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One of the major targets for next-generation cosmic microwave background (CMB) experiments is the
detection of the primordial B-mode signal. Planning is under way for Stage-IV experiments that are
projected to have instrumental noise small enough to make lensing and foregrounds the dominant source of
uncertainty for estimating the tensor-to-scalar ratio r from polarization maps. This makes delensing a
crucial part of future CMB polarization science. In this paper we present a likelihood method for estimating
the tensor-to-scalar ratio r from CMB polarization observations, which combines the benefits of a full-scale
likelihood approach with the tractability of the quadratic delensing technique. This method is a pixel space,
all order likelihood analysis of the quadratic delensed B modes, and it essentially builds upon the quadratic
delenser by taking into account all order lensing and pixel space anomalies. Its tractability relies on a
crucial factorization of the pixel space covariance matrix of the polarization observations which allows one
to compute the full Gaussian approximate likelihood profile, as a function of r, at the same computational
cost of a single likelihood evaluation.
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I. INTRODUCTION

The inflation paradigm has successfully explained the
origin of primordial density perturbations that grew into the
cosmic microwave background (CMB) anisotropies and
large scale structure we observe [e.g. [1–6]]. A key
prediction of inflation is the background of primordial
gravitational waves (GWs) or tensor-mode perturbations
[e.g. [7–11]], which imprints a unique polarization pattern,
called a primordial B mode, on the CMB anisotropies
[12–17]. Further, detection of a nearly scale-invariant
background of GWs would severely challenge noninfla-
tionary models [e.g. [18–22]]. The strength of primordial
gravitational waves or tensor-mode power is commonly
quantified by the tensor-to-scalar ratio r. Joint analysis of
BICEP2/Keck Array and Planck data yields an upper
bound r < 0.12 at 95% confidence level [23], the bound
is slightly tightened when the Planck high-ℓ polarization
data are included [24], and BICEP2/Keck Collaboration
gives the latest upper bound r < 0.09 at 95% confidence
level [25]. Fourth generation experiments, including COrE,
LiteBird, and CMB Stage-IV, are expected to constrain r
with uncertainty σðrÞ ≃ 0.001 [26–32].
The primordial B modes are contaminated by several

sources: emission from galactic dust and other foregrounds

[33–40], instrumental noise, and gravitational lensing of
scalar CMB perturbations. The B modes generated by
gravitational lensing of the CMB have been detected
[23,41–45]. The lensed B-mode power spectrum is nearly
a constant at small multipoles (ℓ≲ 1000) and therefore
manifests as an effective white noise with amplitude
∼5 μK-arc min [46,47]. For CMB Stage-IV, we expect
to decrease the instrumental noise to ∼1 μK-arc min [29].
Then, the lensing B noise (and foregrounds) would become
the dominant noise source limiting the primordial B-mode
survey.
Fortunately, the lensing B noise is well understood. Up

to leading order, one can effectively delense observed B
modes by utilizing a quadratic combination of observed E
modes and an estimate of the lensing potential field ϕest

[47–51]. We find that the validity of the quadratic delenser
crucially depends on a partial cancellation of higher order
lensing terms (see Sec. IV C for details). However, in the
regime of low instrumental noise and small lensing
potential field estimate uncertainty, higher-order lensing
terms, ignored by the quadratic delensing technique, can
have an appreciable effect. These higher order terms not
only induce a delensing bias but also contain information
on primordial B modes. In addition, experimental complex-
ities such as nonstationary noise and sky cuts become
nontrivial for spectral-based methods such as the quadratic
delenser.
As an alternative, a full-scale likelihood analysis of the

tensor-to-scalar ratio r can, in principle, optimally account
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for all the Gaussian and non-Gaussian information in the
CMB observations. Unfortunately, a full likelihood analy-
sis requires computation resources beyond what is available
in the near future. In this paper, we introduce a likelihood
approximation which is modified from the full-scale like-
lihood, so as to be computationally tractable.
We start with introducing a Gaussian likelihood incor-

porating all the 2-point information. A key element of our
likelihood analysis is the covariance matrix of the polari-
zation maps. For each data pair (di, dj) (d can be Q or U),
its covariance depends on the primordial polarization
power spectra CEE

ℓ and CBB;r
ℓ , lensing potential field ϕðxÞ

(and instrumental noise NQQ and NUU), where the E-mode
power CEE

ℓ has been well constrained [e.g. [52,53]], while
the primordial B-mode signal has not been detected. We
assume the tensor perturbations to be scale-invariant and
Gaussian; scale invariance is a good approximation to the
prediction of the single-field slow-roll inflation, for which
the tensor spectral index nT ¼ −r=8, with nT ¼ 0 corre-
sponding to scale invariance. Hence all the primordial
B-mode information is encoded in the single parameter r,
the tensor-to-scalar ratio at k ¼ 0.05 Mpc−1. Then the
covariance matrix Σ̃r;ϕ depends on the unknown parameter
r and the underlying lensing potential field ϕðxÞ, where
ϕðxÞ can be estimated from exterior tracers, e.g. cosmic
infrared background (CIB) [45,54–58] or from intrinsic
CMB via, e.g. quadratic estimators [59,60] or Bayesian
approach [61–66]. We obtain a covariance matrix Σr

depending only on r by marginalizing Σ̃r;ϕ over uncertain-
ties in the lensing potential field estimate ϕest. With this full
covariance matrix Σr, it is then straightforward to compute
the likelihood of r for given data vector d by approximating
d as a Gaussian vector.
In principle, this Gaussian likelihood method can exploit

all the 2-point r information from the polarization maps,
but usually the computation resource demands are still
excessive. For example, to constrain r from some polari-
zation maps with p pixels, we need to compute the full
likelihood profile LðrjdÞ as a function of r, which in
practice requires computing the likelihood on a range of r
values, say 50 values evenly distributed in the interval
[0, 0.2]. For each different r, we need to compute the
quadratic form d⊺Σ−1

r d and the determinant detðΣrÞ, due to
the r dependence of the covariance matrix. In any realistic
experiments with p≳ 104, it is a huge amount of work to
compute and invert the covariance matrix of dimension
2p × 2p for that many r values, where the factor 2 comes
from two observables Q and U on each pixel.
In this paper, we present a modified Gaussian likelihood

tailoring the full-scale likelihood analysis so as to be com-
putationally tractable. The method consists of two parts. In
the first part, we decompose the covariance matrix Σr as
Σen þ rΣb, where Σen is the contribution from E modes
and instrumental noise, and rΣb is the contribution from

B modes. This decomposition allows us to compute the
covariance Σr, as a function of r, at the same computational
cost of a single covariance matrix computation. In the
second part, we suppress data size by tracking only s
high signal-to-noise modes, say the large-scale quadratic
delensed B modes. We project out the lensing-generated
B modes and obtain the delensed modes Bdel from the
polarization data d via a projection matrix v, ð0Bdel

ℓ Þs ¼
ðv⊺Þs×2pd2p, with s ∼ 500 and the upper left index 0

denoting the projected data vector limited to the s lowest
frequency modes available. Then, the covariance matrix of
the projected data vector 0Bdel

