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Upcoming cosmic microwave background (CMB) surveys will soon make the first detection of the
polarized Sunyaev-Zel’dovich effect, the linear polarization generated by the scattering of CMB photons on
the free electrons present in collapsed objects. Measurement of this polarization along with knowledge of the
electron density of the objects allows a determination of the quadrupolar temperature anisotropy of the CMB
as viewed from the space-time location of the objects. Maps of these remote temperature quadrupoles have
several cosmological applications. Herewe propose a new application: the reconstruction of the cosmological
reionization history. We show that with quadrupole measurements out to redshift 3, constraints on the mean
optical depth can be improved by an order of magnitude beyond the CMB cosmic variance limit.
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I. INTRODUCTION

The cosmological reionization history is a target of
considerable scientific interest and also a source of uncer-
tainty for interpreting measurements of the cosmic micro-
wave background (CMB) anisotropies. Reionization is
perhaps the only time that luminous sources directly and
drastically altered the state of the entire Universe, as they
converted the cold and neutral intergalactic medium to a
warm and highly ionized one. Current knowledge of the
reionization history is very limited. In addition to quasar
absorption [1] and 21-cm [2] measurements, primary and
secondaryCMBanisotropyobservations have begun to place
constraints on the timing and duration of the reionization.
The current best constraint on the optical depth comes from
an analysis of the data obtained with the Planck satellite,
giving τ ¼ 0.058� 0.012 [3]. The South Pole Telescope
team found evidence for the kinetic Sunyaev-Zel’dovich
angular power spectrum at 2σ [4], which when combined
with the mean optical depth measurement, implies a median
reionization redshift of 7.8 and duration less than 2.8 in
redshift (95% upper limit) [3].
One of the primary scientific goals of next-generation

cosmological surveys is an absolute measurement of the sum
of neutrinomasses. Thismeasurement ismade by comparing
the primordial amplitude of density fluctuations with the
amplitude at recent times. In order to determine the primor-
dial amplitude from observations of CMB anisotropies, one

must break the existing degeneracy with the mean optical
depth due to reionization, τ [5,6]. Given the planned
configurations of upcoming CMB experiments and large-
scale structure surveys, an error on the optical depth of about
σðτÞ≲ 0.005 is required in order to achieve a 3σ detection of
the sum of neutrino masses in the case of a normal hierarchy
with a single nearly massless eigenstate, i.e., σðPmνÞ ≤
0.02 eV [7].
The degeneracy between the primordial amplitude and

the optical depth can be broken with a measurement of
large-scale E-mode CMB polarization, which is generated
during reionization and as such is directly proportional to
the optical depth [8]. Direct measurements of large-scale
E-mode polarization are challenging due to astrophysical
foregrounds and instrumental systematics, and observa-
tions from the ground face additional complications asso-
ciated with the atmosphere. Proposed observations from
space [9–11] and ongoing observations from the ground
[12] aim to improve the measurements of large-scale CMB
polarization measurements. Alternative measurements have
been proposed to constrain the optical depth [13,14], but
these proposals face their own limitations and systematic
uncertainties, and it remains to be seen if these methods
will prove successful. Besides, even with perfect measure-
ments of CMB polarization, our ability to constrain the
optical depth with large-scale E modes is hampered by the
limited number of independent modes, a problem which
is exacerbated when only a fraction of the sky can be
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sufficiently cleaned. The error achievable with cosmic-
variance-limited measurements of large-scale CMB polari-
zation on the whole sky is σðτÞ ≃ 0.002 [7].
In this paper we propose a method whereby one can

