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Recent observations of gravitational waves motivate investigations for the existence of primordial black
holes (PBHs). We propose the observation of gravitational microlensing of distant quasars for the range of
infrared to the submillimeter wavelengths by sublunar PBHs as lenses. The advantage of observations in
the longer wavelengths, comparable to the Schwarzschild radius of the lens (i.e., Rsch ≃ λ) is the detection
of the wave optics features of the gravitational microlensing. The observation of diffraction pattern in the
microlensing light curve of a quasar can break the degeneracy between the lens parameters and determine
directly the lens mass as well as the distance of the lens from the observer. We estimate the wave optics
optical-depth, also calculate the rate of ∼0.1 to ∼0.3 event per year per a quasar, assuming that hundred
percent of dark matter is made of sublunar PBHs. Also, we propose a long-term survey of quasars with the
cadence of almost one hour to few days to resolve the wave optics features of the light curves to discover
PBHs and determine the fraction of dark matter made of sublunar PBHs as well as their mass function.
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I. INTRODUCTION

Observations of type Ia supernova [1–4], cosmic micro-
wave background (CMB) radiation [5,6] and baryon
acoustic oscillation (BAO) [7,8] indicate that around
25% of matter content of the universe is made of dark
matter (DM). There are many scenarios to explain the
nature of DM and one of the models proposes DMmight be
composed totally or partially by the primordial black holes
(PBHs) [9–11].
There are several mechanisms to explain the formation of

PBHs including sharp peaks in density fluctuations [12],
phase transitions [13], resonant reheating [14], tachyonic
preheating [15] and curvaton scenarios [16–18]. PBHs
smaller than about 1012 kg should have already evaporated
through the Hawking radiation [19,20]. However, the
massive PBHs, are unaffected by the Hawking radiation
might have various cosmological consequences, such as
seeds for supermassive black holes [21], generation of the
large-scale structures [22] and affects on the thermal and
ionization history of the universe [23].
The observations for searching theMassive Astrophysical

Compact Halo Objects (MACHOs) by gravitational micro-
lensing and femtolensing of γ-ray bursts excluded PBHs in
the mass range of ∼10−7 M⊙–1 M⊙ and 1014–1017 kg
[24,25]. However, assuming an extended mass function
for the compact objects, it seems that various observational
data along with the dynamical constraints are consistent
withPBHs as the darkmatter candidatewithin themass range
of 10 M⊙ < M < 103 M⊙ and/or 1017 kg < M < 1021 kg
[26,27]. The latter range for the PBHs is convenient to be

written in terms of lunar mass, roughly as 10−6 < M̄ < 10−2

(assuming the lunar mass of Mm ∼ 7 × 1023 kg) where
M̄ ¼ M=Mm.
Gravitational lensing provides an exceptional tool for

investigating the astrophysical phenomena including indi-
rect detection of the compact objects [28]. The light
deflection in gravitational lensing depends on the configu-
ration of the lens mass distribution and might produce
several images. The term of gravitational microlensing is
used when the images from the lensing cannot be resolved
by the conventional telescopes. In this case, the result of
lensing is the magnification of light receiving from the
source star. Taking into account the relative motion of the
lens, source and the observer results in a bell shape light
curve, the so-called Paczynski light curve [29]. In recent
years, microlensing has been used for discovering extra-
solar planets [30–34], investigating the properties of a
distant source stars [35–39] and studying the structure of
the Milky Way galaxy [40]. Moreover, in the cosmological
scales, the gravitational microlensing provides a useful
method for studying compact objects.
The quasar microlensing in the cosmological scales uses

