (DE), which
have not been directly detected in any experiments so far.
Therefore, it is desirable to look for other probes of the
cosmological model, especially those which do not share at
least some of the systematics of the aforementioned
measurements.

In this context, the peculiar motions of galaxies—i.e.,
deviations from the uniform Hubble flow—are considered
as particularly valuable [12–14]. Induced by gravity only,
they are not affected by such systematics as galaxy bias,
which plagues for instance the measurements of galaxy
clustering. Peculiar velocities can be therefore used, at least
in principle, to obtain constraints on various cosmological
parameters such as the mean matter density or the growth of
structure [15,16], independently of other methods.
Arguably the most popular statistic of the velocity field is

the bulk flow (BF), i.e., the net peculiar motion of galaxies
contained in a given volume. BF probes large-scale
fluctuations of matter distribution, and should generally
diminish with increased volume. Over the decades, BF
measurements have often been subject to various contro-
versies. An example from early studies is by [17], who
measured a net motion of Abell clusters amounting to
∼700 km s−1 within a radius of 15; 000 km s−1, which was
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however not confirmed by subsequent analyses, e.g.,
[18,19] (but see [20]). More recently, the authos of [21]
claimed significant BF (∼400 km s−1) on scales of
∼100h−1 Mpc from a combined sample of galaxies and
clusters, which also is not supported by several other
studies, e.g., [15,22] (see however [23]). Even more
controversial are the claims of the very large scale
(∼300h−1 Mpc) “dark flow” by [24], which again is not
corroborated by related analyses [25,26]. Thanks to the
ever growing amount of observational data, there is
continued interest in measuring the BF and, if these
discrepancies could be resolved, using it as a cosmological
probe; for some more recent results see [27–43].
Part of the BF “controversy” (or more precisely, incon-

sistency between some measurements) is due to the fact that
many of the BF assessments are not directly comparable
due to different estimators used, with specific sensitivity to
various scales and systematics [44–46]. The quality and
volume of the velocity data is another important issue here.
We note that some of the developed estimators do not use
peculiar velocities at all to estimate the BF, e.g.,
[24,28,30,31,34,37], they are thus not sensitive to the
related biases, although this of course does not make them
immune to other, often major, systematic effects.
The BF continues to be regarded as a promising probe of

cosmology especially taking into account that larger,
denser, and more accurate samples of peculiar velocities
are expected to appear in the coming years from such
surveys as Taipan [47], WALLABY [48], or
COSMICFLOWS-4 [49]. However, agreement is gradually
building up that in order to take full advantage of these
future data sets for BF and other velocity-based measure-
ments, the control of systematic effects and biases is crucial
for proper data interpretation. Recent developments of e.g.,
[45,50,51] highlight the importance of selection and
observer-driven effects for peculiar velocity studies.
Reference [45] considered the impact of purely geometrical
selection effects on the inferred bulk flows, including the
partial sky coverage. In addition, Ref. [51] investigated
mainly the effect of different radial selection functions and
the corresponding galaxy/halo weighting. Both works
report the importance of these two systematic effects that
can bias the data, but the effect they studied referred to a
hypothetical Copernican observer. The results of [50]
however underline that for relatively shallow and sparse
velocity data, the specific location of the observer within
the cosmic web affects in a nontrivial way the cosmic
variance of the velocity observables. Inspired by these
previous results, in this work we will readdress this issue by
looking closely at the impact of the observer location (i.e.,
importance of the local cosmic structures) on the inferred
BF and related statistics. We will show that the BF itself is
very sensitive to such effects, which must be therefore
properly accounted for when measuring it from the current
and forthcoming data sets.

A statistics related to the BF, which uses additionally the
third moment of the peculiar velocity field, is the cosmic
Mach number (CMN) defined as the ratio of the BF to the
peculiar velocity dispersion in the same volume [52]. In the
original proposal, CMN was regarded as a “critical test for
current theories,” and more recently quoted as “a sensitive
probe for the growth of structure” [53]. For other theoretical
and observational studies of CMN and its importance for
cosmology, see [54–58]. In this paper we will examine the
sensitivity of the CMN to the same systematics as those
studies for the BF. Similar conclusions regarding the
importance of such effects for CMN as in the case of
BF will apply.
The cosmic velocity field reflects a continuous action of

gravity integrated over the history of large-scale-structure
growth. Thus it offers, in principle, a very sensitive probe of
the very nature of gravity itself. Here, even small possible
deviations from a general relativity (GR)-like force law
provide minute galaxy acceleration changes that are ampli-
fied when integrated over time. This has been shown by
other authors for a range of velocity field statistics and
viable modified gravity (MG) models (see e.g., [59–61]).
Thus, if one is able to control various systematic effects,
and in the case of known (assumed) cosmological param-
eters like Ωm and σ8 (taken for example from CMB
observations), then the galaxy velocity field (and its low-
order moments) provides a potentially powerful way of
constraining non-GR models. Such constraints would
foster an independent, thus complementary, way of testing
GR and measuring the local value of the growth rate,
f ≡ lnDþ= ln a [13,14]. In order to be able to use the
velocity data for testing gravity one needs to recognize and
control all important systematic effects. Consequently, in
this paper we also consider a modified gravity model
(deviating by ∼15% in the growth rate from GR) and
compare its signal with the magnitude of various system-
atics in the GR case.
As briefly indicated above, various systematic and

statistical effects that disturb the velocity data were a
subject of careful study in the past. However, except for
the early work of Ref. [62], analyses of the impact of a
specific location of the observer within the large-scale
structure were not conducted. Reference [62] studied only
the two-point velocity statistics and they did not require the
presence of any nearby cosmic web structures such as the
Virgo cluster. Here, we will conduct a joint study of various
systematic effects, starting from sparse sampling and radial
selection, up to the impact of the observer location. We will
identify scales and magnitudes of various effects and
compare them against expected statistical fluctuations in
a systematic fashion. In this way we will obtain insight into
scales, magnitudes and the interdependence of various
systematical effects troubling BF and CMN measurements.
This will constitute another important step for peculiar
velocity studies towards the precision cosmology era.
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The paper is organized as follows: in Sec. II we describe
in detail computer simulations used in this study; in Sec. III
some theoretical preliminaries and relevant considerations
are given; Sec. IV contains a description of mock catalogs
and various observational effects that we model; in Sec. V
we discuss the effects induced by systematics independent
from a specific observer’s position, while in Sec. VI the
focus is given to signals measured by local group-analogue
observers; Sec. VII compares signal from a modified
gravity model with known GR systematic effects. Finally
Sec. VIII summarizes our findings; this is followed by
Sec. IX where discussion and conclusions are given. Some
additional tests and discussion about the influence of the
simulation box size are given in the Appendix.

II. SIMULATIONS

To study cosmic flows we employ a set of large N-body
simulations conducted with the use of the ECOSMOG code
[63]. Time evolution of cosmic structures is here followed
with respect to a background spatially flat Universe described
by cosmological parameters consistent with the 2013 results
from the Planck mission [64]. We imposed the following
values: σ8 ¼ 0.831, Ωm ¼ 0.315, ΩΛ ¼ 0.684, ns ¼ 0.96.
The growth of density fluctuations is modeled by assuming
that all nonrelativistic matter is collisionless, i.e., we treat the
baryonic component as DM. Ignoring baryonic physics will
not introduce any significant biases as long as we are not
interested in internal properties of individual halos but only in
their spatial distribution and peculiar velocities (e.g., [65]).
Thus in our simulationweplace14003DMparticles in a cubic
box of comoving size of 1000h−1 Mpc. This particular setup
fixes the mass resolution at mp ¼ 3.2 × 1010h−1 M⊙.
ECOSMOG is an extension of the RAMSES code [66] and uses
adaptive mesh refinement (AMR) and dynamical grid relax-
ation methods to compute the gravitational potential and
forces. Thus our simulations are not characterized by a single
fixed force resolution, but to gauge our dynamical spatial
resolution we can use the cell size of the most refined AMR
grid. In all our runs such a grid had a rank ofN17 resulting in
the finest force resolution of ε ¼ 7.6h−1 kpc. However, the
average force resolution was around 35h−1 kpc.
In this paper we aim to study various systematic effects

that affect the lowest moments of the cosmic velocity field.
For that reason wewill bemostly concernedwith the fiducial
cosmological ΛCDM model. However, in Sec. VII we will
compare the magnitude of various systematics with the
predicted amplitude of a non-GR signature expected in the
case of a modified gravity model. As a representative guinea
pig we chose the so-called normal branch of the Dvali-
Gabadadze-Poratti (henceforth nDGP) model [67,68]. For a
more detailed description of that model and its implementa-
tion in simulations, see the relevant section.
Real astronomical observations measure the radial com-

ponent of the peculiar velocity of a galaxy rather than of its

host halo. Our simulations do not attempt to model
assembly of galaxies in any way, but we can safely use
the bulk velocities of DM halos found in our simulations as
faithful proxies for real galaxy peculiar velocities. This is
the case since the studies of other authors, e.g., [65,69],
have shown that for central galaxies residing in massive
halos their relative velocities with respect to their host halos
are very small (i.e., ≤ 5 km s−1) compared to the bulk-flow
magnitude we will study here. In addition we do not expect
that any nonzero galaxy velocity in relation to its host halo
would be correlated to the large-scale matter distribution
which induces bulk flows. Thus, due to global isotropy
these velocities should average out to zero for scales much
larger than a given halo radius.
To identify halos and subhalos in the simulations we