ℓ is given by v⊺Σrv, with
which the computation of the r likelihood Lðrj0Bdel

ℓ Þ given
the projected data vector turns out to be tractable. This
method can be naturally extended to incorporate higher
frequency modes, as we describe in Sec. III.
We make no attempt here to address contamination from

foregrounds. At every frequency, and even in the cleanest
patches of sky, foreground emission is brighter than the
tensor signal of interest [23,67]. Foregrounds also have
the potential to contaminate the signals one relies on for
delensing [68]. We effectively assume here that this
contamination can be reduced to negligible levels by use
of observations at multiple frequencies. The noise levels
we assume in the following should be understood as post-
foreground-cleaning noise in CMB maps.
The work presented here focuses exclusively on the

problem of CMB delensing, as distinct from lensing
estimation. Our approach uses approximate likelihood
techniques to model, rather than remove, the higher order
lensing residuals present after linear order E template
subtraction. This contrasts with other higher order methods
which remove lensing through iterative techniques that
necessarily fuse delensing and internal lensing estimation
together into a single procedure. Two benefits follow from
our approach: (1) it makes higher order delensing tech-
niques available in modular form which can be used with
different combinations of lensing estimates; i.e., from
external sources and/or internal estimates of the lensing
map (including those obtained by iterative procedures or
posterior samples), (2) it allows us to perform a comparison
where the only difference in the two methods is the
delensing aspect, simplifying interpretation; i.e., we know
any differences are due to the delensing method rather than
the lensing potential estimation method.
The paper is organized as follows. We introduce the

quadratic delenser and the likelihood-based delenser in
Sec. II and Sec. III, respectively. In Sec. IV, we apply the
two r constraining techniques on simulations mimicking
Stage III and IV CMB surveys, and compare their r
constraints. We conclude with Sec. V. For reference, we
derive the analytic expression for the covariance matrices of
the polarization maps, and the eigenvalue method for
inverting large matrices in Appendixes A, B and C,
respectively.
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Throughout this paper, we follow the notation of Lewis
and Challinor [46], which is different from that of Hu and
Okamoto [60] by factors of 2π.

II. QUADRATIC DELENSER

For simplicity, we assume no contamination of fore-
grounds throughout this paper. Then the observed B modes
can generally be expressed as

Bobs ¼ Br þ Blen þ NB; ð1Þ

where Br, Blen; NB are primordial B signal, lensing B noise,
and instrumental B noise, respectively. To constrain the
primordial B signal, delensing is essential, where we obtain
an estimate of the lensing B noise and subtract it off from
the observed B modes. Here, we introduce a quadratic
delenser.
Accurate to the leading order of the lensing potential ϕℓ ,

Blen is the convolution of the lensing potential and
primordial E modes [46], i.e.,

Blen
ℓ ¼

Z
d2ℓ 0

2π
ℓ 0 · ðℓ − ℓ 0Þ sinð2φℓ ;ℓ 0 ÞEℓ 0ϕℓ−ℓ 0 : ð2Þ

Usually, the underlying lensing potential is not known
a priori, but can be estimated from either intrinsic CMB or
from external tracers. From an estimated lensing potential
ϕest
ℓ and observed modes Eobs

ℓ , we construct a quadratic
estimate of the lensing B noise

Blen;est
ℓ ¼

Z
d2ℓ 0

2π
fℓ ;ℓ 0ℓ 0 · ðℓ − ℓ 0Þ sinð2φℓ ;ℓ 0 ÞEobs

ℓ 0 ϕest
ℓ−ℓ 0 ;

ð3Þ

where φℓ ;ℓ 0 ¼ φℓ − φℓ 0 , Eobs is the observed E modes (to
the lowest order, the difference between lensed E and
primordial E can be neglected), and the weighting function
fℓ ;ℓ 0 is to be determined by minimizing the residual,
Bres
ℓ ¼ Blen

ℓ − Blen;est
ℓ . If we define the correlation coefficient

of ϕℓ and ϕest
ℓ

ρℓ ¼ Cϕ;ϕest

ℓffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cϕϕ
ℓ Cϕestϕest

ℓ

q ; ð4Þ

the optimal weight at leading order was proved to be [47]

fℓ ;ℓ 0 ¼ CEE
l0

CEE
l0 þ NEE

l0
ρ2jℓ−ℓ 0j; ð5Þ

which enables a minimal residual power spectrum

CBB;res
ℓ ¼

Z
d2ℓ 0

ð2πÞ2 ½ℓ
0 · ðℓ − ℓ 0Þ sinð2φℓ ;ℓ 0 Þ�2

× CEE
ℓ 0 C

ϕϕ
ℓ−ℓ 0 ð1 − fℓ ;ℓ 0 Þ: ð6Þ

After subtracting off the template Blen;est
ℓ , we obtain a

quadratic delensed B-mode map

Bdel
ℓ ¼ Bobs

ℓ − Blen;est
ℓ ¼ Br

ℓ þ Bres
ℓ þ NB

ℓ ; ð7Þ

and its power spectrum

CBB;del
ℓ ¼ CBB;r

ℓ þ CBB;res
ℓ þ NBB

ℓ : ð8Þ

From the delensed B modes, one can better constrain r due
to the suppressed lensing B noise. Note that in the
evaluation of the residual lensing B power CBB;res

ℓ of
Eq. (6) we have made two approximations: 1) we keep
only the linear order lensing in Blen; 2) we completely
ignore the lensing in Eobs.

III. GAUSSIAN LIKELIHOOD DELENSER

In contrast to the quadratic delenser, the likelihood
analysis works on observables Qobs and Uobs in pixel
space. Concatenating the polarization data on all pixels
yields a length-2p data vector

d ¼ ½Qobsðx1Þ � � �QobsðxpÞ; Uobsðx1Þ � � �UobsðxpÞ�⊺; ð9Þ

with p being the number of pixels. We first evaluate the
covariance matrix of the data vector, which depends on the
primordial polarization power spectra CEE

ℓ and CBB;r
ℓ ,

lensing potential field ϕðxÞ (and instrumental noise).
With CEE

ℓ being well determined, and CBB;r
ℓ being para-

metrized by the tensor-to-scalar ratio r, we marginalize the
covariance matrix Σ̃r;ϕ over uncertainties in ϕðxÞ estimate,
and obtain a covariance matrix Σr depending only on r.
Then it is straightforward to compute the approximate
likelihood of r for given data d by approximating d as a
Gaussian vector, i.e.,

−2 logLðrjdÞ ¼ d⊺Σ−1
r dþ log detΣr; ð10Þ

up to a constant term.

A. Comparison with the quadratic delenser

Before delving into the details of the Gaussian likelihood
delenser, it would be useful to do a brief comparison with
the quadratic delenser (see Table I):

(i) The quadratic delenser works on the delensed modes
Bdel
ℓ in Fourier space, and approximates these modes

as stationary and Gaussian, i.e.,

APPROXIMATE LIKELIHOOD APPROACHES FOR … PHYS. REV. D 97, 103512 (2018)

103512-3



0BBB@
..
.