the caustic crossing of an ensemble of lenses [41] for
studying the distribution of stars and micro-halos around
the galaxies [42,43]. The possibility of detection of
PBHs have been studied through observation of quasars
in x-ray [44] and they found no candidate in the mass range
of 0.05 M⊙ < M < 0.45 M⊙. Also, some microlensing
observation of quasars has been done in the survey mode
where the aim was the detection of the caustic crossing of
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the lenses in the halo of the strong lensed galaxies [45,46].
All these observations have been done in the optical and
shorter wavelengths. Here, we propose extending obser-
vations to the infrared and millimeter wavelengths where
effects of wave optics is important in the light curve of
sublunar mass lenses. The advantage of wave optics is that
we can obtain more information about the parameters of
lenses compared to the geometric microlensing. From the
observational point of view, Spitzer space-based telescope
and the Atacama Large Millimeter/Submillimeter Array
(ALMA) are ideal tools for studying the light curve of
quasars in our desired wavelengths [47–49].
In Sec. II we introduce the gravitational microlensing in

the geometric optics regime. In Sec. III, we introduce the
wave optics feature of gravitational microlensing and
calculate the diffraction pattern from the scattering of the
electromagnetic wave from a PBH on the observer plane. In
Sec. IV, we study the observational features of the dif-
fraction of light from a PBH as a lens as well as we
calculate the optical depth for the observation of this event.
Conclusions are given in Sec. V.

II. GEOMETRIC MICROLENSING

The standard gravitational lensing formalism uses the
geometric optics for the limit of λ ≪ Rsch, where λ is the
wavelength of the light and Rsch is the Schwarzschild radius
of the lens. However, when λ ≈ Rsch, the wave optics
features of lensing such as interference of the light from
different images produces the interference pattern on the
observer plane. The relative motion of the observer with
respect to the fringes results in a time variation in the
intensity of light where the timescale and the amplitude of
these fringes provide more information compared to that of
geometric optics. The diffractive gravitational lensing has
been studied for a system with a galaxy as a lens and a point
radio source [50]. Following this work, the caustic-crossing
of quasars in the wave optics regime has been investigated,
where they put a limit on the size of quasars [51]. The wave
optics aspect of microlensing with a substellar mass lens,
like a free-floating planet in the galaxy, have been studied
in a series of papers [52–54]. Also, Mehrabi and Rahvar
[55] investigated the wave optics features for a binary
lensing system near the caustic lines.
The gravity of a lens deflects light ray from a distant

source and this deflection produces multiple images from a
single source. It is more convenient to write the lens
equation in terms of angular scales [56]:

β ¼ θ − αðθÞ; ð1Þ

where β and θ are the source and the image positions and
αðθÞ is the deflection angle. Notice that all angles are
normalized to the Einstein-angle

θE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rsch

Ds

1 − x
x

s
; ð2Þ

where x ¼ Dl=Ds is the ratio of the comoving distance of
the lens to the comoving distance of the source and DðzÞ in
ΛCDM model is given by

DðzÞ ¼ c
H0

Z
z

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p : ð3Þ

In the geometric optics limit, after solving Eq. (1), one can
find the corresponding map between the source position to
the image positions. The Jacobian of transformation in
the equation of θ ¼ θðβÞ, provides the ratio of areas in the
image space to the source space which is equivalent to the
magnification in the gravitational microlensing.
In what follows, we concern the wave optics regime of

the gravitational microlensing by considering the interfer-
ometry of the light rays. It is convenient to use the Fermat
potential for the light ray which is proportional to the time
delay between a given trajectory and a straight path. The
Fermat potential for a generic lens is given by

ϕðθ; βÞ ¼ 1

2
ðθ − βÞ2 − ψðθÞ; ð4Þ

where ψðθÞ is the gravitational potential in 2D and is
defined on the lens plane as

ψðθÞ ¼ 1

π

Z
Σðθ0Þ
Σcr

ln jθ − θ0jd2θ0; ð5Þ

and ΣðθÞ is the surface mass density of the lens and the
critical mass density is given by

Σcr ¼
c2

4πGDlð1 − xÞ :

The lens equation gives rise from the Fermat principle,
∇θϕðθ; βÞ ¼ 0, and in terms of the Fermat potential, the
deflection angle in Eq. (1) is given by αðθÞ ¼ ∇ψðθÞ.