employ ROCKSTAR [70], a phase-space friends-of-friends
halo finder. To define a halo edge we use the virial radius
R200, defined as the radius within which the enclosed density
is 200 × ρc, where ρc is the critical cosmic density. For
further analysis we keep all gravitationally bound halos that
contain at least 20 DM particles each. This sets our minimal
halo mass toMmin ¼ 20 ×mp ¼ 6.4 × 1011h−1 M⊙. Based
on the initial halo catalogs, we build our test halo populations
by distinguishing the central halos from satellites (subhalos).
For further analysis we keep only the centrals, which wewill
treat as rough mocks for population of central galaxies. To
obtain additional halo samples with lower number densities
we perform random subsampling. Ourmain catalog includes
all central halos resolved in our simulation at z ¼ 0 and has a
number density of hni ¼ 6 × 10−3h3 Mpc−3. To obtain
sparser samples we consequently dilute this main sample
by randomly (and spatially uniformly) keeping only every
nth halo. Thus we also obtain the following samples:
hni ¼ 5 × 10−4h3 Mpc−3, hni ¼ 5 × 10−5h3 Mpc−3 and
hni ¼ 5 × 10−6h3 Mpc−3. Such number densities of tracers
are in the range one can encounter in current and future
astronomical observations: fromcomplete rich local universe
surveys (see e.g., [47,71,72]), through Luminous Red
Galaxy samples from redshift surveys (e.g., [73,74]), to
quasar and Supernova data (e.g., [75,76]).
Finally, since peculiar velocity catalogs are rather shallow,

rarely reaching at present deeper than ∼200h−1 Mpc (see
e.g., [43,49,77,78]) we constrain all our analysis only to the
z ¼ 0 snapshot of our simulations and to scales up to
250h−1 Mpc. This being said, it is also imperative to com-
ment on the convergence of the simulation results at large
scales. The velocity field is much more sensitive to con-
tributions from perturbation modes much larger than a given
scale one considers. In other words, we can expect that the
finite-volume effects will be more pronounced here than in
the case of the density field. To check what scales we can
trust, we have run additional tests involving three more
simplified simulations with a varying box size. The details
and analysis of these are given in theAppendix.The results of
these tests indicate that on scales R≳ 200h−1 Mpc the
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amplitude of ourBF is systematically biased downby15%or
more. However, the size of various systematic effects
expressed as a relative BF magnitude difference appears
to be only weakly affected by the box size up to
R ∼ 250h−1 Mpc. This supports our choice of the maximal
scale we consider in this paper.

III. THEORETICAL PRELIMINARIES

Throughout our work we assume the homogeneous and
isotropic cosmological model, in which the background
obeys Friedman-Lemâitre equations with a scale factor
aðtÞ. All the quantities will be expressed in comoving
coordinates, i.e., x⃗ ¼ r⃗=aðtÞ. For background density
ρbðtÞ and density contrast δðx⃗; tÞ≡ ρðx⃗; tÞ=ρbðtÞ − 1, the
Poisson equation linking the peculiar gravitational potential
ϕðx⃗; tÞ with density perturbations is

∇2ϕðx⃗; tÞ ¼ 4πGρbðtÞa2δðx⃗; tÞ: ð1Þ
By integration, we obtain the expression for peculiar
accelerations g⃗ [79]:

g⃗ðx⃗Þ ¼ −
∇ϕ

a
¼ Gaρ0

Z
δðx⃗0Þðx⃗0 − x⃗Þ
jx⃗0 − x⃗j3

dx⃗0: ð2Þ

Peculiar velocities v⃗ðx⃗; tÞ, defined as deviations from the
Hubble flow, are coupled to the density field via the
continuity equation:

∂δ
∂t þ

1

a
∇ · ½ð1þ δÞv⃗� ¼ 0: ð3Þ

A. Linear theory predictions

We can model the cosmic velocity field by performing a
decomposition of the full three-dimensional (3D) field into
a sum of longitudinal (nonrotational) and transverse (rota-
tional) components:

v⃗ ¼ v⃗L þ v⃗T ; where∶ ð4Þ

∇ × v⃗L ¼ 0 and ∇ · v⃗T ¼ 0: ð5Þ

In the linear regime, the velocity field is curl-free, thus
v⃗T ¼ 0 and the field is purely potential. Henceforth it can
be expressed as a gradient of a scalar function Ψv (called
the velocity potential):

v⃗ ¼ −∇Ψv=a: ð6Þ
Now considering the continuity equation (3) it can be
shown that the velocity potential obeys

∇2Ψv ¼ Hfa2δ; ð7Þ
where we have used the definition of the dimensionless
growth rate f ≡ d logD1=d loga. The growth rate only

very weakly depends on Λ [80] and for a flat LCDM
universe f ≈ Ω0.55

m [81]. However, in general for some
alternative cosmologies (like coupled DE or modified
gravity) it can take a different value and also be a scale-
dependent function.
Finally, in the linear regime we have ϕ ∝ Ψv and v⃗ ∝ g⃗

(where g⃗ is the peculiar gravitational acceleration), and in
particular at z ¼ 0 one has

v⃗ ¼ H0f
4πGρ0

g⃗ ¼ 2f
3H0Ωm

g⃗: ð8Þ

In the linear regime we can also express the relation
between the power spectrum of density fluctuations,
PðkÞ≡ hδkδ�ki, and the dimensionless expansion scalar,
θk, which is the scaled velocity divergence (also called the
expansion scalar)

θ≡−∇v⃗
aH0

; and v⃗k¼aH0

ik⃗
k2
θk; soPθθðkÞ¼hθkθ�ki: ð9Þ

In the linear regime for a potential flow it follows from the
continuity equation (3) that

PðkÞ ¼ f−2PθθðkÞ: ð10Þ
The above relation is often used in the literature to
approximate velocity power spectrum by linear velocity
divergence, thus neglecting dispersion and vorticity (see
e.g., [12]). Such approximation however holds only on
sufficiently large scales; those scales are generally larger
(i.e., ≥ 60–100h−1 Mpc) than in relevant analyses of the
density field (see e.g., [82–84]).

B. Bulk flow, velocity dispersion,
and cosmic Mach number

The bulk flow (BF) is the dipole (second) moment of the
peculiar velocity field, v⃗ðx⃗Þ, in a given region of space
(volume). Nonzero BF reflects a net streaming motion
towards a particular direction in space. Thus in the
continuous limit of the field v⃗, for a spherical region with
a radius R, it will be

B⃗ðRÞ ¼ 3

4πR3

Z
R

0

v⃗ðx⃗Þd3x: ð11Þ

Throughout this paper we will interchangeably use BF and
B to denote the bulk flow amplitude.
When the velocity field is sampled by a set of N discrete

tracers (e.g., galaxies) then the above integral becomes a
finite sum. If each individual galaxy is assigned a weight
wi, then the 3D bulk flow vector will be

B⃗ðRÞ ¼
P

N
i¼1 wiv⃗iP
N
i¼1 wi

; ð12Þ
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where v⃗i is the peculiar velocity of the ith galaxy. An
important note to make here is that since galaxies are biased
tracers, they do not sample the underlying smooth density
and velocity fields evenly. Since they are preferentially
found in high-density regions, galaxies by construction
give mass-weighted fields. This is in contrast to Eq. (11),
which is defined for a volume-weighted velocity field. In
the linear regime (or in the limit of bias b → 1) the two
definitions should agree. On small, nonlinear scales, we can
expect that discrete tracer-based estimators, such as
Eq. (12), will be biased. We should remember about this
whenever we compare linear theory predictions with the
estimators based on discrete tracers such as galaxies. If
the density fluctuations are a randomGaussian field, then in
the linear theory (i.e., on sufficiently large scales) the
corresponding velocity field will also be a random variable
(for each vector component separately and independently)
with a zero mean. Then we can define the corresponding
dispersion (VD) of the peculiar velocities with respect to
the averaged bulk flow as

DðRÞ ¼
P

N
i¼1 ½wiv⃗i − B⃗ðRÞ�2P

N
i¼1 wi − 1

; ð13Þ

where the sum of the weights needs to be ≠ 1, so the
denominator does not take a zero value. The variance of the
velocity field will be given by the velocity power spectrum

ð2πÞ3δDðk⃗ − k⃗0ÞPvvðkÞ≡ hv2ki, where vk ¼ jv⃗k⃗j and we

already assumed global isotropy (k ¼ jk⃗j). Thus the pre-
dicted root mean square value of the bulk flow amplitude is

B2ðRÞ ¼ 1

2π2

Z
dkk2PvvðkÞjŴðkRÞj2: ð14Þ

Here ŴðkRÞ is the Fourier image of the window function.
Usually one takesW to be spherical top-hat, which implies
ŴTHðkRÞ ¼ 3½sinðkRÞ − kR cosðkRÞ�=ðkRÞ3, but some
authors consider also the so-called all-sky Gaussian selec-
tion function with ŴG ¼ expð−k2R2=2Þ.
Now, if there is no velocity bias and the velocity

field is curl-free, then PvvðkÞ¼k−2H2
0PθθðkÞ, and Eq. (14)

becomes

B2ðRÞ ¼ H2
0

2π2

Z
dkPθθðkÞjŴðkRÞj2: ð15Þ

In the regime where the velocity vorticity is negligible and
Eq. (10) holds, one finally obtains

B2ðRÞ ¼ H2
0f

2

2π2

Z
dkPðkÞjŴðkRÞj2: ð16Þ

The above equation is commonly used as the linear theory
prediction for the bulk-flow amplitude in a universe

described by a particular choice of PðkÞ and f.
Consequently, the corresponding variance of the residual
velocity field (after the BFwas subtracted) for that case takes
the form