Bdel
ℓ

..

.

1CCCA ∼ N

0BB@0;

2664
. .
.

0 0

0 CBB;del
ℓ

. .
.

0 0 0

3775
1CCA;

where the power spectrum CBB;del
ℓ , derived in

Eq. (8), only takes into account the leading order
in ϕ. Therefore, the quadratic delenser exploits the
2-point information in a biased way by ignoring
the nonstationarity and higher-order lensing in the
power spectrum.

(ii) The Gaussian likelihood delenser works on the
observables d in pixel space and approximates the
data vector d as Gaussian after marginalizing over
uncertainties in the ϕ estimate. In the computation of
the covariance matrix Σr, all-order lensing is taken
into account and no stationarity assumption is made.
Therefore, the Gaussian likelihood delenser natu-
rally incorporates all the 2-point information.

The Gaussian likelihood is potentially favored in several
aspects, but usually is computationally excessive. As
explained in the Introduction, the bottleneck of the like-
lihood analysis is the covariance matrix Σr related compu-
tation, which is of large size 2p × 2p, and is a function of r.
Here we introduce a modified Gaussian likelihood method.
The method consists of two parts, covariance decomposi-
tion and data compression, where the former allows us to
compute the covariance matrix Σr, as a function of r, at the
computation cost of a single covariance matrix computa-
tion, and the latter allows us to compress the covariance
matrix by tracking a small number of high S=N modes.

B. Covariance decomposition

1. Decomposition

To avoid repeating the computation of the covariance
matrix Σr for each different r, we find it is possible to single
out the r dependence by decomposing the covariance
matrix as

Σr ¼ Σen þ rΣb; ð11Þ

where Σen is the contribution from E modes and instru-
mental noise, and rΣb is the contribution from primordial
B modes. With this decomposition, we can obtain the

covariance matrix Σr as a function of r, as long as the
r-independent components Σen and Σb are obtained.
For the covariance decomposition of Eq. (11), we first

decompose observables Qobs and Uobs as linear combina-
tions of E modes and B modes. Stokes parameters Q and
U are related to coordinate independent quantities E and B
via [12–14,16]

Qℓ ¼ − cosð2φℓ ÞEℓ þ sinð2φℓ ÞBℓ ;

Uℓ ¼ − sinð2φℓ ÞEℓ − cosð2φℓ ÞBℓ : ð12Þ

We define the following modulated E/B modes

SEℓ ≡ − sinð2φℓ ÞEℓ ; SBℓ ≡þ sinð2φℓ ÞBℓ ;

CEℓ ≡ − cosð2φℓ ÞEℓ ; CBℓ ≡ − cosð2φℓ ÞBℓ ; ð13Þ

then the observables Qobs and Uobs are consequently
expressed as

QobsðxÞ ¼ fCEðxÞ þ ffiffiffi
r

p gSB0ðxÞ þ NQðxÞ;
UobsðxÞ ¼ fSEðxÞ þ ffiffiffi

r
p gCB0ðxÞ þ NUðxÞ; ð14Þ

where B0 denotes fiducial B modes with unity power
spectrum CBB;r¼1

ℓ , tildes denote lensed fields X̃ðxÞ ¼
Xðxþ∇ϕðxÞÞ (X ¼ CE; SE;CB; SB), and NQ;U is the
Q=U noise.
With above decomposition, we find the data vector d is

Gaussian with covariance Σ̃r;ϕ for given r and ϕðxÞ, i.e.,
d ∼ Nð0; Σ̃r;ϕÞ, where

Σ̃r;ϕ ≡
�
Σ̃Qobs;Qobs Σ̃Qobs;Uobs

Σ̃Qobs;Uobs Σ̃Uobs;Uobs

�
r;ϕ

; ð15Þ

and the covariance matrix is naturally expressible in the
form of Eq. (11), i.e.,

Σ̃Qobs;Qobs ¼ Σ̃CE;CE þ rΣ̃SB0;SB0 þ ΣNQ;NQ;

Σ̃Qobs;Uobs ¼ Σ̃CE;SE þ rΣ̃SB0;CB0

;

Σ̃Uobs;Uobs ¼ Σ̃SE;SE þ rΣ̃CB0;CB0 þ ΣNU;NU: ð16Þ

2. Marginalization

In a more practical case, we only have an estimate of
lensing potential ϕest

ℓ which is a noisy version of the true
ϕℓ , i.e., ϕest

ℓ ¼ ϕℓ þ nϕℓ , where n
ϕ
ℓ is the uncertainty of the

ϕ estimate and its power spectrum Nϕϕ
ℓ is usually an output

of the lensing estimator used. For an unbiased estimator
with Gaussian uncertainty, one can write nϕℓ ∼ Nð0; Nϕϕ

ℓ Þ.
Then the correlation coefficient of ϕ and ϕest defined in
Eq. (4) now is explicitly known as

TABLE I. A brief comparison of the two delensers.

Delenser Quadratic delenser Gaussian likelihood

Working space Fourier Pixel
Power spectrum/
covariance matrix

Leading order All order

Nonstationarity ✗ ✓
Non-Gaussianity ✗ ✗

ZHEN PAN, ETHAN ANDERES, and LLOYD KNOX PHYS. REV. D 97, 103512 (2018)

103512-4



ρℓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cϕϕ
ℓ

Cϕϕ
ℓ þ Nϕϕ

ℓ

s
: ð17Þ

In this context, one can treat ϕest as data and compute the
posterior on ϕ given ϕest, i.e.,

Pðϕℓ jϕest
ℓ Þ ∼ NðϕWF

ℓ ; Cϵϵ
ℓ Þ; ð18Þ

with

ϕWF
ℓ ¼ Cϕϕ

ℓ

Cϕϕ
ℓ þ Nϕϕ

ℓ

ϕest
ℓ ¼ ρ2ℓϕ

est
ℓ ;

Cϵϵ
ℓ ¼ Cϕϕ

ℓ

Cϕϕ
ℓ þ Nϕϕ

ℓ

Nϕϕ
ℓ ¼ ρ2ℓN

ϕϕ
ℓ : ð19Þ

Therefore a sample ϕℓ ∼ Pðϕℓ jϕest
ℓ Þ can be written as

ϕℓ ¼ ϕWF
ℓ þ ϵWF

ℓ ; ð20Þ

with ϵℓ ∼ Nð0; Cϵϵ
ℓ Þ.

Two different sets of variables are involved here: raw
variables (ϕℓ ; n

ϕ
ℓ ; N

ϕϕ
ℓ ) and Wiener filter variables

(ϕWF
ℓ ; ϵWF

ℓ ; Cϵϵ
ℓ ). Usually, it is more numerically stable to

work on the Wiener filter variables. Marginalizing Σ̃r;ϕ in
Eq. (15) over ϵWF, we obtain a covariance matrix only
depending on r, i.e., Σr ≡ hΣ̃r;ϕiϵWF , where its analytic form
is presented in Appendixes A and B. The computation of its
inverse matrix Σ−1

r is presented in Appendix C.