III. DIFFRACTIVE MICROLENSING

In wave optics limit where the time delay between
trajectories from a source to observer is less than a period
of light, the light rays can be considered temporally
coherent and the result is the production of the interference
pattern on the observer plane. Under condition where the
source and deflector are far from the observer, we can use
the Huygens-Fresnel principle for analyzing gravitational
lensing. Then, every point on the lens plane can be taken as
a secondary source and the amplitude of the electromag-
netic wave at each point on the observer plane is the
superposition of the light from various sources on the lens
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plane. This analysis can be done for a point source,
however, for an extended realistic source the amplification
is calculated by the superposition of the infinitesimal
incoherent sources. Finally, multiplying the superposition
of the electromagnetic wave by its complex conjugate
results in the magnification on the observer plane. The
magnification for a point source [57] is given by

μðβ; kÞ ¼ f2

4π2

����
Z

eifϕðθ;βÞd2θ
����
2

; ð6Þ

where f ¼ 2kRsch and k is the wave-number. ϕðθ; βÞ is the
Fermat potential for a single lens and is given by:

ϕðθ; βÞ ¼ 1

2
ðθ − βÞ2 − ln jθj: ð7Þ

Substituting Eq. (7) in Eq. (6), the magnification is given
as follows

μðβ; fÞ ¼ π f
2

sinhðπ f
2
Þ e

πf
2

����1F1
�
1 − i

f
2
; 1; i

fβ2

2

�����
2

; ð8Þ

where 1F1ða; b; xÞ is the confluent hypergeometric func-
tion [57]. Figure 1 presents the magnification in terms of β
for different values of f. The diffraction pattern is observ-
able when λ ≈ Rsch [i.e., f ≃Oð1Þ]. By increasing f
(smaller wavelength or massive lens), the fringes shrink
and the diffraction pattern converge to the geometric optics
magnification.
To simplify Eq. (8), we expand the Fermat potential in

Eq. (7) around the critical point of (θ ¼ 1, β ¼ 0) where
according to Fig. 1, the light curve has peak around it, as
follows:

ϕðθ; βÞ ¼ θ2 − 2θ − θβ cos γ; ð9Þ

where polar coordinate ðθ; γÞ is used on the lens plane.
Then, from Eq. (6) the magnification simplifies to

μðβ; kÞ ¼ πfJ20ðfβÞ; ð10Þ

where J0 is the Bessel function of the first kind. We note
that the relative difference of magnification from Eq. (10)
compare to the exact equation is less than 1% for sources
with β < 0.5 and this difference decreases rapidly when the
source moves toward the lens position (i.e., β → 0). In
practice, it is possible to observe the light curve in two
different wavelengths say λ1 and λ2. In this case, the relative
magnification is given by

μ1
μ2

¼ λ2
λ1

J20ðf1βÞ
J20ðf2βÞ

; ð11Þ

where close to the maximum magnification, using the
series of J0ðxÞ ≈ 1 − x2

4
þ x4

64
, Eq. (11) simplifies as

μ1
μ2

¼ λ2
λ1

1 − 1
2
ðf1βÞ2 þ 3

32
ðf1βÞ4

1 − 1
2
ðλ2λ1Þ2ðf1βÞ2 þ 3

32
ðλ2λ1Þ4ðf1βÞ4

: ð12Þ

In this case the right-hand side of this equation is a function
of f1βðtÞ where from the measurement of μ1 and μ2 as a
function of time, we can extract f1βðtÞ. This parameter
depends on the lensing parameters as follows:

f1βðtÞ ¼ f1

�
u20 þ

�
t
tE

�
2
�1

2

; ð13Þ

where u0 is the minimum impact parameter and tE is the
Einstein-crossing time. From the observation of a micro-
lensing event in the regime of geometric optics (i.e.,
λ ≪ Rsch), we can extract u0 and tE. On the other hand,
knowing the left-hand side of Eq. (13) from the wave optics
and right-hand side from the geometric optics at t ¼ 0, we
determine directly f1 or mass of the lens. We note that
unlike to the geometric optics, the mass of lens determine
from this method is independent of the distance of lens and
source as well as their relative velocities with respect to the
observer.
In reality, quasars as the source in the lensing have finite

sizes and this effect should be taken into account in the
wave-optics calculation. For a given source, the total
magnification is calculated by integrating over all individ-
ual elements on a source where these elements are
independent and incoherent. Then the magnification of
an extended source [55] is given as

μðβ; ρ; kÞ ¼
Z
s<ρ

IwðβÞμðβ; kÞd2s
IwðβÞd2s

; ð14Þ

where IwðβÞ is the surface brightness of the source (that
might depends on the wavelength) and ρ ¼ θs=θE is the
angular size of source normalized to the Einstein angle.
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FIG. 1. Magnification of a point source for varies values of f.
The solid red, dot-dashed blue, and dashed green lines represent
the magnification for f ¼ 5, 10, and f ¼ 15, respectively.
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Here the integration in Eq. (14) is taken over the source area
(i.e., s < ρ).
In Fig. 2, we depict the magnification in terms of β for

three sources with different sizes in the wave-optics regime.
For the small sources, the magnification resembles a point
source in the wave-optics regime and by increasing the
source size, the fringes are smeared out and the magnifi-
cation looks like the geometric optics. The distance
between the fringes for a point-lens is Δβ ¼ 2π=f [57]
and for a typical extended source with ρ > Δβ, fringes
smear out due to integration over a highly oscillating
function. Hence, the fringes are observable only for the
extended source that satisfies the condition of ρ < Δβ.
Summarizing this part, in the wave optics regime fringes for
an extended source can be produced under the following
condition of

θs <
1

2

λ

Rsch
θE; ð15Þ

where taking into account the redshift of deflector at zd, this
condition can be written as

θE > 2θsð1þ zdÞRsch=λobs; ð16Þ

where λobs is the wavelength of observation. Also, since
θE ∝

ffiffiffiffiffi
M

p
and Rsch ∝ M, the detection of fringes is in favor

of small mass PBHs.
Now, let us assume the lens mass to be in the range of

10−6 ≲ M̄ ≲ 10−2. Then we rewrite the wave optics param-
eter of microlensing f, as follows

f ¼ 4πð1þ zdÞ
Rsch

λobs
¼ 4πð1þ zdÞ

�
λobs

0.1 mm

�
−1
M̄: ð17Þ

In the case of strong lensing of a quasar by a galaxy, it is
more likely that PBH resides in the halo of the lensed
galaxy, which allows us to measure the redshift of lens and
from Eq. (17) directly obtain the mass of PBH.We note that
we had also another method of mass measurement from
Eq. (12), if we use at least two different wavelengths for the
observation.
There are other observables in the geometric optics that

can be used for breaking the degeneracy between the lens
parameters. Let us take the finite size effect in the geometric
optics which smoothes the peak of a light curve [58–60].
Knowing the physical size of a quasar as a source from the
astrophysical information, from the finite-size effect, we
can extract the projected Einstein radius on the source plane
(i.e., RðsÞ

E ¼ θEDs) as

RðsÞ
E ¼ 1.65 A:U:

�
Ds

6 Gpc

�
1=2

�
1 − x
x

�
1=2

M̄1=2; ð18Þ

where in this case we assume a source at redshift z ≈ 3. We
can combine Eq. (18) with the parameter f ¼ 2kRsch from
the wave optics observations to obtain the distance of the
lens as well as its mass.