D2ðRÞ ¼ H2
0f

2

2π2

Z
dkPðkÞð1 − jŴðkRÞj2Þ: ð17Þ

Now to obtain predictions for the bulk flow amplitude and
some significance intervals, a model distribution function for
peculiar velocities is needed. This is obtained bynoticing that
for sufficiently large smoothing scales, the distribution for a
single velocity component approaches a Gaussian, thus the
distribution for the bulk flow magnitude becomes
Maxwellian (see [85,86]). Hence for a velocity field v⃗ðRÞ
with rms velocity of B, this is given by

pðvÞdv ¼
ffiffiffi
2

π

r �
3

B2

�
3=2

v2 exp

�
−
3v2

2B2

�
dv: ð18Þ

Considering dpðvÞ=dv ¼ 0 gives in the limit the most likely
value (MLV) BMLV ¼ ffiffiffiffiffiffiffiffi

2=3
p

B and the expected value (EV)
hvi ¼ BEV ¼ 2BMLV=

ffiffiffi
π

p ¼ ffiffiffiffiffiffiffiffiffiffi
8=3π

p
B. MLV and EV are

widely used as common linear theory (LT) predictions for
the BF amplitude, and in the reminder of this manuscript we
shall adopt the same strategy whenever we will be invoking
LT formulas. We caution however, that in this context it is
important to bear in mind that such predictions only hold if
the distribution of the components of v⃗ are Gaussian. The
validity of this assumption depends on scales which one
considers. Although in general it was established that for
most scales dealt with in modern velocity analysis (i.e.,
≳30h−1 Mpc) this assumption generally holds [45], results
shown by other authors imply that caution should be taken
(see also [82,83]).
A separate note should be made here about the limits of

the integrals used to calculate BðRÞ and DðRÞ from
Eqs. (14)–(17). To obtain predictions for the physical
Universe one should consider the obvious limits from
kmin ¼ 0 to kmax ¼ ∞. However, when we want to compare
LT predictions with numerical simulations that used some
finite computation box, we should account for the fact that
the modeled velocity field will miss the contribution from
the modes larger than the box length L. Also due to
discretization of both mass and volume there is some
characteristic minimal scale that is still resolved by the
simulation, usually taken to be the force resolution ε. In
such a case, the corresponding integration limits are then
2π
L ≤ k ≤ 2π

ε . Whenever we will be comparing LT predic-
tions with the simulation results we will employ the above
integration limits.
Some authors [52,53,58] advocated also another type of

statistics, namely the cosmic Mach number (CMN, or M),
that we can define now as
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MðRÞ≡ BðRÞ
DðRÞ ; ð19Þ

which in the linear regime should be only a function of the
shape of the matter power spectrum [or the effective slope
of σ2ðRÞ around ∼R] [54,55,87].
The above considerations suggest that the linear theory

prediction for the bulk flow and associated statistics should
strongly depend on two parameters of the underlying
cosmological model, namely the growth rate f and the
amplitude of PðkÞ, which can be evaluated by the σ8
parameter. These dependencies havemotivatedmany authors
to advocate the use of the low-order velocity field statistics as
cosmological probes [12–14,22,28,30,37,38,42,53].
To gauge the magnitude of variations and their co-

dependence on f and σ8 we have considered a number of
power spectra variants. The fiducial case is (i) the Planck13
cosmology ([64]; the sameas used in our simulations) andwe
also examined four cases: (ii) high Ωm (Ωm ¼ 0.35;ΩΛ ¼
0.65); (iii) low Ωm (Ωm ¼ 0.25;ΩΛ ¼ 0.75); (iv) high σ8
(¼ 0.9) and (v) low σ8 (¼ 0.75). Here, for each case (i)–
(v) we kept fixed all the remaining ΛCDM parameters,
imposingΩk ¼ 0 andΩtot ¼ 1, and varied only the value of a
given matter density or power spectrum normalization. By
changing Ωm we probe different values of the growth rate
(by ∼10% around the fiducial case) and by varying σ8 we
sample different power spectrum amplitudes. For all the
caseswehave used the CAMB software package [88] to obtain
high-accuracy linear matter power spectra and then applied
the HALOFITmodel [89] to evolve the spectra to the nonlinear
regime. In addition,we also considered onemore case,where
we used the fully nonlinear Pθθ estimated from our ΛCDM
simulation. The nonlinear velocity divergence power spec-
trum was used only for k > 0.01h Mpc−1, where it deviates
by more than 3% from the nonlinear f2PðkÞ; for smaller k it
was substituted by the CAMB-provided PðkÞ, rescaled by f2.
We checked the effect of the nonlinear divergence spectra,
since the scales at which the velocity field is curl-free and the
scales at which δ ≪ 1 are not necessary the same [83,84].
In Fig. 1 we compare all the examined power spectra with

our fiducial Planck13 case (i). The velocity divergence power
spectrum was scaled by the corresponding f2 factor. We can
observe that for the cases where Ωm is varied, the corre-
sponding changes in PðkÞ are limited to large scales,
k ≤ 0.1h Mpc−1. Small deviations seen above k≳
3h Mpc−1 reflect the different length of thematter-dominated
epochs in low and high-Ωm universes and so different degree
of nonlinearity in the density field. However, this appears at
scales too small to be relevant for the large-scalevelocity field.
As expected the high-(low-)Ωm case is characterized by a
smaller (larger) amplitude of the power spectrum than the
fiducial case at these scales. For both cases the changes in the
large-scale PðkÞ amplitudes are quite dramatic. Variations in
σ8 alone affect the spectrumon all scales, but the overall effect
is much smaller (typically within < 25%). Here we can also

note that the small-scale variance of PθθðkÞ is strongly
suppressed compared to the matter PðkÞ. This is expected,
once one considers that in the nonlinear regime, while the
collapsed objects increase the density field variance, the
corresponding velocity field around and inside those objects
attains a high degree of vorticity and dispersion due to shell
crossing and virialization [84,90–92].
Figure 2 illustrates the changes, imposed due to varia-

tions in PðkÞ shape and amplitude, in the corresponding

FIG. 1. Comparison of the nonlinear Planck13 cosmology
power spectrum (black solid line) with its variants computed
for high and low values of Ωm and σ8 parameters. In addition, the
corresponding nonlinear velocity PθθðkÞ is also plotted with a
short-dash-dotted green line. The upper panel shows the absolute
values, while the bottom panel presents the relative difference
with respect to the Planck13 case.

FIG. 2. The relative difference of linear theory predictions for
the bulk flow magnitude BðRÞ and the velocity dispersion DðRÞ
as predicted by equations (15)–(17) taken with respect to the
fiducial case where Planck13 nonlinear matter power spectrum
was used. The symbols mark the results for the bulk flow
amplitudes, while the matching color lines are for the corre-
sponding velocity dispersion.
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estimated B (symbols) and D (lines). The previously seen
dramatic differences in PðkÞ amplitudes are translated to
rather mild impact on the resulting linear-theory bulk flows.
Here, for most cases, the changes are within ∼10%, thus of
the same magnitude as our variations in both f and σ8. We
can also notice the known Ωm − σ8 degeneracy, where the
effect of increasing one parameter can be to a large extent
compensated by the decrease of the other. The effect of
using the nonlinear PθθðkÞ to predict B is minimal for
R > 50h−1 Mpc. In contrast, the use of the nonlinear
velocity divergence power spectrum results in a much
more dramatic effect onto the D estimator. This suggests
that modeling of nonlinearities in the density and velocity
field is not that important for B predictors, but might be
crucial for the prediction of the expected Mach number.
The latter fact was already emphasized to some extent by
[58], who noticed that in order to obtain more accurate
predictions for the Mach number some nonlinear correc-
tions for D have to be applied. This reflects the fact that the
velocity dispersion is intrinsically a local quantity, and
nonlinear effects such as virialization and shell crossing
have a significant effect (see e.g., [93–95]).

IV. THE VELOCITY MOCKS AND
NONLINEAR OBSERVABLES

To move beyond the linear theory we employ the set of
N-body simulations described in Sec. II. To study various
systematics, nonlinear effects and biases, and to get a closer
connection with real astronomical observations, we con-
struct a set of mock catalogs and observables from our
simulations. As an input for all our analysis we consider
halo and subhalo catalogs saved at z ¼ 0.
Generally, when considering various observational errors

and systematics (like survey geometry, selection function,
radial distribution, etc.) one can apply their modeling to the
simulation data and then analyze the mock catalog by
computing various statistics from it. We adopt this routine
approach by calculating various data point weights, which
characterize different modeled effects in separate mock
catalogs.
We consider the following “observational effects” on

the data:
(i) Observer location.—All the relevant quantities,

such as distances and angles, depend on a specific
observer location, whether it would be a random or
preselected observer; computations are done in the
CMB rest frame.

(ii) Radial selection.—We model the following radial
selections: FC—full completeness (i.e., no radial
selection nor distance limit); CF3—COSMIC-
FLOWS-3-like [49] selection functions (see below).

(iii) Geometry/zone of avoidance.—Since all our cata-
logs are observer dependent, it is natural to also
include the effect of the so-called zone of avoidance
(ZoA) caused by obscuration of the far-away objects

by the Galactic disk. This is done by removing
galaxies from the appropriate part of the volume. See
more details below. In our analysis we do not model
the importance of particular structures hidden be-
hind the ZoA, such as the Norma Cluster [96] or
recently discovered Vela Supercluster [97], as this
would require detailed constrained simulations. We
postpone such studies for future work.

(iv) Radial velocity error.—To model peculiar velocity
errors associated with the uncertainties of galaxy
scaling relations that are used to infer galaxy
velocities from redshifts (see more below).