circumvent the limitations imposed by sample variance in
order to better constrain the reionization history, and thus
the mean optical depth τ. CMB polarization is generated by
the Thomson scattering of CMB photons by free electrons
in the presence of quadrupolar anisotropy of the incoming
flux [15,16]. Typical analyses assume only statistical
knowledge of the fluctuations responsible for generating
quadrupolar anisotropy. However, direct measurements of
remote quadrupoles can be achieved by measuring the
polarized Sunyaev-Zel’dovich (pSZ) effect [17]. Free
electrons present in collapsed objects such as galaxies
and galaxy clusters scatter CMB photons, inducing a linear
polarization which is proportional to the projected quad-
rupolar temperature anisotropy of the CMB as viewed from
the space-time location of the object [18–21]. Thus,
measuring the polarization in the direction of the object
allows a determination of two components of the remote
temperature quadrupole if the Thomson optical depth of the
object can be inferred independently. The field of remote
quadrupoles has a very large coherence length, implying
that remote quadrupoles at relatively low redshifts are
correlated with the temperature quadrupoles present at
reionization. Cross-correlating maps of remote temperature
quadrupoles with CMB E-mode polarization on large
scales thereby allows for improved constraints on the free
electron density as a function of redshift. See Fig. 1 for a
schematic illustration of the geometry.
Previous studies have shown that remote quadrupole

measurements could be used to achieve independent
measurements of large-scale fluctuations, thereby lowering
cosmic variance on these modes [17] which provides a
potentially useful probe of large-scale CMB anomalies
[22,23]. Observing the redshift evolution of remote quadru-
poles can also be used as a probe of late-time structure
formation and thus dark energy [22,24]. Turning things
around, we can also use our knowledge of the local
temperature quadrupole in combination with the pSZ signal
generated in nearby objects to determine the optical depth,
and thus the baryon content, of the objects [25]. The
statistics of remote quadrupoles have been well studied
analytically [26,27] and in simulations [28,29]. The pSZ
effect has not yet been observed, but it should be detectable
with upcoming CMB and galaxy surveys [30–32], encour-
aging further exploration of this observable as a probe of
cosmology.

II. REMOTE QUADRUPOLES

In this section, we review the formalism and statistics
of remote quadrupoles following Refs. [27,30]. The
complex CMB polarization along a direction n̂ can be
written as [33]

ðQ� iUÞðn̂Þ ¼
Z

η⋆

η0

dη_τðηÞe−τðηÞp�ðn̂; ηÞ; ð1Þ

where η is the conformal time, with η0 today, and η⋆ is the
conformal time of last scattering. The polarization source
function is given by

p�ðn̂; ηÞ ¼ −
ffiffiffi
6

p

10

X
m

∓2Y2mðn̂ÞT2mðn̂; ηÞ; ð2Þ

where T2mðn̂; ηÞ is the temperature quadrupole1 at con-
formal time η. The polarization can be expanded in spin-2
spherical harmonics as [34]

ðQ� iUÞðn̂Þ ¼
X
ℓm

ðEℓm ∓ iBℓmÞ∓2Yℓmðn̂Þ: ð3Þ

Similarly, the polarization due to scattering in an object
of optical depth δτ at redshift z along direction n̂ is given
by [27,30]

ðQ� iUÞðδτÞðn̂Þ ¼ δτðn̂; ηðzÞÞp�ðn̂; ηÞ; ð4Þ

which can be expanded in spin-2 spherical harmonics as

ðQ� iUÞðδτÞðn̂Þδτ−1ðn̂; ηðzÞÞ
¼

X
ℓm

ðpE
ℓmðηÞ ∓ ipB

ℓmðηÞÞ∓2Yℓmðn̂Þ: ð5Þ

In the presence of purely scalar fluctuations the CMB
polarization produced by scattering on the mean density of
free electrons contains only E modes (Bℓm ¼ 0), and the
remote quadrupoles have the parity properties of E-mode
polarization (pB

ℓm ¼ 0). Note, however that polarization
resulting from the pSZ effect contains both E and Bmodes,
due to the spatial variations of the optical depth induced by
the objects [35–37]. We will assume vanishing tensor
fluctuations and drop the E superscript on pℓm from here
on. With this assumption, the coefficients are given by

pℓmðηÞ ¼ −iℓ3π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℓþ 2Þ!
ðℓ − 2Þ!

s

×
Z

d3k

ð2πÞ3=2
jℓðkηÞ
ðkηÞ2 Δ2ðk; ηÞΦðkÞY�

ℓmðk̂Þ: ð6Þ

Here, Φ is the three-dimensional gravitational potential of
the Universe, Δ2 is the cosmological transfer function for
ℓ ¼ 2 quadrupole anisotropies, and jℓ is the spherical
Bessel function.