IV. OBSERVATIONAL PROSPECT
AND OPTICAL DEPTH

From observational point of view, the cadence between
the data points in the light curve of a quasar should be small
enough to measure the oscillations due to the diffraction
pattern in the light curve. In order to estimate the time scale
between the fringes, we use Δβ where in terms of f in
Eq. (17) is given by

Δβ ¼ 2π

f
¼ 1

2

λobs
0.1 mm

1

1þ zd

1

M̄
: ð19Þ

By multiplying Δβ to the Einstein crossing time of lens, tE,
the timescale for the transit of fringes can be obtained. The
Einstein crossing time for typical parameters of a lens with
lunar mass at the cosmological distances is

tE ¼ 5.7d

�
Ds

6 Gpc

�
1=2

�
1 − x
x

�
1=2

M̄1=2

�
500

vt

�
; ð20Þ

where vt is the relative transverse velocity of the lens-
source-observer, which is ∼1000 km=s for a rich cluster
and ∼200 km=s in the galactic scales. Hence, the timescale
for transit of fringes (i.e., Δt ¼ tEΔβ) is given by
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FIG. 2. Magnification of a uniform luminous source as a
function of β for f ¼ 10. The solid red, dot-dashed blue, and
dashed green lines show the magnification for ρ ¼ 0.01, ρ ¼ 0.08
and ρ ¼ 0.15, respectively. By increasing the size of source, the
incoherent light of the source results in magnification pattern
converge to the geometric optics limit profile.
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Δt ¼ 2.9d

�
λobs

0.1 mm

�
1

1þ zd

�
Ds

6 Gpc

�
1=2

×

�
1 − x
x

�
1=2

�
500

vt

�
M̄−1=2: ð21Þ

For a lunar mass PBH located at the distance zd ∼ 1 and
wavelength of λobs ¼ 100 μm, we have Δβ ∼ 10−1 and the
time scale of fringe-transit is of the order of ∼1.5 days.
According to (21), the transit time is proportional to the λ
and decreases for shorter wavelengths. For PBHs in the
mass range of 10−6 < M̄ < 10−2 the timescale of fringe-
transit is within the range of 15d < Δt < 4 yr.
One of the important technical issues in the observations

of quasars is the filtering of intrinsic variabilities compare
to the diffraction signals. For a quasar with the variability
timescale shorter or in the same order of fringe transit
timescale, it is difficult to filter out the background signals.
Some of the quasars with very rapid variabilities have been
detected in the timescales shorter than hours to minutes,
so-called microvariability [61]. One solution is to survey
those quasars with the low variabilities. The other pos-
sibility is to study the quasars in the strong lensing systems
and remove any intrinsic variations in the light curve by
shifting the light curves according to the time delay
between the images [41]. This method in recent years is
used for detecting microlensing signals in the geometric
optics regime [46,62,63].
In order to estimate the number of detectable events, we

calculate the microlensing optical depth for detection of
PBH. The optical depth [28,42] is defined by

τ ¼
Z

πR2
EnðM; zÞc dt

dz
dz; ð22Þ

where nðM; zÞ is the number density of PBHs and it follows
the spatial clustering of the cold dark matter. For the lower
redshifts, the optical depth is a function of the direction of
line of sight, depending on the cosmic density perturbations
that cross the line of sight. However, for quasars at the
higher redshifts, we can take almost a uniform number
density of PBHs that is proportional to the dark matter
density of the universe. This assumption has been carefully
investigated in [64], where by considering 6 different
models for halos and subhalos, for quasars at higher
redshifts (i.e., z > 0.25) the optical depth from the clus-
tered and uniform distribution of lenses converge. Here, we
assume a uniform distribution for the density of PBHs in
the optical depth calculation.
For a uniform distribution of PBH, we define a new

optical depth, so-called the wave optics optical depth by τw
where in ΛCDM, it is given by