In our analysis we are concerned with lower-order
velocity statistics that are estimated from specific
observer-dependent mock catalogs. Therefore, all our
results (unless clearly emphasized otherwise) are computed
as ensemble averages over all mock observers in a given
sample. References [45,51] have shown that the distribu-
tion of bulk flows amplitudes inferred from simulations
deviates from a Gaussian. We have checked that this is the
case for all our samples, both for the bulk flows as well as
for the velocity dispersions. For that reason, a simple
averaged mean and associated variance might not be a
faithful characterization of the underlying ensemble. Thus
we decided to use medians and associated 16th and 84th
percentiles to characterize all our results.
Observer location.—All the observables we discuss later

in the paper were estimated for a fixed given number of
observer locations. By construction, all our observers must
sit in a DM halo. We consider two types of observer
locations: random and preselected. Random observers are
chosen randomly from all halo positions in a given catalog,
while the preselected are contained in a closed list of
locations predefined by some user provided criteria. In this
paper we consider various criteria of a hypothetical local
group (LG)-like observer. See more in Sec. VI.
Radial selection.—Generally, to obtain the desired radial

selection, we would have to select multiple times from an
input data set according to probability that is proportional
to the defined shape of the selection function, keeping
finally the data product with mock radial selection that is
closest to the imposed one. Such a procedure for large
samples as ours is however very unpractical. We decided to
use a simple data weighting scheme instead, where each
galaxy is given a weight exactly as defined by the input
selection function. For a large number of galaxies, the
results of both procedures give comparable results.
Therefore, since we do not compare our results to any
particular galaxy survey, but rather aim at providing general
observational data modeling, we are satisfied with the much
faster data weighting method. We opt to use the weighting
scheme that follows the radial selection of the
COSMICFLOWS-3 catalog for the sake of simplicity
and generality. CF3 is currently the largest peculiar velocity
catalog, thus by studying CF3-like radial selection our
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model will be close to the best-case data scenario. In the
case FC listed above, all the halos have equal unit weights,
as in Eq. (12). When modeling the CF3-like radial selection
(2), we impose [50]

wh ¼
�
1; if r ≤ rw
ðr=rwÞ−m; otherwise:

ð20Þ

Here, rw is the characteristic radial depth of the catalog (in
h−1Mpc). For our CF3-like catalogs we consider rw ¼
80h−1 Mpc and two values for the exponent m ¼ 2, 3:
Geometry/zone of avoidance.—Most extragalactic

observations, including those of peculiar velocities, do not
have access to low Galactic latitudes due to the obscuration
by dust, gas, and stars in the Milky Way—the “Zone of
Avoidance.” To model it, we consider a small opening angle
αZoA ¼ 10.5 deg [98] chosen with respect to a fixed
observer-dependent local ðx; y; zÞ ¼ ðxObs; 0; 0Þ plane.
Galaxies falling inside −αZoA ≤ α ≤ αZoA are removed.
Radial velocity error.—Galaxy peculiar velocity surveys

rely on redshift-independent distance-indicator relations
(DIs) to extract the cosmological and peculiar components
from a galaxy redshift. The most commonly used methods
are based on galaxy scaling relations, such as Tully-Fisher
[99] or fundamental plane [100]. Such methods are
unavoidably plagued with significant relative errors on
estimated velocities stemming from intrinsic scatter in used
relations and various systematic (usually nonlinear) biases.
The peculiar velocity errors are a source of a serious worry
and their magnitude sets a fundamental limit on cosmic
velocity data usability. A constant relative error in distance
determination translates here to a velocity uncertainty that
grows linearly with galaxy redshift. We attempt to model
this by a simple relation of the form

σv ¼ ΔvH0Dz: ð21Þ
Here H0 is the Hubble parameter, Dz is the galaxy
comoving distance and Δv models the typical scatter of
the logarithmic distance ratio η≡ log10ðDz=DrÞ error. The
ratio η is used to estimate the peculiar velocity. Here Dr is
the comoving distance to a galaxy inferred via DIs (see
more in e.g., [42,49,101]) and the spectroscopic galaxy
redshift z. We choose Δv ¼ 0.25, which is a conservative
value when compared with smaller scatter typically found
in modern velocity data [49]. We assume that the above
velocity error is Gaussian with zero mean and dispersion
σv. In reality such an assumption is often broken for various
velocity estimators, but we adopt it for simplicity, as non-
Gaussian contributions to velocity errors depend strongly
on particular galaxy catalog specifics.
Once parameters for mock galaxy catalogs are chosen,

we compute the bulk flow and the dispersion of the residual
velocity field by assigning specific halo/galaxy weights and
using Eqs. (12) and (13). We sum separately over the three
Cartesian velocity vector components in concentric spheres

of radius R around a fixed observer location. This pro-
cedure yields us specific weighted bulk flow components,
i.e., BxðRÞ, ByðRÞ and BzðRÞ. The bulk flow amplitude is
then

B̃ðRÞ ¼
�X3

i¼1

BiðRÞ2
�1=2

: ð22Þ

Here the sum runs over three Cartesian components of a 3D
velocity vector field and the procedure for the residual
velocity dispersion is analogous.
In reality, the above procedure cannot be applied to real

data, since except for a very few cases, we do not have full
3D peculiar velocity information. What is directly acces-
sible is only the line-of-sight (LOS) velocity component.
Thus for observational data one usually adopts an estimator
of the BF that is based on the radial velocity component.
For example, in the most popular maximum likelihood
(ML) method, the BF components are obtained via

B̃i ¼
XN
n

wi;nVn; ð23Þ

where i again indicates one of the three Cartesian indexes,
Vn is an nth LOS velocity measurement. Here, wi;n is an
associated weight of a given velocity measurement, which
usually is taken to be

wi;n ¼
X3
j

A−1
ij

r̂n;j
σ2n þ σ2�

; ð24Þ

where r̂n;j is a unit vector from the observer to a given galaxy
n, σn is the uncertainty of a given velocity measurement, and
σ� describes 1D velocity dispersion due local nonlinear virial
motions. The matrix Aij describes geometric moments of the
whole sample of tracers, and is given by

Aij ¼
XN
n

r̂n;ir̂n;j
σ2n þ σ2�

: ð25Þ

The above estimator is based on the inverse variance
weighting method of Ref. [102].
We do not choose to implement the above estimator for

various reasons. First, it is uniquely defined for a given
astronomical data set, with its specific radial and geomet-
rical selections and errors of velocity estimates. To keep our
discussion as general as possible we opt to use a much
simpler estimator of Eq. (22) instead. This is justified since
the averages over all observers for our mock catalogs will
be in practice close to isotropic and spatially uniform. For
such a case the geometric matrix Aij is uniform and
approximates a product of a constant factor and a unit
matrix. In addition, since we only use central halos,
contributions from any nonlinear virial motions are
strongly suppressed. The last statement does not hold for
nonrelaxed systems, but those constitute a marginal fraction
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of our z ¼ 0 halo catalog. Thus we also opt to drop the
nonlinear velocity dispersion contribution, σ�, from our
modeling.
Finally, taking into account above considerations and for

the sake of simplicity, we choose to use a maximally
simplified ML estimator, which only includes individual
velocity errors in the data weights drawn from a Gaussian
distribution independently for each velocity component
according to the prescription of Eq. (21).

V. OBSERVER-INDEPENDENT SYSTEMATICS

Here we will present the results of our analysis of the BF
and CMN inferred from mock catalogs where the observer
location was kept random and unspecified, i.e., it corre-
sponds statistically (after averaging) to a Copernican
observer (see more in [50]). By adopting this approach
we will be able to study various systematic effects that are,
in principle, independent from the location. By doing this
we can assess how much the various systematics can affect
the measurements in an idealized survey.

A. Bulk flow

We begin by investigating how the sampling rate or
number density of tracers used for the measurement affects
the resulting BF. In Fig. 3 we show the median bulk flow

measured for the full sample which is characterized by
hni ¼ 6 × 10−3h3 Mpc−3, and for three catalogs with lower
number density of tracers, namely hni ¼ 5 × 10−4,
5 × 10−5, and 5 × 10−6h3 Mpc−3, respectively. We also
plot two LT predictions for the MLV and EV. The lower
panel of Fig. 3 illustrates the relative differences for the
various samples, taken always with respect to the fiducial
full one, which includes all the central halos. For the scales
≳100h−1 Mpc all the samples agree with the fiducial one
down to 10%. However, at smaller scales we can notice a
clear departure of the BF in the lower number density
samples from the fiducial case. The scale at which such
deviations start to be noticeable, as well as the magnitude of
the effect itself, depend on the number density of objects in
the sample. The most diluted sample of hni ¼
5 × 10−6h3 Mpc−3 is at 100h−1 Mpc characterized by
median BF amplitude already higher by 15% than for
the full one, and this grows dramatically toþ40% ∼þ60%

at R < 50h−1 Mpc. At those scales the nonlinear matter
distribution leads to strong biasing of mass-weighted
estimators based on discrete tracers, thus the observed
discrepancy with the volume-weighted LT prediction is not
surprising. This discrepancy gets less dramatic the larger
the number density we consider. For a sample of
hni ¼ 5 × 10−5h3 Mpc−3, the scale at which the measured
BF departs significantly from the fiducial result shrinks to
∼50h−1 Mpc, but the magnitude still can attain quite
remarkable þ50% difference at the smallest scales we
consider (i.e., 10h−1 Mpc). The subsample of 1 order of
magnitude larger number density also deviates from the
fiducial case, but only at very small scales ≲25h−1 Mpc,
and the relative difference reaches þ20% only for the
smallest considered radius.
There is no physical reason for sparser samples to be

characterized by larger bulk flow magnitudes. In particular,
we expect that all samples trace the same large-scale
regions of a simulated universe. The increase of the
amplitude we observe is a purely statistical effect, and
very likely a manifestation of the mass-weighting character
of the estimator (12). Since the BF distribution is not
Gaussian, for sparser samples the shot noise enlarges the
width of the BF distribution. This effect combined with an
overweighted contribution of the outliers results in the
observed artificial increase of the measured BF amplitude.
Still, despite the fact that all the differences between the
samples are contained within the 16th and 84th percentile
variation from the median of the fiducial one, they are of a
systematic nature and if ignored could be a source of a
significant BF bias, especially at small scales, where in real
astronomical surveys the target selection is rather nonuni-
form. We will discuss the implications of these systematic
effects in the discussion Sec. IX.
Separately, we note that the LT MLV is a reasonably

good prediction for the true BF at nearly all scales probed.
This indicates that choosing suitable integral limits for the