C. Data compression

1. Idea

To compress the data, we project the original length-2p
data vector d to a small number of length-s (s ≪ 2p)
vectors d̂i (i ¼ 0;…; imax). If we properly choose the pro-
jected vectors to be independent and of high S=N, then the
total likelihood is given by

logLðrjdÞ ≈
Ximax

i¼0

logLðrjd̂iÞ: ð21Þ

We denote ðd̂iÞs ¼ ðv⊺Þis×2pd2p, where vi is the projection
matrix to be determined later, then d̂i ∼ Nð0; ðv⊺ÞiΣrviÞ and
the likelihood Lðrjd̂iÞ is given by

−2 logLðrjd̂iÞ ¼ d⊺½ðv⊺ÞiΣrvi�−1d
þ log det ½ðv⊺ÞiΣrvi�; ð22Þ

up to a constant term.
Since the primordial B modes at large scales are less

contaminated by the lensing B noise, a natural choice is to

project the polarization data to the large-scale quadratic
delensed modes defined in Eq. (7), i.e., d̂i ¼ iBdel

ℓ , where
the upper index i denotes the projected data vector limited
to the i-th s lowest frequency modes available (Fig. 1).1

These projected vectors iBdel
ℓ are not completely indepen-

dent. We will confirm the validity of ignoring the cross
correlation via simulations in Sec. IV.
We find that the modified Gaussian likelihood method

works better if we incorporate the same number of E modes
and delensed B modes in each projected vector, i.e.,

½d̂i�2s ¼
"
ðiBdel

ℓ Þs
ðiEobs

ℓ Þs

#
¼

" ðv⊺bÞis×2p
ðv⊺eÞis×2p

#
d2p ¼ ðv⊺Þi2s×2pd2p:

ð23Þ
2. Projection matrix

In this subsection, we focus on the computation of the
projection matrices vi. As described in Sec. II, the quadratic
delenser is actually a linear operator, i.e.,

d ¼ ðQobs; UobsÞ⊺⟶Eq: ð12ÞðEobs; BobsÞ;

⟶
Eq: ð3Þ ðBlen;est; BobsÞ;

⟶
Eq: ð7Þ

Bobs − Blen;est ¼ Bdel: ð24Þ
Therefore we can formally write the quadratic delensing as
ðBdel

ℓ Þ2p ¼ P2p×2pd2p, where P is a concatenation of the
three linear operations above, and its matrix elements
can be found by recording the impulse response of the
delensed modes to each element in the data vector. For
example, to compute the 1st column of P, we do the
quadratic delensing to a single-element “data vector” δ1 ¼
ð1; 0;…; 0Þ⊺2p and denote the corresponding delensed
modes as ðBdel

ℓ jδ1Þ, i.e.,

FIG. 1. The modes covered by each different projected vector
iBdel

ℓ ði ¼ 0; 1; 2;…Þ. Here we only show the modes with ℓ2 ≥ 0,
since our observables Qobs and Uobs are real numbers.

1The large-scale delensed B modes are no longer the highest
S=N modes, when foregrounds, contaminating the primordial B
modes more at large scales, are considered. Our methodology is
flexible. In principle, modes could be selected that minimizes
noise and residual foreground contamination.
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ðBdel
ℓ jδ1Þ2p ¼ P2p×2pðδ1Þ2p ¼ 1st col of P: ð25Þ

where ðBdel
ℓ jδ1Þ is obtained via the three successive oper-

ations of Eq. (24). In this way, we obtain the matrix P.
It is clear that the projection matrices of vectors iBdel

ℓ

correspond to row blocks of P. Explicitly, we write
ðBdel

ℓ Þ2p ¼ P2p×2pd2p as0BBBBB@
ð0Bdel

ℓ Þs
ð1Bdel

ℓ Þs
ð2Bdel

ℓ Þs
…

1CCCCCA ¼ P2p×2pd2p ¼

0BBBBB@
ð0PÞs×2p
ð1PÞs×2p
ð2PÞs×2p

…

1CCCCCAd2p; ð26Þ

and, therefore, we obtain ðv⊺bÞis×2p ¼ ðiPÞs×2p. The pro-
jection matrices ðv⊺eÞi can be obtained in a similar but easier
way, since only the first operation in Eq. (24) is involved.

IV. SIMULATIONS

In this section we present simulations that demonstrate
the likelihood-based higher order delensing methodology
in comparison to first order E template delensing [47].
Although higher order iterative estimates of lensing/
delensing have been forecasted to outperform first order
E template delensing [69], their implementation is only
just now being developed and highly coupled to the
lensing estimation methodology. Indeed, there are arguably
only three prototype implementations existing in the
current literature, all derived from iterative maximization
of the log posterior of lensing (see [62,65,66]), none of
which are yet sufficiently developed for use in obtaining r
constraints.
Since the focus of this paper is exclusively on the

problem of CMB delensing, as distinct from lensing
estimation, we simplify our simulations by stipulating that
lensing potential uncertainty arises from a simple additive
noise model ϕðxÞ þ nϕðxÞ, with ϕðxÞ being the true lensing
potential field and nϕðxÞ being independent isotropic
Gaussian noise. The spectral density used for nϕðxÞ is
set to the projected error from the EB quadratic lensing
estimate [60] which mimics a two survey approach for r
constraints: one survey for reconstructing the lensing map,
the second for r constraints via delensing. Although the EB
quadratic estimate is known to be suboptimal, as compared
to projections in the literature of iterative techniques [69],
we use the EB quadratic estimate uncertainty due to the fact
that far less is known about the bias and uncertainty
associated with higher order lensing estimates which
may lead to overly optimistic projections of lensing
uncertainty.
The fiducial cosmology we use in this section is a flat

ΛCDM cosmology with a baryon density ωb ¼ 0.02246, a
cold dark matter density ωc ¼ 0.1185, a reionization

optical depth τ ¼ 0.079, an angular size of sound horizon
at recombination 100θ⋆ ¼ 1.0410, an amplitude and a
spectral index of the primordial scalar the perturbation
power spectrum lnð1010AsÞ ¼ 3.192; ns ¼ 0.9686, and a
tensor-to-scalar ratio r in the range of [0.001, 0.1]. For each
different r, we simulate 500 realizations of primordial
polarization fields QðxÞ and UðxÞ, then lense these fields
via the same lensing potential field ϕðxÞ, following the
lensing approach proposed by Louis et al. [70]. All the
power spectra used in simulations are computed from
the Boltzmann code CLASS [71].