1Note that when the incident radiation is polarized, T2m in this
expression should be replaced by T2m −

ffiffiffi
6

p
E2m, where E2m is the

E-mode quadrupole [30,33]. This is a very small correction at late
times, but we include it in our numerical analysis.
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We can now compute all of the relevant auto- and cross-
spectra including the remote temperature quadrupoles aswell
as the CMB temperature and E-mode polarization

hXℓmY�
ℓ0m0 i ¼ δℓℓ0δmm0CXY

ℓ ; ð7Þ

where X; Y ∈ fT; E; pðηÞg. At low redshift, the remote
quadrupole is strongly correlated with the observed CMB
temperature quadrupole, which has already been well mea-
sured; it thus does not provide new cosmological information
[27,30]. However, at higher redshifts, it is correlated with
CMB E-mode polarization generated during reionization,

making CEpðηÞ
ℓ sensitive to the reionization history.

Since the polarization is sourced by the field of remote
temperature quadrupoles pðηÞ, the harmonic coefficients of
the CMB E modes can be written as

Eℓm ¼
Z

η⋆

η0

dηgðηÞpℓmðηÞ; ð8Þ

where we have defined the visibility function

gðηÞ ¼ _τðηÞe−τðηÞ; ð9Þ

which gives the probability that a CMB photon last scattered
at conformal time η for a spatially homogeneous universe.
It is clear from Eq. (8) that given sufficiently sensitive
measurements of the realizations of both CMB E modes
andpðηÞ, there should beno cosmic variance limit on gðηÞ, or
the total optical depth τ. This proposal is very similar to
combining observations of two tracers of large-scale struc-
ture in order to cancel cosmic variance on measurements of
the halo bias [38]. We will combine three-dimensional
measurements of pðηÞ with polarization maps. For each
distance ηi where we have a measurement of the remote
quadrupole field pðηiÞ, we will obtain some information
about the visibility function over a range of distances
centered on ηi. We can combine these measurements to
constrain the reionization history. The large coherence length
of the remote quadrupole field allows measurements of pðηÞ
even at redshifts much lower than the end of reionization,
z ∼ 6, to provide useful information about reionization.
In addition to the cosmic variance cancellation, mea-

surements of remote temperature quadrupoles provide a
very small amount of direct information regarding the
reionization history. The effect of reionization on the CMB
temperature is to suppress anisotropies on scales smaller
than the horizon at the redshift of reionization and to
produce some additional fluctuations around the same scale
due to Doppler scattering [39,40]. As can be seen in Fig. 2,
this dependence is weak, and the constraining power
demonstrated in the next section will be dominated by
the cancellation of cosmic variance described above.

III. FORECASTS

We now turn to what can be achieved with upcoming
experiments. First we will discuss the ability of upcoming
surveys to observe remote temperature quadrupoles through
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FIG. 1. The CMB polarization seen in the direction of a
collapsed object such as a galaxy cluster is proportional to the
optical depth due to free electrons in the object and the incident
temperature quadrupole seen from the space-time location of
the object, pcluster. The pSZ effect can be used to measure pcluster,
which is correlated with the quadrupole field incident on free
electrons during reionization, preion. The latter field is in turn
responsible for generating large-scale E modes in the CMB.
We can reduce cosmic variance on the reionization history by
taking advantage of this correlation.

FIG. 2. Power spectrum of E-mode polarization along with the
remote quadrupole autospectrum at three redshifts, each for
two values of the mean optical depth. Here we have defined
Dℓ ≡ ℓðℓþ 1ÞCℓ=2π.
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the measurement of the pSZ effect. We then discuss how
maps of CMB polarization and three-dimensional maps of
the remote quadrupole field can be combined to improve
constraints on the cosmological reionization history.