FIG. 3. Comparison of bulk flows estimated from tracer
samples with different number densities. Upper panel.—The
bulk flow amplitude estimated from simulations (lines with
symbols) set together with two linear theory predictions: most
likely value (green line) and expected value (blue line). The
shaded region marks the interval between 16th and 84th percen-
tiles around the median value for the full sample (pentagons).
Diamonds, crosses and triangles correspond to less dense samples
of 5 × 10−4, 5 × 10−5 and 5 × 10−6 (h−3 Mpc3) respectively.
Bottom panel.—Relative difference of various tracer samples
taken with respect to the full sample result.
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LT predictors (as discussed earlier) allows to properly
account for the missing large-scale power.
We now consider the effects induced on our measured BF

by applying various weighting schemes. The galaxy weight-
ing prescriptions from Sec. IV are meant to roughly mimic
various systematic effects present in real data. Again, wewill
be gauging the measured bulk flow amplitudewith respect to
our full sample, which constitutes an idealized fiducial case
with the best sampling rates and no systematics present. For
each effect we consider, we apply the specific weighting and
data transformation separately from all the other effects,
every time taking the fiducial full sample as a starting point.
The situation as presented in our Fig. 4 looks quite the
opposite to what was shown in the previous plot 3. Here, we
observe that the systematic effects (if present) start to matter
at large scales and grow in magnitude with scale. The effect
related to the observational error modeling as in the ML
method is quite easy to understand, as the error on the
velocity grows linearly with scale. This taken together with
the Malmquist bias [103,104] produces a systematic over-
estimation of the measured BF in relation to the full sample
[44]. The scale dependence of the velocity error makes it
actually quite easy to model: for the scales of
R≲ 120h−1 Mpc, this weighting overestimates the BF by
less than 10%. At larger scales 120≲ R=ðh−1 MpcÞ≲ 220,
it saturates the 10% departure that is rather flat, as no clear
scale dependence can be seen. At even larger scales the effect

grows up to 20%–25% reaching themaximal expected effect
related to the scatter of the intrinsic galaxy relation we use
of σv ¼ 0.25.
The situation is significantly more complicated for the

case of a radial selection function that is characteristic of a
COSMICFLOWS-3-like data set. Here, there is a clear
trend that grows systematically with scale, and is related to
the effective depth of the sample. At scales that are above
this characteristic depth, rw, which for our case is
80h−1 Mpc, the BF is grossly overestimated. At R ¼
150h−1 Mpc such a radial selection already biases the
measurement by þ10% and this quickly grows to values of
þ40% and larger for R≳ 200–250h−1 Mpc.
When we look at the geometrical selection effect of the

ZoA as modeled by us, our results confirm the findings of
other authors. Namely we find it to have a negligible effect
on the measurements, as expected for the case of a
symmetric data masking. We re-emphasize however that
this is valid under the assumption of no significant nearby
structures present in the ZoA, an effect that we do not
investigate in the current paper.

B. Cosmic Mach number

In this paper we analyze also the cosmic Mach number
(CMN or M, interchangeably), which, as mentioned ear-
lier, is the ratio of the BF and peculiar velocity dispersion.
The D in a given sphere centered on the observer is not
directly observable, however there have been some indirect
methods proposed to measure the CMN [52,55,57]. Thus,
we will not present and separately discuss the above-
mentioned sampling and weighting effects for the VD
alone, but rather for the sake of brevity we show the
combined effects on the actual CMN itself. This is
presented in Fig. 5. Again as the reference line we take
the fiducial measurement from the full sample.

FIG. 4. Comparison of bulk flow amplitudes measured from
mock catalogs characterized by different observational effects
considered each separately. The shaded region marks the distance
between 16-th and 84-th percentiles around the full sample
median (pentagons). The comparison is made with velocity error
weighting like in the maximum likelihood method (diamonds),
CF3-like radial selection with m ¼ 2 (crosses) and m ¼ 3 (down
triangles) and Zone of Avoidance geometry (up triangles). For the
reference the linear theory prediction is also shown (blue
continuous line). The bottom panel shows the relative differences
taken with respect to the full sample values.

FIG. 5. Analogous to Figs. 3 and 4 but for the cosmic Mach
number, defined as in Eq. (19).

HELLWING, BILICKI, and LIBESKIND PHYS. REV. D 97, 103519 (2018)

103519-10



The first observation to make is that the magnitude of
all visible systematic effects is significantly larger for the
M than it was for the BF. This is not surprising and stems
from two facts. First, the VD is a much more nonlinear
quantity than the BF, as the former strongly depends on
short-wavelength modes; and second, the CMN is a ratio
of two quantities and thus the overall effect of systematic
biases and uncertainties is boosted. Moving towards more
specific cases, we note that a sparse sample of hni ¼
5 × 10−6h3 Mpc−3 leads to a strongly biased M estimate
for scales ≲150h−1 Mpc. Here, the deviation from the
fiducial case increases with diminishing scale, from þ25%

up to more than þ100% bias in a sphere of radius
75h−1 Mpc. We were not able to probe the CMN for
that sample on smaller scales, since the shot noise from
small number counts in such a sparse sample dominates
there. Even for R < 100h−1 Mpc we should be careful
with interpreting our result, as the mean number of objects
in such a volume is then hNi < 10.
For the case of modeled velocity errors, the estimator

clearly provides too low aM. We have checked that this is
a combination of two effects. Namely, as previously shown,
the velocity errors lead to overestimation of the BF, which
enters the denominator in the CMN formula. At the same
time the velocity errors naturally lead to underestimation of
the localD. These two combined effects make such a CMN
estimator, mimicking real data properties, significantly
biased at all probed scales.
The situation becomes even more severe for the case of

CF3-like radial selection functions. Here, both examined
selections offer highly biased M estimators for all scales
larger than the characteristic survey depth rw, and the
systematic effects quickly become catastrophically large.
At R≲ rw the estimated CMN is very close to the fiducial
case; this is not a surprise, as here the radial selection is
still complete (i.e., is equal to unity). Finally, it is also
important to note that for the case of the M, the LT
predictor does not offer a reliable estimator. This is clearly
shown in Fig. 5: LT significantly underestimates the CMN
for all the considered scales. As we have already assessed
that the LT offers a reasonably good prediction for the BF,
we then conclude that it must be the VD which is
underestimated. Indeed, this is clearly the case, as was
already hinted at by the results shown in Fig. 2. In
addition, we need to remember that we use mass-weighted
estimators, which reconstruct a momentum rather than a
pure velocity field. In addition, the averaging procedure in
which M is obtained also plays a role here.
Reference [54] has showed that here the following
inequality holds:

�hB2i
hD2i

�
1=2

<

�jB
Dj

�
<

�
B2

D2

�
1=2

: ð26Þ

We use the intermediate relation for our CMN definition,
which is closer to the physical meaning of this statistics.
The above relation indicates that even in the case of
unbiased volume-weighted fields our estimator will be
giving higher values than the LT prediction based on the
left-hand-side relation.

VI. BIASES FOR LOCAL GROUP OBSERVERS

In this section we will test and quantify potential biases
that arise in the measurements of the lowest moments of the
peculiar velocity field if one neglects the fact that the
related observations available to us come from a specific
location in the Universe. In other words, we will compare
ensemble medians of the low-order moments of the galaxy
velocity field measured by unspecified observers, whom
we will call random observers (RNDO), and different
observers placed at specific locations which fulfill various
criteria we consider to be related to the position of a local
group (LG) analog observer. The work of Ref. [50] has
shown that such LG observers (LGO) can exhibit highly
biased local velocity correlation measurements.
To stay consistent with this previous study we will

consider exactly the same selection criteria used to define a
set of LG-analog observers. For clarity we give here all the
essential information, referring the reader looking for more
specific details or discussion to the original work. The LG
is a gravitationally bound system of a dozen major galaxies
with the Milky Way (MW) and its neighboring M31 as the
major gravitational players. The region of 5 Mpc distance
from the LG barycenter is characterized by moderate
density (see e.g., [101,105–108]) and a quiet flow [109–
112]. Located at a distance of ∼12h−1 Mpc is the Virgo
cluster, whose gravitational effects extend to tens of Mpcs
around us, as evident from the corresponding infall flow
pattern of galaxies [113–118]. The presence of such a large
nonlinear mass aggregation can and does have substantial
impact on peculiar velocity field of the local galaxies.
To find locations of prospective LG-like observers we

use the following criteria:
1. The observer is located in aMW-like host halo ofmass

7 × 1011 < M200=ðh−1 M⊙Þ < 2 × 1012 [119–122].
2. The bulk velocity (of smoothed DM velocity field)

within a sphere of R ¼ 3.125h−1 Mpc centered on
the observer is V ¼ 622� 150 km s−1 [123].

3. The mean density contrast within the same sphere is
in the range of −0.2 ≤ δ ≤ 3 [124–126].

4. A Virgo-like cluster of mass M ¼ ð1.2� 0.6Þ ×
1015h−1 M⊙ is present at a distance D ¼
12� 4h−1 Mpc from the observer [114,127].