A. Two surveys

We consider a survey strategy consisting of two different
surveys of the same area of sky, differing in angular
resolution. The main goal of the higher-resolution survey
is to allow for a reconstruction of the lensing potential.
Such reconstructions benefit from reaching an angular scale
comparable to the typical lensing deflection angle of ∼2 arc
min. In contrast, the primordial B-mode signal is on fairly
large angular scales of greater than a degree. In principal,
one high-resolution survey could be used both for the
lensing reconstruction and for sensitivity to the primordial
B-mode signal. However, there are advantages to using a
survey dedicated to the large-scale signals. These advan-
tages do not appear in the idealized analyses that we
perform here, as they are related to systematic error control
and foreground cleaning, as we now explain briefly. The
large-scale survey can be achieved with a smaller telescope
with a simplified optics chain. Having a smaller telescope
facilitates boresight rotation, which BICEP2/Keck have
used for null tests to bound certain systematic errors.
Foreground cleaning is also likely to be more of a challenge
at larger angular scales than it is for the smaller angular
scales with the bulk of the lensing information and serves
as a further driver of differences in optimal design for the
two surveys. For these reasons a two-survey approach is
likely to be a part of the straw man concepts for the
CMB Stage-IV instrument soon to emerge from the CMB
Stage-IV Concept Definition Taskforce.
In this paper, we simulate three scenarios. We consider a

scenario “N” in which the B-mode instrument noise power
is larger than the B-mode lensing power, and two scenarios
“La” and “Lb” with the opposite situation. The more

TABLE II. The three scenarios we simulated.

ΔT (μK-arc min) θFWHM fsky

Lb ϕ 0.5 20 2.7%
B 0.5 100

La ϕ 1 20 2.7%
B 1 100

N ϕ 10 20 2.7%
B 10 100
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sensitive scenarios La and Lb are motivated by potential
CMB-S4 scenarios. Each scenario consists of two surveys,
a high-resolution survey for ϕ reconstruction and a low-
resolution survey capturing the B-mode signal, covering
the same patch of the sky (see Table II for the survey
configurations in detail). The noise levels specified here

should be understood as noise levels in a foreground-
cleaned CMB map, as mentioned in the Introduction.
For the high-resolution surveys, the lensing potential
reconstruction noise expected from the EB quadratic
estimator [59,60,72] is shown in Fig. 2.

B. r constraints

For each simulated CMB realization, we first reconstruct
the lensing potential field from the ϕ survey (high reso-
lution survey) using the EB quadratic estimator, then use
the reconstructed lensing field ϕestðxÞ to delense the low
resolution polarization maps using the quadratic delenser
(Sec. II) and the modified Gaussian likelihood method
(Sec. III), and finally compare their r constraints from the
two delensers.
In Fig. 3, we show the detection level r=σðrÞ and bias

level BiasðrÞ=r obtained from the quadratic delenser and
from the modified Gaussian likelihood method, where σðrÞ
and BiasðrÞ are the standard error and the average bias of
the 500 best-fit r values (from 500 CMB realizations),
respectively. For Scenario N, both methods obtain similar r
detection levels, while the modified Gaussian likelihood
method shows its advantages in the Scenario La and Lb. We
find that in the regime of low map noise (≲1 μK-arc min),
the bias of the modified Gaussian likelihood method is
appreciably smaller than that of the quadratic delenser (see
next subsection for the detailed bias analysis for the
quadratic delenser).

FIG. 2. The ϕðxÞ reconstruction noises for Scenario N
(ΔT ¼ 10 μK-arc min), La (ΔT ¼ 1 μK-arc min), and Lb
(ΔT ¼ 0.5 μK-arc min) surveys.

FIG. 3. Upper three panels show the detection levels r=σðrÞ expected from surveys of Scenario N, La, and Lb, and lower three panels
show the corresponding bias levels BiasðrÞ=r.
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For Scenario La with map noise ΔT ¼ 1 μK-arc min and
sky coverage fsky ¼ 2.7%, we expect to detect the pri-
mordial B-mode signal at ∼1σ level for r ¼ 0.001 and at
∼15σ level for r ¼ 0.1. The lower noise Scenario Lb with
map noise ΔT ¼ 0.5 μK-arc min and the same sky cover-
age, only marginally increases the detection level, due to
the saturation of cosmic variance.

C. Bias analysis for the quadratic delenser

In this subsection, we aim to quantify the bias of the
quadratic delenser introduced by ignoring the lensing in E
modes and higher order lensing in B modes.2 For clarity, we
use the following notation to denote the connection
between lensed and primordial variables

Ẽ ¼ Eþ δEfromE þ δEfromB;

B̃ ¼ Bþ δBfromE þ δBfromB; ð27Þ
where δXfromY is the lensing in (lensed) X from (primor-
dial) Y. In addition, δEfromB and δBfromB are much smaller
than their counterparts δEfromE and δBfromE, so we simply
ignore them in this subsection.

(i) First we do a null test. In accordance with the two
approximations made in the quadratic delenser
(Sec. II), we completely drop lensing in E modes
and only keep linear order lensing in B modes,
i.e., we simulate polarization maps assuming
Eobs ¼EþNE and Bobs¼Bþδ1BfromBþNB, where
NE=B is the E/B map noise, and δ1BfromE is the linear

order lensing in B from E. As expected, we find the
quadratic delenser is not biased in this context
(Fig. 4, black/solid lines).3,4

(ii) To scrutinize the bias introduced by ignoring
lensing in E modes, we keep all order lensing in
E modes and linear order lensing in B modes; i.e.,
we simulate polarization maps assuming Eobs ¼
Eþ δEfromE þ NE and Bobs ¼Brþδ1BfromBþNB.
In this context, the quadratic delenser is highly
biased (Fig. 4, green/bar lines).

(iii) In the same way, to test the bias introduced by
ignoring high order lensing terms in B modes, we
ignore lensing in E modes and keep all order lensing
in B modes; i.e., we do simulations assuming Eobs ¼
Eþ NE and Bobs ¼ Bþ δBfromB þ NB. In this con-
text, we also find the quadratic delenser is highly
biased. More interestingly, we find that the bias level
almost exactly matches that of ignoring lensing in E
modes (Fig. 4, blue/dashed lines).

(iv) The final step is to check the interaction between the
two bias terms from (iii) and (iv). For this purpose,
we keep all order lensing in E modes and all order
lensing in B modes; i.e., we simulate polarization

FIG. 4. Bias analysis of the quadratic delenser via simulations under different assumptions: (black/solid lines) null test assuming
Eobs ¼ Eþ NE and Bobs ¼ Bþ δ1BfromE þ NB; (green/bar lines) all order E from E test assuming Eobs ¼ Eþ δEfromE þ NE,
Bobs ¼ Bþ δ1BfromE þ NB; (blue/dashed lines) all order B from E test assuming Eobs ¼ Eþ NE and Bobs ¼ Bþ δBfromE þ NB; (red/
dots) all order E/B from E test assuming Eobs ¼ Eþ δEfromE þ NE and Bobs ¼ Bþ δBfromE þ NB.

2In principle, ignoring the nonstationarity of the delensed B
modes also induces some bias to the r constraint. But we will see
this bias is negligible.

3From the null test, where we ignore the nonstationarity of the
delensed B modes, we conclude that the bias induced by ignoring
the nonstationarity is negligible.