A. Observing remote quadrupoles

With a given catalog of objects at known redshifts and
with independently inferred optical depth profiles, one
could use an observed map of CMB polarization to make a
local estimate of the remote quadrupole field at the location
of each object. In the limit of many objects spread over
the sky this procedure becomes a quadratic estimator for
the spatially varying remote quadrupole field between the
observed CMB polarization and the independently inferred
optical depth fluctuations, similar to those performed on
the CMB to estimate gravitational lensing [41]. In the
Appendix, we derive this minimum variance quadratic
estimator and show that the variance on the reconstructed
field of remote quadrupoles on large scales is very nearly
white noise given by

NppðηÞ
L ¼

�Z
d2ℓ
ð2πÞ2 ρ

2
jℓ−LjðηÞCδτδτðηÞ

jℓ−Lj

× ðCEE;obs
ℓ cos2ð2ðϕL − ϕℓ ÞÞ

þCBB;obs
ℓ sin2ð2ðϕL − ϕℓ ÞÞÞ−1

�
−1
; ð10Þ

where ρℓðηÞ is the cross-correlation coefficient between the
independently inferred map of δτðηÞ and the actual optical
depth fluctuations at that conformal time, Cobs

ℓ refers to the
observed power spectrum including noise, and ϕℓ is
the angle that the wave number ℓ makes with respect to
the x axis.
In Fig. 3 we show the noise NppðηÞ

L for a set of CMB
experiments and for two simulation-based treatments of the
inferred electron density. We consider CMB surveys with a
1-arcminute beam across a range of noise levels, and
assume that CEE

ℓ and CBB
ℓ have both been delensed using

an internal estimate of the lensing field [42–46] which
helps to reduce the variance by reducing the power of
small-scale polarization. We use the simulations of

Ref. [47] to calculate CδτδτðηÞ
ℓ , and show the noise obtained

assuming an optimistic case of a measurement of all of the
ionized gas [ρℓðηÞ ¼ 1]. The same simulations are used to
isolate the electrons in halos that would be detected in a
futuristic CMB survey [ρℓðηÞ < 1], namely, those repre-
senting galaxy clusters exceeding a mass of M500 ¼
7 × 1013 M⊙ (see Fig. 4). Here, M500 is the spherical
overdensity mass with respect to the critical density of the
Universe. These simulations were run using GADGET-2 [48]
and include sub-grid models for radiative cooling, star
formation, supernova feedback, and active galactic nuclei
feedback. Halos in these simulations were first found using

a friends-of-friends algorithm [49]; then, for every halo,
new centers of mass were computed iteratively followed by
new spherical overdensity masses. The noise curves
shown in Fig. 3 depend on how we choose to bin δτðηÞ,
and we take bins of fixed width in redshift space with
Δz ¼ 0.5.

FIG. 3. Noise on the reconstructed remote quadrupole field
for various redshifts as a function of CMB noise assuming a
1-arcminute beam for the CMB survey and for two assumptions
about the independently inferred free electron density: using all of
the gas (solid) and using gas in halos ofmassM500 > 7 × 1013 M⊙
(dash-dot). In both cases, the gas is split into bins of width
Δz ¼ 0.5, and reconstruction is performed in each bin, though
we show the noise only at integer redshifts for clarity. We also plot
the powerCpp

ℓ predicted atℓ ¼ 2 for the same set of redshifts. Note
that for the CMB-S4 noise level of about 1 μK-arcmin, the remote
quadrupole field at ℓ ¼ 2 can be mapped at low redshift.