To examine the role of individual criteria we also
study results for sets of observers selected without imposing
all the above constraints. The sets of observers we
consider are:

[LGO0] a set of the most constrained 2294 observers,
each satisfying all the selection criteria 1 through 4;
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[LGO1] consists of 5051 candidate observers without
the velocity constraint 2, but satisfying the remaining
criteria 1, 3 and 4;

[LGO2] includes 4978 candidates without the density
contrast condition 3, but with 1, 2 and 4;

[LGO3] of 4840 candidates with the conditions 2 and 3
relaxed simultaneously, i.e., meeting 1 and 4;

[LGO4] a set of 6245 observers without imposing the
constraint on the host halo mass 1, but with all the
other criteria 2–4 fulfilled;

[LGO5] contains 288424 candidate observers satisfying
the conditions 1–3 but not the proximity to a Virgo-
like cluster 4;

[RNDO] is a list of observers with randomly selected
positions in the simulation box. This set is used as a
benchmark for comparison.

Since the number of prospective candidates in each set is
large, to keep the sampling noise at the same level and also to
speed up the calculationswewill only consider 125 observers
from each set. Since positions of observers are not indepen-
dent of each other, we subsample the candidates by placing a
5 × 5 × 5 grid in the simulation box and keeping only one
unique observer location within each grid cell. All the results
shown in this section were obtained by taking the median of
the distribution for all the 125 observers in each set.

A. Bulk flow

Figure 6 illustrates the systematic effects on the median
BF as measured by various observers. As the reference we
take the Copernican observer of an unspecified location. In
other words, we expect that the RNDO observers measure
the expected cosmic mean values. Indeed, the results shown

in the previous section agree with this assumption, as the
BF measured for the random observers agrees well with the
LT prediction (Fig. 3). The shaded region in Fig. 6 again
illustrates the width of the distribution of measured bulk
flows between the 16th and the 84th percentiles.
A quick look at the results for different nonrandom

observers already allows us to find a striking feature: there
is only one criterion really discriminatory for the results.
Namely, what matters here is the proximity of a Virgo-like
cluster to the observer. All LGO analogues who fulfill the
latter requirement measure a BF that is systematically
smaller than the cosmic mean for R≲ 125h−1 Mpc. This
effect is around ∼10% at ∼100h−1 Mpc and grows to even
20% for scales smaller than 50h−1 Mpc. Additionally, we
see that the LG position requirements considered without
the proximity of a Virgo-like analogue also have an effect
on the measured BF. Interestingly, this seems to work in the
opposite direction than the other joint criteria, and an LG-
analogue but no-Virgo observer would measure actually a
systematically larger BF than a random one. This means
that the effect of the Virgo-like object proximity is actually
stronger than shown by our LG analogues. We have used a
small set of observers with just the Virgo criterion to check
that this is indeed the case.
We propose the following interpretation of these find-

ings. The criterion that an observer should be located
nearby a massive structure of a Virgo-like mass induces a
constraint on the local density (hence also velocity) field
when compared to a fully random observer. Such a
constraint naturally lowers the scatter among observers
[128,129], thus also the BF magnitude. However, one
should also bear in mind that the fact that we operate on
mass-weighted fields will also matter here and will prob-
ably emphasize the role of a Virgo-like mass concentration.

B. Velocity dispersion and cosmic Mach number

We now turn to the importance of observer location for the
VD and M statistics. In Fig. 7 we plot the comparison of
median velocity dispersions obtained for the different
observers we consider. Here, we notice that the effects
imposed by a Virgo-like proximity are contained to some-
what smaller (≲90h−1 MpcÞ scales than in the BF case. All
our LG analogues with a nearby cluster measure much
higher D (up to 50%) at small scales. This clearly indicates
that the effect is purely driven by the presence of a massive
nonlinear structure of the cluster. Interestingly however,
all the measurements converge to the random value at
R ∼ 110h−1 Mpc.
The effects of the observer location for the CMN

statistics are illustrated in Fig. 8. Not surprisingly, it is
clear that the overall LGO effect is driven mostly by the
presence or absence of a nearby Virgo-analogue cluster.
This amounts to LGO M bias of the order of ∼40% at
R≲ 50h−1 Mpc, which reduces to ∼10% at 100h−1 Mpc.
Thus, in the case of CMN one is concerned with an even

FIG. 6. Comparison of the median bulk flow measured by a
random observer against those inferred for various Local-Group-
like observers (see text for details). Upper panel. The amplitude
of the median bulk flow measured for an ensemble of observers of
a given class. Bottom panel. Relative differences taken with
respect to the fiducial random observer case.
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stronger observer bias than in the BF case. This should be
remembered and accounted for before any cosmological
analysis of this statistics is performed.

VII. GRAVITY AND GROWTH RATE

In the previous sections we have observed that various
systematics can significantly change the bulk flow ampli-
tude on a wide range of scales. This fact has fundamental
consequences for all applications that hope to use the BF
and related statistics such as M to search for non-GR
signature. As an illustration, here we will compare a
velocity signal from a modified gravity model against
the various observational effects present in the GR case.

For our guinea pig MG model we choose the normal
branch of Dvali-Gabadadze-Poratti (henceforth nDGP)
model [130–132], which implements the nonlinear fifth-
force screening (the Vainshtein mechanism) [133] and can
be characterized at large scales by a nearly constant (i.e.,
scale-independent) enhancement of the growth rate of
structures (see also [134]). Specifically we choose to take
the value of the so-called crossing-over scale to be
rcH0 ¼ 1. This value represents the scale at which gravity
becomes five-dimensional in this model. The smaller this
scale, the stronger deviations from GR dynamics (due to the
fifth force) can be expected. Our choice of rc gives
moderate modifications to GR that are characterized by
a linear growth rate (the logarithmic derivative of linear
density growing mode) fnDGP ≈ 1.15fGR [135–137].
Except for the modified dynamics induced by the scalar
field present in the nDGP model, our MG simulation shares
exactly the same setup and parameters as the fiducial GR
case. For the sake of speeding-up the numerical compu-
tations we have employed the truncated DGP method
described in detail in [138]. The speed-up is obtained at
the expense of the resolution of the scalar-field spatial
fluctuations, solving of which was truncated beyond the
fourth mesh refinement level. This sets the resolution of the
scalar force at ∼60h−1 kpc, which is still considerably
smaller than the smallest halos we consider. As we use the
same initial conditions for both GR and nDGP, the large-
scale cosmic variance effects should be of the same
magnitude in both runs (see also [139]), and the observed
discrepancies should reflect the differences in the under-
lying gravitational dynamics.
Figure 9 compares the BF measured by two Copernican

observers, one in GR and one in the nDGP model (marked
as MG), versus the amplitudes expected in the GR case
with different systematic effects. For the sake of brevity, we
choose to compare with only the strongest systematics
elucidated in the previous section. In particular, we show
the LGO0 and LGO5 signals, as well as RNDO observers
with sparse sampling of hni ¼ 5 × 10−6h3 Mpc−3. For
R≲ 200h−1 Mpc, the MG bulk flow is enhanced by
∼10%, as one can expect from the LT prediction of
Eq. (16). This potentially observable effect can be easily
obscured by various systematics that have larger magni-
tudes on the same scales. Specifically, we see that realistic
modeling of the local group analogue observers, which
includes the effects of the Virgo cluster proximity, gives
opposite sign to the MG enhancement. Thus, in the worst
case scenario, we could have a conspiracy, where a BF
signal for a LGO0 observer in an MG universe would look
like a BF expected for a RNDO observer in the GR
universe. On the other hand, the signal expected for a LGO
observer modeled without a Virgo-like cluster presence can
mimic the scale dependence and amplitude of aRNDOMG
signal. For a very sparse sample, these two observations
would be dwarfed by a systematic effect that on small

FIG. 7. Comparison between the median velocity dispersion
measured by a random observer against those for specific local
group observers, analogous to Fig. 6.

FIG. 8. Comparison between the median cosmic Mach number
measured by a random observer against those for specific local
group observers, analogous to Fig. 6.
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scales (R≲ 100h−1 Mpc) can be by a factor of a few times
larger than what we can expect for a reasonably mild MG
model enhancement.
Themain merit of our work here is to systematically study

potential biases of low-order velocity measurements, but it is
illustrative to compare the scales and amplitudes of the
effects we report with some BðRÞmeasurements reported in
the literature. We have selected arbitrarily seven such
measurements and marked them in Fig. 9. We show results
from Branchini et al. [30], Hoffman et al. [22], Hong et al.
[38], Scrimgeour et al. [42], Lavaux et al. [34], Nusser and
Davis [15] and Feldman et al. [140]. The methods and data
sets used in these references vary significantly, so this
collection is a fair representation of approaches and data
used currently in peculiar velocity studies. Except for
Refs. [22,140], all the results are consistent within 16th
and 84th percentiles with median B of random and LGO
observers and evenwith theMGmodel. If we took the size of
the error bars reported by those authors at their face values,
some of our results (such as the MG model) would be
marginally inconsistent with that data. However, we clearly
see that the variance added by the systematic effects will
boost the reported error bars significantly.
The results shown here can have potentially profound

repercussions, as it would seem that the lower-order
velocity statistics are plagued by potentially overwhelming
systematic effects that can completely obscure even
relatively strong (∼10%) deviations from the GR case.
We shall discuss the implication of these findings in the
next section.