4Comparing the detection level of the null test (solid line in the
left panel of Fig. 4), and the detection level of the modified
Gaussian likelihood (solid line in the second panel of Fig. 3), we
find the two matches exactly. Therefore, we confirm the validity
of the two major approximations used in the modified Gaussian
likelihood: only keeping a few projected data vectors, and
ignoring the cross relation between different projected data
vectors.
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maps assuming Eobs¼EþδEfromEþNE, and Bobs ¼
Bþ δBfromE þ NB. We find that the two bias con-
tributions cancel to a high precision and therefore
the net bias is strongly suppressed (Fig. 4, red/dots).
To make sense of the bias cancellation, we do a

simple magnitude analysis. In the quadratic delenser,
we delense the B modes via a quadratic template
subtraction Bres¼BfromE−Eobs �ϕest, and assume a
residual power spectrum CBB;res

ℓ ¼ hjδ1BfromE −
E � ϕestj2ℓi, where � denotes the convolution defined
in Eq. (2), (3), in the δ1BfromE term we ignore the
second (and higher) order lensing in B modes
δ2BfromE, and in the E � ϕ term we ignore the
difference of E and Ẽ. Therefore the template sub-
traction used has an error δ2BfromE − δ1EfromE � ϕ,
where both error terms are of the same order OðEϕ2Þ
considering that

ðδ2BfromEÞℓ
¼ −

1

2

Z
d2ℓ 1d2ℓ 2

ð2πÞ2 ½ðℓ 1 þ ℓ Þ · ðℓ 1 þ ℓ 2Þ�

× ½ðℓ 1 þ ℓ Þ · ℓ 2�Eℓ 1þℓ sinð2φℓ 1þℓ ;ℓ Þϕ�
ℓ 1þℓ 2

ϕℓ 2
;

ð28Þ
and

ðδ1EfromEÞℓ ¼
Z

d2ℓ 0

2π
ℓ 0 · ðℓ 0 þ ℓ Þ

× Eℓ 0þℓ cosð2φℓ 0þℓ ;ℓ Þϕ�
ℓ 0 : ð29Þ

To summarize, in the quadratic delenser,

Bdel
ℓ ¼ Br

ℓ þ Bres
ℓ þ NB

ℓ ; ð30Þ
we have ignored lensing in E modes and high order lensing
in B modes when estimating the residual power spectrum
hjBres

ℓ j2i. We find that each of the two approximations
introduces a strong bias in the r estimate, while the two
bias contributions cancel to a high precision, and the
validity of the quadratic delenser sensitively depends on
the cancellation.
According to the above analysis, the bias in the

residual power estimate in principle is independent of
primordial B-mode signal Br, therefore we naively expect
a r-independent bias BiasðrÞ and therefore a bias level
BiasðrÞ=r decaying with growing r, which is indeed the
behavior we observe for r≲ 0.01 (Figs. 3 and 4). But the
bias level does not die down for even greater r, since the r
constraints become more sensitive to higher frequency
regimewhere the bias is stronger. Here, we give an informal
analysis of the bias level behavior. From a single delensed
B mode Bdel

ℓ , we can estimate the primordial B-mode power
spectrum with root variance ΔCℓ ¼ CBB;r

ℓ þ CBB;res
ℓ þ NBB

ℓ

and consequently estimate r with mean value

restℓ ¼ jBdel
ℓ j2 − CBB;res

ℓ − NBB
ℓ

CBB;r¼1
ℓ

; ð31Þ

and with root variance σℓ ðrÞ ¼ ΔCℓ=C
BB;r¼1
ℓ . These

estimators from different modes can be added with
inverse-variance weighting rest ¼ P

ℓWℓ restℓ , where

Wℓ ðrÞ ¼
1

σ2
ℓ
ðrÞP

ℓ
1

σ2
ℓ
ðrÞ

: ð32Þ

It is straightforward to understand that Wℓ ðrÞ increases
with r for large jℓ j where CBB;res

ℓ þ NBB
ℓ dominates ΔCℓ ,

and decreases with r for small jℓ j where CBB;r
ℓ dominates

ΔCℓ . In addition, we know that the quadratic delenser is a
biased estimator, i.e.,

hjBdel
ℓ j2i ¼ CBB;res

ℓ þ NBB
ℓ þ CBB;r

ℓ þ CBB;bias
ℓ ; ð33Þ

and

hrestℓ i ¼ CBB;r
ℓ þ CBB;bias

ℓ

CBB;r¼1
ℓ

¼ rþ rbiasℓ ; ð34Þ

where rbiasℓ increases with jℓ j. Therefore, we have
hresti ¼ P

ℓWℓ hrestℓ i ¼ rþP
ℓWℓ ðrÞrbiasℓ ¼ rþ BiasðrÞ,

with BiasðrÞ increasing with r. It also explains the
increasing bias level BiasðrÞ with decreasing map noise
NBB

ℓ (see Fig. 3). Note that we do not expect the quadratic
delenser to exactly match the inverse-variance weighted
estimator described above, but the latter should be a good
proxy for interpreting the bias behavior.

D. Nonstationary noise

The modified Gaussian likelihood works not only as a
correction to the quadratic template subtraction estimator
but also shows its advantage in dealing with realistic
experiment complexities, e.g. nonstationary noise and
sky cuts. Here we explore an example of nonstationary
noise with pixel dependent noise, i.e., hnðxÞnðyÞi ¼
σ2ðxÞΔ2

PδDðx − yÞ, with ΔP ¼ ffiffiffi
2

p
ΔT ¼ ffiffiffi

2
p

μK-arc min,
and σðxÞ a pixel-dependent modulation (Fig. 5). We expect
the likelihood-based estimator to work robustly in the
presence of nonstationary noise, as long as we take the
pixel dependent noise into account when calculating
the covariance matrix of noise (see Appendix B). But
the nonstationary noise becomes troublesome for the
quadratic delenser in Fourier space.5

5In the case of nonstationary noise, the noise power spectrum
loses the protection of symmetry; i.e., hnℓnℓ 0 i ¼ Nℓ ;ℓ 0 now
depends on both multipoles instead of their linear combination
ℓ ; ℓ 0. If we were to correctly use the quadratic delenser, then the
residual power evaluation in Eq. (6) becomes difficult, and is out
of the scope of this paper. Here we simply (but incorrectly)
assume the stationary noise power spectrum in Eq. (6), and test
how the nonstationary noise biases the r constraint from the
quadratic delenser.
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Applying the two estimators on simulations with nonsta-
tionary noise, we find that the modified Gaussian likelihood
method works as well as in the case of stationary noise,
while the quadratic delenser is significantly biased (Fig. 5).