τw ¼ 3

2

DH

Ds
Ωpbh

Z
zmax

0

ð1þ zÞ2ðDs −DlÞDldzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p ; ð23Þ

whereΩpbh is the density parameter of PBHs andDH is the
present horizon size of universe. The difference between
this definition with the conventional optical depth is that in
this equation, zmax is not assigned to the position of the
quasar while that is the largest distance for a lens that
satisfies the detection of the wave optics condition
(ρ < Δy). Moreover, in the geometric optics τ is indepen-
dent of the mass function of the lenses and it depends on the
overall mass density of the lenses. However, for the wave
optics regime, the optical depth depends on the mass of lens
as well as zmax. In Fig. 3 we plot the optical depth in unite of
Ωpbh for three different values of the source sizes. In this
plot, we consider the concordance cosmology model of
Ωm ¼ 0.3, h ¼ 0.7 and put the source at the redshift z ¼ 3.
As it is expected, the small mass PBH and small size
sources are in favor of wave optics microlensing detection.
For a lunar mass PBH, the optical depth is very small,

however it grows rapidly by decreasing the mass of lenses.
For the case of M̄ ≪ 1, from Eqs. (21) and (20), tE ≪ Δt
and we take Δt as the corresponding timescale for the
microlensing events in the wave optics regime instead of tE.
Now we define the rate of events in the regime of wave
optics microlensing as

Γw ¼ 2

π

τw
Δt

; ð24Þ

where both τw and Δt depend on the mass of PBH.
Assuming Dirac-delta function for the mass function of
PBHs, in Fig. 4 the rate of events per year is depicted as a
function of M̄. In Eq. (24), the optical depth increases for
the smaller masses. On the other hand Δt also increase for

FIG. 3. The wave optics optical depth as a function of PBH
mass for sources with the size of 50 AU (solid blue line), 100 AU
(dashed red line), and 150 AU (dot-dashed green line). Here we
consider concordance ΛCDM with Ωm ¼ 0.3, h ¼ 0.7 and use
λobs ¼ 100 μm. While for a lunar mass PBH the optical depth is
negligible, for the smaller PBH the optical depth is larger. In
addition, the optical depth increases by decreasing the size of
source.
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the smaller masses with the factor of M̄−1=2, so the ratio of
these two terms in (24) results in a peak as depicted in
Fig. 4. For a given quasar, the number of detectable events
is Nobs ¼ ΓTobs, where Tobs is the duration of observation.
Let us take a quasar with the size of 50 AU, then from
Fig. 4, we expect to detect Nobs ≃ 0.9 Ωpbh=yr for PBHs
with M̄ ∼ 10−3 and Nobs ¼ 0.3 Ωpbh=yr for the sources
with the radius rs ¼ 100 AU. Now if hundred percent of
the dark matter is made of PBHs (i.e., Ωpbh ¼ 0.3), all with
the mass of M̄ ∼ 10−3, we expect to detect 0.27 and 0.09
event per year, respectively. Also for this mass, Eq. (21)

provides Δt ≃ 46 d and a cadence in the observation of
light curve with one day can reveal the oscillation mode of
diffraction pattern.
Let us define the contribution of PBH on the density of

dark matter as fpbh ¼ Ωpbh=Ωm. Then we also define the
parameter of dfpbh=dM̄ which provide the fraction of dark
matter in form of PBHs within the range of ðM̄; M̄ þ dM̄Þ.
This function can be measured by a long-term survey of
quasars with cadence of order of ∼days. Figure 5 demon-
strates the simulation of data points for a microlensing
event with the parameters of tE ¼ 10 hr, ρ ¼ 0.1, u0 ¼
0.05 and M̄ ¼ 0.007. Here we adapt the wavelength of λ ¼
2 μm which results in the transit time scale of fringes of
order of a few hours. We assumed a photometric signal to
noise ratio of S=N ¼ 50 and recover the parameters of light
curve, using the Markov chain Monte Carlo method. The
best values of parameters with 1-σ uncertainty for the light
curve in Fig. 5 are given in Table I. The maximum
magnification for this light curve is around ∼17 and
increases rapidly by decreasing u0 and ρ. We note that
the ratio of light in the antinodes to the nodes (where
Anode → 0) of the interference pattern in Fig. 5 is a large
number, much larger than the intrinsic variations of a
quasar which is about∼50% [65]. So, once we have enough
photometric accuracy and the cadence shorter than the
interference crossing timescale, we can detect our desired
signals.