VIII. SUMMARY

In this paper our main aim was to methodically check
various possible systematic effects that could affect the
measured values of the bulk flow, peculiar velocity
dispersion, and cosmic Mach number. Peculiar velocities
of galaxies strongly depend on the underlying cosmic
parameters, such as the logarithmic growth rate (f) and
the nonrelativistic matter energy density (Ωm). Velocity
data are prone to large uncertainties stemming from the
intrinsic scatter of various empirical galaxy scaling
relations used to measure redshift-independent distances,
and consequently, infer peculiar velocities. The latter are
additionally affected by such issues as non-Gaussian
errors and nonlinear (i.e., virial) contributions. Many
methods have been proposed and implemented to deal
with these issues. However, once the velocity data had
been corrected for intrinsic errors and Malmquist biases,
it was commonly assumed that the relevant statistics
could be directly related to the underlying cosmology
using theoretical modeling (such as linear perturbation
theory). This assumed advantage was one of the main
arguments for using the galaxy velocities as alternative
cosmological probes. In our analysis we have revisited
this assumption, and our results indicate that there are
many systematic effects that need to be accurately
modeled and accounted for, in order to infer cosmological
parameters from low-order velocity statistics in an
unbiased manner.
Below we summarize and comment on all our important

findings and their implications.
Perturbation theory estimators:
1. The results encapsulated in Fig. 2 show that strong

modulations of the density power spectrum ampli-
tude lead to only mild variations in BF and VD.
More precisely, we have found that the changes in
both statistics are roughly proportional to changes in
f and σ8.

2. Using the nonlinear velocity divergence power
spectrum instead of the nonlinear density PðkÞ
has a strong effect on the predicted D, and therefore
also on the M. This is because the magnitudes of
the effects induced in the nonlinear regime are
opposite in those two spectra. Namely, at small
scales the nonlinear PθθðkÞ takes smaller values
than the linear theory prediction, while the non-
linear PðkÞ has actually a boosted amplitude with
respect to the linear theory. At small scales in the
nonlinear regime the motions of galaxies lose the
character of a potential flow. This reflects signifi-
cant growth of vorticity and velocity dispersion due
to shell crossing [84,90,92,141]. For that reason it
is important to take into account and model
properly these nonlinear effects, in order to get a
more realistic perturbation theory prediction for
the CMN.

FIG. 9. The median bulk flow as measured by random observers
in GR and nDGP gravity model compared with GR-observer
measurements affected by various systematics. The data points
illustrate some recentBðRÞmeasurements from the literature: dash
—Branchini et al. [30]; pentagrams—Hoffman et al. [22]; dia-
monds—Hong et al. [38]; down triangles—Scrimgeour et al. [42];
up triangle—Lavaux et al. [34]; squares—Nusser and Davis [15];
and circle—Feldman et al. [140].
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Sampling rate effects:
1. At small scales (i.e., ≲50h−1 Mpc) we found a

significant effect on BF magnitude from undersam-
pling. For increasingly diluted samples the inferred
BF is biased towards higher values when compared
to our fiducial full sample, and the effect is larger,
the smaller the sample density. This is a statistical
effect induced by the non-Gaussian distribution of
BF magnitudes and increased shot-noise contribu-
tion due to sparse sampling. For the sparsest sample
with hni ≥ 10−6h3 Mpc−3, the bias could attain 50%
or more. This indicates that one should carefully
account for this effect when low-order velocity
statistics are measured from very sparse samples
like supernovae [29,32,33,41].

2. The down-sampling of the data we have performed
is essentially equivalent to weighting the data by the
local value of the density correlation function, since
galaxies are biased tracers and form preferentially in
higher-density regions. Such regions are character-
ized by higher values of local bulk flows.

3. Our results show that the MLVestimator from linear
perturbation theory is in good agreement with the N-
body data for a random-location BF observer.

Selection effects:
1. Weighting halo velocities according to velocity errors

induced by distance errors (like in the ML method)
leads to overestimation of the BF. This effect grows
with distance from the observer, but it saturates to a
maximum value that is close to the considered typical
scatter of the distance indicator error σv.

2. For a radial selection function of a CF3-like survey
form, it is evident that the limited depth of the
catalog is reflected in the measured BF. The BF is
formally an integral over a sphere, but for a realistic
survey of discrete galaxies, it becomes a sum over
concentric spherical shells of growing radius. The
radial selection function is effectively down-weight-
ing the outer shells, and thus the BF value derived
from inferior spheres is spuriously propagated to
larger scales. This is a strong effect, which indicates
that BF measurements from scales comparable or
larger than the characteristic depth of a given catalog
should be interpreted with care.

3. A symmetric sky-map angular incompleteness with
an opening angle of ∼10 deg—such as the zone of
avoidance—has a negligible effect on the inferred BF.

4. All systematic effects related to galaxy selection are
much more pronounced in the CMN statistic. In
particular, both sparse sampling and velocity errors
induce a significantM bias for scales≲150h−1 Mpc.

5. A radial selection function of the CF3-like form
induces a catastrophically large CMN overprediction
for scales larger than the given survey character-
istic depth.

Observer location effects:
1. For all our low-order statistics the most important

LGO-analogue criterion is the proximity of a Virgo-
like cluster.

2. Local group-analogue observers measure systemati-
cally smaller BF amplitudes than the cosmic mean
(i.e., a random observer) on scales up to R≃
125h−1 Mpc. This systematic attains ∼10% at
∼10h−1Mpc and grows to ∼20% for R≲50h−1Mpc.

3. A no-Virgo observer (i.e., LGO5) at the same time
exhibits an opposite bias, inferring a BF that is larger
by ≈10% on similar scales than B measured by the
RNDO observers.

4. For the VD the LG-observer bias is contained to
somewhat smaller scales R≲ 90h−1 Mpc, but its
magnitude reaches a quite dramatic value of up to
50%. This effect is purely driven by the proximity of
a Virgo analogue, as a no-Virgo observer measures
VD values compatible with RNDO observers. This
indicates that an infall region around a massive
cluster is significantly heating up the local veloc-
ity field.

5. The effects observed for BF and VD combine into a
biasedM for LGO observers, which manifests itself
as ∼40% underevaluation at < 50h−1 Mpc, and still
takes ∼10% too small a value at R ∼ 100h−1 Mpc.

Growth rate and gravity:
1. The effect of an increased growth rate f observed in

a representative MG model is degenerate with the
specific bias induced by a LGO observer, and the
Virgo-like cluster proximity in particular.

2. Similarly, a non-Virgo LGO-like BF signal appears
very similar to the MG signal for a RNDO observer.

3. Finally, we notice that the BF magnitude increase
observed in GR for a sparse sample of hni ¼ 5 ×
10−6h3 Mpc−3 is stronger than the non-GR effect of
our MG model.

IX. DISCUSSION

The above summary of all our important findings
regarding various systematic effects that impact low-order
moments of the galaxy velocity field, underlines a number
of crucial observations. The linear theory predictions (for
MLV) obtained using Eqs. (14)–(18) render quite accurate
values of BF for a “cosmic mean” (i.e., Copernican)
observer in the case of high-density clean data. Thus, they
can be used as a first order prediction for the case when all
systematic effects can be ignored, or when there are no
computer simulations to be compared with. However, we
caution that whenever one wants to compare such LT
predictions to the real data, one needs to remember that the
local galaxy velocity field is biased with respect to the LT
prediction at small scales and for sparse or radially
incomplete samples.
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Currently, the velocity data is sparse and noisy; however,
in the near future they will increase significantly in volume.
There is also hope for better modeling and understanding of
galaxy intrinsic scaling relations, which can lead to further
suppression of individual velocity errors. The surveys such as
TAIPAN [47] or WALLABY [48] will lead to an increase
both in richness as well as depth of galaxy peculiar velocity
catalogs. In addition, the possibility to obtain transverse
velocities from surveys like GAIA [142] or LSST [143]
could result in additional largely unbiased velocity
measurements for the nearby galaxies (for a dedicated
discussion see [144]). In this new era of velocity data, the
linear theory predictions for B and related statistics will be
too inaccurate to be used for model testing and data analysis,
except for the large scales (i.e., ≥100–150h−1Mpc), where
the precision and data abundance will continue to be poor.
The various observer-independent systematic effects sur-

facing strongly in our analysis suggest that the bulk flow
amplitude and related measurements at small distances
should be carefully reanalyzed and compared with predic-
tions based on galaxy-mock catalogs. The higher BF values
reported byRefs. [22,24,30,35,38,39]might be a signature of
biases induced by sparse sampling and radial selection.
The importance of proper modeling of such nonlinear

effects is of paramount importance for the cosmic Mach
number predictions. This was already emphasized by
Ref. [58] for the case of improving the LT predictions
by using the nonlinear matter density power spectrum
rather than the linear one. Here, our analysis adds further
that sparse sampling induces a very strong effect on the VD
and thus on the resulting CMN. In addition, other system-
atics such as radial selection and velocity errors affectM to
a much stronger extent than BF. This suggests in particular
that one should aim at using the richest possible galaxy
samples when considering CMN measurements.
The proximity of a Virgo-like cluster to a local-group-like

observer is equally significant and needs to be considered as
an additional important contribution to the local bulk flow. If
this effect is not properly accounted for in the BF analysis, it
will result in an additional non-Gaussian systematic for the
BF measured on scales R≲ 100h−1 Mpc.
Finally, the combination of all the aforementioned

systematic effects, if not accounted for carefully, can lead
to strong degeneracies of the cosmological signals encoded
in galaxy velocities and in their low-order moments. We
have clearly demonstrated that the signal of a non-GR
cosmological model, such as the nDGP modified gravity
we considered, that employs a moderately strong modifi-
cation to the cosmic growth rate of structures, can be easily
absorbed by the nontrivial systematics effects we studied.
In light of this evidence, analyses such as for example
Ref. [145], where the BF deviations induced by modified
gravity were studied, should be definitely revisited.
All this is a source of potentially major concern, as the

cosmic velocity data offers, at least in principle, a model-

independent way to constrain growth rate and gravity on
cosmic scales [22,37,46,60,146]. Other authors have also
shown that current and future data show promise to become
competitive cosmological probes [13,14]. In principle, this
can still be achieved. However, the results presented here
clearly indicate that all the various systematic effects need to
be carefully addressed and accounted for, before any high-
accuracy cosmological analysis can be performed. This is
especially important that in the near future the amount of
peculiar velocity data is expected to significantly increase,
and therefore systematics will likely dominate over statistical
errors in relevant studies. In this context, using dedicated
computer simulations employing constrained local density
(and velocity) realizations (such as [147–155]) look very
promising.
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APPENDIX: FINITE VOLUME EFFECTS