V. SUMMARY AND CONCLUSIONS

Delensing is a crucial part for future CMB experiments
aiming to detect a primordial B-mode signal. Up to linear
order, one can effectively delense observed B-modes by
utilizing a quadratic combination of observed E-modes and
an estimate of the lensing potential. This is the underlying
idea of the quadratic delenser. However, in the regime of
small map noise, the lensing in E modes, and higher order
lensing in B modes ignored by the quadratic delenser,
significantly bias the r constraint. We investigated the bias
induced by each of the two approximations via simulations,
finding that each of two approximations induce a large bias,
while the two bias terms partly cancel and therefore the net
bias is moderately suppressed. The validity of the quadratic
delenser sensitively depends on the cancellation.
Alternatively, a full-scale likelihood analysis of the

tensor-to-scalar ratio r can, in principle, optimally account
for all the r information in the CMB observations and
remedy possible bias problems. Unfortunately, a full like-
lihood analysis requires computation resources beyond
what is available in the near future. In this paper, we
presented a modified Gaussian likelihood method. This
method consists of two parts, covariance decomposition
and data compression. In the first part, we decomposed the
covariance matrix in the form of Σr ¼ Σen þ rΣb, which
allows us to compute the covariance matrix Σr, as a
function of r, at the computational cost of a single
covariance matrix evaluation. In the second part, we com-
pressed the data size by keeping only s ∼ 500 high signal-
to-noise modes, say the large-scale quadratic delensed B
modes. We obtained these B modes from polarization data
d via a projection matrix v, ð0Bdel

ℓ Þs ¼ ðv⊺Þs×2pd2p, and
applied the likelihood analysis on the projected data vector.
This method can be naturally extended to incorporate
higher frequency modes.

Finally, we applied the quadratic delenser and the
modified Gaussian likelihood method on simulated CMB
observations mimicking experiments of Scenario N, La,
and Lb, and compare the resulting r constraints. We found
that the two methods have similar performance in con-
straining r for Scenario N, while the quadratic delenser
does not perform as well for the lower-noise Scenarios La
and Lb due to a strong r constraint bias in the regime of low
map noise. For Scenario La, we expected to detect the
primordial B-mode signal at ∼1σ level for r ¼ 0.001, and at
∼15σ level for r ¼ 0.1, from the modified Gaussian like-
lihood method. For Scenario Lb with even lower map noise
and the same sky coverage, the detection level only
marginally increases due to the saturation of cosmic
variance. Therefore it would be valuable to optimize the
survey configurations (ΔT; fsky) for the coming CMB
experiments given a fixed amount of survey time [29].
We also explored the impact of realistic experiment

complexities: in the presence of nonstationary noise, the
modified Gaussian likelihood method also works robustly
as long as we slightly modify the noise covariance matrix to
take into account the pixel dependent noise.
To realize the delensing method we present here as part

of a complete analysis pipeline from observed maps to
constraints on r, a number of additional steps are required.
First, one needs to estimate the lensing potential from the
observed maps. Such estimates in general will have some
degree of correlation with the CMB signal in the maps
themselves, although this can be avoided by separating the
spatial frequencies used for lensing from those used to
detect the tensor signal. They will also be non-Gaussian
to some degree, and the impact of this distribution will
need to be understood—perhaps via simulations. Also, as
mentioned in the introduction, foregrounds need to be taken
into account. There are at least two different paths to
pursue: include a model of foreground residuals in the
foreground-cleaned map, or extend the likelihood of the
map to a likelihood of maps at multiple frequencies, with a
model of the foreground contributions. We leave these
developments to future work.

FIG. 5. The impact of nonstationary map noise on the r constraints for the Scenario La experiments (ΔT ¼ 1 μK-arc min). Left panel:
the nonstationary noise modulation σðxÞ. Middle/Right panel: the detection/bias level of r constraints inferred from the two delensers.
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APPENDIX A: SIGNAL COVARIANCE MATRIX

There are eight different terms in the map covariance
matrix Σr: fΣ̃SE;SE; Σ̃CE;SE; Σ̃CE;CEg, fΣ̃SB;SB; Σ̃CB;SB;
Σ̃CB;CBg, and fΣNQ;NQ;ΣNU;NUg [see Eqs. (16)]. In this
subsection, we show how the marginalization over uncer-
tainty in the ϕ estimate is done for the six lensed signal
terms, and leave the two noise terms to the next subsection.
Take Σ̃XXðX ¼ SEÞ as an example,

hΣ̃XX
r;ϕiϵWF ¼ hX̃ðxÞX̃ðyÞiϵWF

¼ hXðxþ∇ϕWFðxÞþ∇ϵWFðxÞÞ×Xðyþ∇ϕWFðyÞþ∇ϵWFðyÞÞiϵWF

¼
Z

d2ℓ
ð2πÞ2 e

iℓ ·ðx−yþ∇ϕWFðxÞ−∇ϕWFðyÞÞCXX
ℓ heiℓ ·ð∇ϵWFðxÞ−∇ϵWFðyÞÞiϵWF

¼
Z

d2ℓ
ð2πÞ2 e

iℓ ·ðx−yþ∇ϕWFðxÞ−∇ϕWFðyÞÞCXX
ℓ exp

�
−
1

2
ℓ · ½Σϵð0Þ−Σϵðx− yÞ� · ℓ

�
≃
Z

d2ℓ
ð2πÞ2 e

iℓ ·ðx−yþ∇ϕWFðxÞ−∇ϕWFðyÞÞCXX
ℓ

�
1−

1

2
ℓ · ½Σϵð0Þ−Σϵðx− yÞ� · ℓ

�
¼
Z

d2ℓ
ð2πÞ2 e

iℓ ·ðx−yþ∇ϕWFðxÞ−∇ϕWFðyÞÞCXX
ℓ −

1

2

X2
p;q¼1

½Σϵð0Þ−Σϵðx− yÞ�p;q
Z

d2ℓ
ð2πÞ2ℓpℓqeiℓ ·ðx−yþ∇ϕWFðxÞ−∇ϕWFðyÞÞCXX

ℓ

¼CovðXðwÞ;Xð0ÞÞþ 1

2

X2
p;q¼1

½Σϵð0Þ−Σϵðx− yÞ�p;q∂p;qCovðXðwÞ;Xð0ÞÞ; ðA1Þ

where we have used cumulant expansion at the 4th equal sign, ½Σϵðx − yÞ�p;q is the covariance of ∇ϵWF, i.e.,

½Σϵðx − yÞ�p;q ¼ h∇pϵ
WFðxÞ∇qϵ

WFðyÞiϵWF ¼
Z

d2ℓ
ð2πÞ2 ℓpℓqeiℓ ·ðx−yÞN

ϕϕ
ℓ ; ðA2Þ

and CovðXðwÞ; Xð0ÞÞ is the covariance of X at separation
w ¼ x − y þ∇ϕWFðxÞ −∇ϕWFðyÞ,

CovðXðwÞ; Xð0ÞÞ ¼
Z

d2ℓ
ð2πÞ2 e

iℓ ·wCXX
ℓ : ðA3Þ

The above two dimensional integrals [Eqs. (A2)–(A3)]
can be simplified as one dimensional integrals as follows.
Take Eq. (A3) as an example,

CovðXðwÞ; Xð0ÞÞ ¼ 4∂2
1∂2

2

Z
d2ℓ
ð2πÞ2 e

iℓ ·wCEE
ℓ

≡ 4∂2
1∂2

2K
EðwÞ; ðA4Þ

where we have used CXX
ℓ ¼ 4ℓ2

1ℓ
2
2ðCEE

ℓ =ℓ4Þ and defined
CEE
ℓ ≡ CEE

ℓ =ℓ4. Exploiting the integral representation of
Bessel functions, we rewrite KEðwÞ as a one dimensional
integral