V. CONCLUSION

Summarizing this work, we have proposed a new method
for the microlensing observation of quasars from the far
infrared to the millimeter wavelengths. For the small mass
lenses where the Schwarzschild radius of the lens is of the
order of the wavelength of observation, the gravitational
lens can produce distortions on the wavefront of the light in
the order of one wavelength. Since the lens and the source
are far enough from the observer, this situation is similar to
the Huygens-Fresnel approximation and the result is the
diffraction pattern from the phase-shifted electromagnetic
wave on the lens plane. A relative motion of the observer
through the diffraction pattern on the observer plane
produces a modulation in the light curve of the quasar.
One of the problems with this wave-optics microlensing
observation would be the intrinsic variations of quasars that

FIG. 4. The number of expected events per year as a function of
PBH mass. Here the wave length of the observation is adapted
λobs ¼ 100 μm and the rate is plotted for three different size of
sources as 50 AU (solid blue line), 100 AU (dashed red line) and
150 AU (dot-dashed green line). We note that τw is larger for the
smaller PBHs as zmax is getting larger and the optical depth is
larger for the smaller mass from Fig. 3. On the other hand Δt also
is getting larger to the smaller PBHs. So the ratio of these two
terms in (24) is a function of mass and has a peak for the rate of
number of events as depicted in this figure.

FIG. 5. Simulated data points and the best fit model for a
typical event. Here we use tE ¼ 10 hr, ρ ¼ 0.1, u0 ¼ 0.05,
M̄ ¼ 7 × 10−3 and λ ¼ 2 μm to simulate data points.

TABLE I. The best fit parameters with 1-σ confidence level
recovered from the fitting to the light curve in Fig. 5, using the
Markov chain Monte Carlo method.

Parameter 68% limits

tE 10.035� 0.036
u0 0.0557� 0.0033
ρ 0.09995� 0.00070
M̄ 0.007027� 0.000025
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might be mixed with our desired signals. In order to solve
this problem, we suggested the observation of quasars with
the multiple images from the strong lensing. The advantage
of using these quasars is that by shifting the time delay
between the images, we can remove the intrinsic variations
of the quasar and extract our desired signals.
We suggested the observation of wave-optics micro-

lensing in two different wavelengths. This technic enable us
to measure directly the mass of a lens. Also with single
wavelength observation, from the measuring the redshift of
the strong lensing galaxy and the redshift of the source, we
can break the degeneracy between the lens parameters and
extract the mass of lenses. One of the possible candidates
for the dark matter is the PBHs in the mass range smaller
than the lunar mass. In this work, we proposed the
observation of quasars with suitable cadence and photo-
metric accuracy to observe the transit of the fringes in the
diffraction pattern by the observer. The optical depth and
the rate of events depend on the fraction of dark matter

made of PBHs as well as the mass of the PBHs. Assuming
the mass of PBHs in the order of 10−3 lunar mass and
hundred percent of dark matter is made of PBHs, we
obtained the rate of event detection per year for a given
quasar within the range of ∼0.1 to ∼0.3. The wave-optics
quasar microlensing can put a constraint on the fraction of
dark matter made of PBHs as well as the mass function of
PBHs. A long term survey of quasars by the infrared
telescopes such as Spitzer space-based telescope or milli-
meter and submillimeter wavelength ground-based tele-
scopes such as ALMA was suggested for this project.
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