Here we will investigate how and on what scales the
limited simulation volume affects our measurements. As
mentioned in the main text, the cosmic velocity field is
characterized by a large correlation length. This means that
the convergence of velocity moments is slower than in the
case of the density field. For that reason we can expect that
scales which are normally considered as converged will be
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still affected by missing large-scale modes in our simu-
lations. To assess this we have conducted a series of
auxiliary approximated simulations varying the box size.
For this we employ the comoving Lagrangian accelerator
(COLA) method [157,158]. The parallel implementation of
the COLA algorithm (called PI-COLA, see [159]) allows to
run large simulations at a reduced computational cost, with
the trade-off of limited spatial and temporal resolution. We
are however here interested in the effect of the missing
large-scale modes, thus the scales which we will study,
namely 100–300h−1 Mpc, are large enough to be fully
resolved by the PI-COLA method. In particular, we have
used the publicly available optimized branch of the COLA
family, the MG-COLA, introduced by Ref. [160].
We ran three simulations, all containing 16003 volume

elements, with three boxes: 600,1200 and 2400h−1 Mpc on
a side. The simulations are set to use the same cosmology
as our main N-body runs used in this work. We process the
simulation outputs at z ¼ 0 in the same manner as our full
N-body simulations. We use the final ROCKSTAR halo
catalogs as our input data. The COLA method is known to
bias weakly the resulting halo velocities. However, this bias
is small (up to ∼5% for our case) and concerns mostly the
small-scale halo velocity field (see more in Ref. [161]).
Since our primary concern here is to study the effects of
missing large-scale power, we are confident that halo
catalogs obtained via the simplified COLA method are
suitable for our purpose.
In Fig. 10 we show probability distribution functions

of B magnitudes for our COLA runs computed and binned
for spheres of three radii: 150–200h−1 Mpc in the left-
hand panel, 200–250h−1 Mpc for the middle one, and

250–300h−1 Mpc for the right-hand panel. The PDF for
the fiducial run of 2400h−1 Mpc box is illustrated by filled
purple boxes, while two consecutively smaller simulations
are depicted by open green (1200h−1 Mpc) and blue
(600h−1 Mpc) boxes. For comparison we also plot the
relevant PDFs for the full N-body simulation used in
the paper. The immediate impression is that all the results
for the smallest box are significantly biased with respect to
the fiducial case. Both themedian of the distribution (hBi), as
well as its spread (σ) [162] are visibly smaller for all three
radii. The corresponding relative differences taken with
respect to the fiducial case here (i.e., the largest box) are
∼30% (31%) and∼50% (38%) for the median and spread of
the PDF at 150–200h−1 Mpc (200–250h−1 Mpc) and∼40%
and∼42% at 250–300h−1 Mpc. This is a clear manifestation
of the lacking large-scale power in the simulation box. Thus
we can, not surprisingly, conclude that the halo velocity field
is not converged at those scales in the 600h−1 Mpc box. The
situation for the medium box 1200h−1 Mpc is much better
though. Here, the medians are off by only ∼6% (∼8%) at
150–200h−1 Mpc (200–250h−1 Mpc), while the corre-
sponding distribution widths are smaller by ∼14% (∼5%).
However, at the largest radius of 250–300h−1 Mpc the
biases grow to ∼12% for the median and ∼13% for the
width. Our fullN-body simulations use a 1000h−1 Mpc box,
and it is reassuring to find biases of their adequate B
distributions to lie between COLA 1200 and 600h−1 Mpc
boxes. At 200 ≤ Rðh−1 MpcÞ−1 ≤ 250 the median is
biased by more than 14% already. This shows that all
the results in this paper for spheres larger than R≳
200h−1 Mpc are noticeably affected by missing large-scale
power.

FIG. 10. The distribution of B magnitudes for three different spheres for our COLA runs. The left-hand side panel considers spheres of
radii from 150–200h−1 Mpc, the middle panel is for a range of 200–250h−1 Mpc, while the right-hand side plot illustrates the results for
250–300h−1 Mpc. In each panel the filled boxes are for the fiducial 2400h−1 Mpc box, the open green boxes mark the 1200h−1 Mpc run
and the open blue boxes the 600h−1 Mpc one. The open red boxes mark the results from the full N-body run. In each label a median
value hBi for a given distribution is given together with σ, which marks a corresponding distribution spread between the 16th and 84th
percentiles.
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Obtaining a reliable and accurate absolute bulk flow (and
corresponding dispersion) magnitude is of paramount
importance when one wants to compare it with astronomi-
cal data and use such a comparison for parameter con-
straints. In this paper however, we are more interested in
some specific effects that affect the velocity field statistics
in a systematic way. Thus, to study to what scales we can
trust our results we present Fig. 11. Here, we compare size
of relative differences (taken always with respect to the
fiducial unweighted sample) for three systematic effects:
ML velocity error weights (left panel), CF-3-like (with
m ¼ 2) radial selection function (middle panel) and the
effect of the zone of avoidance (right panel). Reassuringly,

we denote that in all three cases the scale dependence as
well asΔB magnitude are very similar (within the sampling
error) for the three COLA runs and our full N-body. The
largest differences appear for the individual velocity error
weights. Here, the N-body results for R≳ 200h−1 Mpc are
consistently 1σ below the 2400h−1 Mpc COLA line. This
indicates that for the case of this systematic effect and at
those scales our results render only the lower bound, and a
more realistic modeling will probably foster larger effects.
Finally, we can report that the BðRÞ distributions (both

from COLA and N-body) at all probed scales are deviating
significantly from a Gaussian, with typical skewness (S3)
and kurtosis (S4) taking values jS3j, jS4j ∼ 1.
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Ferrarese, A. Jordán, E. W. Peng, A. Anthony, and D.
Merritt, Astrophys. J. 655, 144 (2007).

[128] Y. Hoffman and E. Ribak, Astrophys. J. 384, 448 (1992).
[129] R. van de Weygaert and E. Bertschinger, Mon. Not. R.

Astron. Soc. 281, 84 (1996).
[130] V. Sahni and Y. Shtanov, J. Cosmol. Astropart. Phys. 11

(2003) 014.
[131] A. Lue and G. D. Starkman, Phys. Rev. D 70, 101501

(2004).
[132] F. Schmidt, Phys. Rev. D 80, 123003 (2009).
[133] A. Vainshtein, Phys. Lett. B 39, 393 (1972).
[134] A. Barreira, B. Li, W. A. Hellwing, C. M. Baugh,

and S. Pascoli, J. Cosmol. Astropart. Phys. 10 (2013)
027.

[135] K. Koyama and R. Maartens, J. Cosmol. Astropart. Phys.
01 (2006) 016.

[136] B. Li, G.-B. Zhao, and K. Koyama, J. Cosmol. Astropart.
Phys. 05 (2013) 023.

[137] B. Bose, K. Koyama, W. A. Hellwing, G.-B. Zhao, and H.
A. Winther, Phys. Rev. D 96, 023519 (2017).

[138] A. Barreira, S. Bose, and B. Li, J. Cosmol. Astropart. Phys.
12 (2015) 059.

[139] W. A. Hellwing, K. Koyama, B. Bose, and G.-B. Zhao,
Phys. Rev. D 96, 023515 (2017).

[140] H. A. Feldman, R. Watkins, and M. J. Hudson, Mon. Not.
R. Astron. Soc. 407, 2328 (2010).

[141] G. Cusin, V. Tansella, and R. Durrer, Phys. Rev. D 95,
063527 (2017).

[142] J. H. J. de Bruijne, Astrophys. Space Sci. 341, 31 (2012).
[143] LSS Telescope.
[144] A. Nusser, E. Branchini, and M. Davis, Astrophys. J. 755,

58 (2012).
[145] J. Seiler and D. Parkinson, Mon. Not. R. Astron. Soc. 462,

75 (2016).
[146] Y. Hoffman, A. Nusser, H. M. Courtois, and R. B. Tully,

Mon. Not. R. Astron. Soc. 461, 4176 (2016).
[147] S. Gottloeber, Y. Hoffman, and G. Yepes, arXiv:

1005.2687.
[148] H. M. Courtois and R. B. Tully, Astron. Nachr. 333, 436

(2012).
[149] S. Heß, F.-S. Kitaura, and S. Gottlöber, Mon. Not. R.

Astron. Soc. 435, 2065 (2013).
[150] J. G. Sorce, H. M. Courtois, S. Gottlöber, Y. Hoffman, and

R. B. Tully, Mon. Not. R. Astron. Soc. 437, 3586 (2014).
[151] F. Leclercq, J. Jasche, and B. Wandelt, J. Cosmol.

Astropart. Phys. 06 (2015) 015.
[152] T. Sawala, C. S. Frenk, A. Fattahi, J. F. Navarro, R. G.

Bower, R. A. Crain, C. Dalla Vecchia, M. Furlong, J. C.
Helly, A. Jenkins, K. A. Oman, M. Schaller, J. Schaye, T.
Theuns, J. Trayford, and S. D. M. White, Mon. Not. R.
Astron. Soc. 457, 1931 (2016).

[153] J. G. Sorce, S. Gottlöber, G. Yepes, Y. Hoffman, H. M.
Courtois, M. Steinmetz, R. B. Tully, D. Pomarède,
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