KEðwÞ ¼
Z

d2ℓ
ð2πÞ2 e

iℓ ·wCEE
ℓ ¼ 1

2π

Z
J0ðℓwÞCEE

ℓ ℓdℓ;

ðA5Þ

which has no angular dependence. For derivative calcu-
lation, we define K̂ðw2Þ≡ KEðwÞ, then

∂2
1∂2

2K
EðwÞ ¼ ∂2

1∂2
2K̂ðw2Þ

¼ 16w2
1w

2
2K̂

ð4Þðw2Þ
þ 8ðw2

1 þ w2
2ÞK̂ð3Þðw2Þ þ 4K̂ð2Þðw2Þ: ðA6Þ

Using the property

d
dz

z−sJsðzÞ ¼ −z−sJsþ1ðzÞ; ðA7Þ

the n-th order derivative K̂ðnÞ is explicitly expressed as
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K̂ðnÞðw2Þ ¼ 1

2π

Z �
−

ℓ

2w

�
n
JnðℓwÞℓdℓ: ðA8Þ

Collecting Eqs. (A4), (A6), (A8), CovðXðwÞ; Xð0ÞÞ is
decomposed into a few one dimensional integrals. The
calculation of ∂p;qCovðXðwÞ; Xð0ÞÞ and ½Σϵðx − yÞ�p;q is
conducted in the same way. For other lensed terms, the
above formulas apply similarly.

APPENDIX B: NOISE COVARIANCE MATRIX

In Sec. A, we completely ignore the consequence of the
finite beam size in the signal covariance evaluation, since

the signal suppression by the beam convolution can be
interpreted as the noise enhancement by the beam decon-
volution. For noise field nðxÞ, we denote the deconvolved
noise field as XðxÞ ¼ φ−1

x ½nðxÞ�, with

φ−1
x ½nðxÞ� ¼

Z
d2ℓ
2π

eiℓ ·x
nℓ
φℓ

¼
Z

d2ℓ
2π

d2x0

2π
eiℓ ·ðx−x0Þ

nðx0Þ
φℓ

;

ðB1Þ

where for Gaussian beam profile φðxÞ ¼ 1
2πσ2b

exp ð− x2

2σ2b
Þ,

φℓ ¼ exp ð− l2σ2b
2
Þ, and σ2b ¼ θ2FWHM=ð8 ln 2Þ. Then

ΣXX ¼ hXðxÞXðyÞi ¼
Z

d2ℓ
2π

d2x0

2π

d2k
2π

d2y0

2π
eiℓ ·ðx−x0Þeik·ðy−y0Þ

1

φℓφk
hnðx0Þnðy0Þi: ðB2Þ

For simple white noise hnðxÞnðyÞi ¼ Δ2
PδDðx − yÞ, we have

hXðxÞXðyÞi ¼
Z

d2ℓ
ð2πÞ2 e

iℓ ·ðx−yÞ Δ2
P

φℓφ−ℓ
¼ Δ2

P

Z
d2ℓ
ð2πÞ2 e

iℓ ·ðx−yÞeℓ
2σ2b ; ðB3Þ

where ΔP is polarization noise and we usually take ΔP ¼ ffiffiffi
2

p
ΔT. For more realistic nonstationary noise hnðxÞnðyÞi ¼

σ2ðxÞΔ2
PδDðx − yÞ, the covariance matrix of the deconvolved noise field XðxÞ is written as

hXðxÞXðyÞi ¼ hφ−1
x ½nðxÞ�φ−1

y ½nðyÞ�i

¼
	
φ−1
x ½nðxÞ�

Z
d2ℓ
2π

d2y0

2π
eiℓ ·ðy−y0Þ

nðy0Þ
φℓ



¼ φ−1

x

�Z
d2ℓ
2π

d2y0

2π
eiℓ ·ðy−y0Þ

1

φℓ

hnðxÞnðy0Þi
�

¼ φ−1
x

�
σ2ðxÞΔ2

P

Z
d2ℓ
ð2πÞ2 e

iℓ ·ðy−xÞe
ℓ2σ2

b
2

�
; ðB4Þ

where we have exchanged the order of deconvolution and ensemble average at the 3rd equal sign, since deconvolution is a
linear operator.

hXðxÞXðyÞi ¼ Δ2
P

Z
d2ℓ
ð2πÞ2

d2k
2π

eiℓ ·xeik·yφℓφk

�Z
d2x0

2π
e−iðℓþkÞ·x0

δ2ðx0Þ
�

¼ Δ2
P

Z
d2ℓ
ð2πÞ2

d2k
2π

eiℓ ·xeik·yφℓφkðδ2Þℓþk

¼ Δ2
P

Z
d2ℓ
ð2πÞ2 e

iℓ ·xφℓ

Z
d2k
2π

eik·yφkðδ2Þℓþk: ðB5Þ

APPENDIX C: INVERSE OF
COVARIANCE MATRIX

The inverse covariance matrix Σ−1
r evaluation is the key

to the r likelihood in Eq. (10). To avoid repeating the
similar computation for every different r, we can single out
the r dependence rewriting the covariance matrix in the
form Σr ¼ Σen þ rΣb, where

Σen ¼
�
Σ̃CE;CE þ ΣNQ;NQ Σ̃CE;SE

Σ̃CE;SE Σ̃SE;SE þ ΣNU;NU

�
;

Σb ¼
�
Σ̃SB0;SB0 Σ̃CB0;SB0

Σ̃CB0;SB0 Σ̃CB0;CB0

�
:

Both Σen and Σb are symmetric and positive definite. We
first decompose Σb as Σb ¼ VΛV⊺, with Λ being a diagonal
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matrix composed of its eigenvalues, and V being a matrix
composed of its eigenvectors. Now we do a little manipu-
lation to the covariance matrix

Σr ¼ Σen þ rVΛV⊺

¼ V
ffiffiffiffi
Λ

p � ffiffiffiffiffiffiffiffi
Λ−1

p
V⊺ΣenV

ffiffiffiffiffiffiffiffi
Λ−1

p
þ rI

� ffiffiffiffi
Λ

p
V⊺; ðC1Þ

where we have used the orthogonality V⊺ ¼ V−1. One more
eigendecomposition,

ffiffiffiffiffiffiffiffi
Λ−1

p
V⊺ΣenV

ffiffiffiffiffiffiffiffi
Λ−1

p
¼ V̂ Λ̂ V̂⊺, ena-

bles us further transform Σr as

Σr ¼ V
ffiffiffiffi
Λ

p
V̂ðΛ̂þ rIÞV̂⊺

ffiffiffiffi
Λ

p
V⊺

¼ V
ffiffiffiffi
Λ

p
V̂ðΛ̂þ rIÞðV

ffiffiffiffi
Λ

p
V̂Þ⊺: ðC2Þ

Here we can obtain the inverse matrix Σ−1
r at little cost,

using the orthogonality of V and V̂. And more beautifully,
all the matrices V, Λ and V̂; Λ̂ have no r dependence;
hence, we obtain the inverse covariance matrix as a
function of r at the same computation cost of a single
inverse matrix computation.
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