FIG. 4. The correlation coefficient ρ2ℓðηÞ of the inferred and true
CδτδτðηÞ
ℓ assuming only observation of clusters which will be

detected in a futuristic CMB survey, namely, those in halos with
M500 > 7 × 1013 M⊙. This correlation coefficient could be in-
creased by including measurements of lower-mass objects
detected in a galaxy survey, for example.
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B. Constraining reionization

We now wish to determine how including measurements
of remote quadrupoles impacts cosmological constraints.
After cleaning Galactic foregrounds, the observed E-mode
polarization of the CMB on large angular scales is
dominated by the polarization generated by the scattering
of remote temperature quadrupoles with the mean electron
density during reionization. Restricting ourselves to those
scales (ℓ≲ 20), the E-mode power spectrum is given by

CEE
ℓ ¼

Z
η⋆

η0

dη
Z

η⋆

η0

dη0gðηÞgðη0ÞCpðηÞpðη0Þ
ℓ ; ð11Þ

and the cross spectrum with the remote quadrupole field is
given by

CEpðη0Þ
ℓ ¼

Z
η⋆

η0

dηgðηÞCpðηÞpðη0Þ
ℓ : ð12Þ

Constraints on reionization can be obtained by comput-
ing the auto- and cross-spectra of given maps of E and pðηÞ
and taking account of the covariance among them. We can
forecast the constraints obtained from such a procedure by
computing the Fisher matrix defined as [50–52]

Fij ¼
X
ℓ

2ℓþ 1

2
fskyTr

�
C−1

ℓ

∂Cℓ

∂λi C
−1
ℓ

∂Cℓ

∂λj
�
; ð13Þ

with the covariance matrix Cℓ given by

Cℓ ¼

2
66666666664

CTT
ℓ CTE

ℓ … CTpðηnÞ
ℓ

CTE
ℓ CEE

ℓ … CEpðηnÞ
ℓ

CTpðη1Þ
ℓ CEpðη1Þ

ℓ … Cpðη1ÞpðηnÞ
ℓ

..

. ..
. . .

. ..
.

CTpðηnÞ
ℓ CEpðηnÞ

ℓ … CpðηnÞpðηnÞ
ℓ

3
77777777775
þ Nℓ ð14Þ

and the noise covariance is taken to be diagonal Nℓ ¼
diagðNTT

ℓ ; NEE
ℓ ; Npðη1Þpðη1Þ

ℓ ;…; NpðηnÞpðηnÞ
ℓ Þ. We use a modi-

fied version of the Boltzmann solver CAMB [53] to compute
the spectra appearing in Eq. (14), fixing ℓmax ¼ 20 for all
forecasts.
In Fig. 5, we show the forecasted 1σ error on the mean

optical depth τ, marginalized over the uncertainty on the
scalar amplitude As. The forecasts show that with suffi-
ciently precise measurements of remote temperature quad-
rupoles, the error on τ can be dramatically improved over
the cosmic variance limit of E-mode polarization alone.
It is possible to reduce the uncertainty on τ even if errors

on large-scale E-mode polarization do not improve over the
current best measurements from the Planck satellite. To
estimate this improvement, we approximated the Planck

noise by matching the systematic plus noise curve shown in
Fig. 2 of Ref. [3], and we show the result in Fig. 6.
Our ability to constrain reionization goes beyond

the mean optical depth. Following the methods of
Refs. [54,55], we compute the Fisher matrix for the binned
ionization fraction xeðzÞ using the public code from
Ref. [55], which we then decompose into principal compo-
nents.2 While the E-mode polarization alone can constrain

FIG. 5. Forecasted 1σ error on the mean optical depth τ, as a
function of the noise level on a 1-arcminute CMB survey used to
measure the pSZ effect on small angular scales, assuming
vanishing noise on large-scale E modes ℓ ≤ 20. Here we also
assume that the effects of lensing can be completely removed. We
show forecasts assuming knowledge of either all of the gas (solid)
or only of halos of mass M500 > 7 × 1013 M⊙ (dash-dot) out to
three choices of maximum redshift.

FIG. 6. Identical to Fig. 5 but with Planck-like noise on large-
scale E modes.

2Following Ref. [55], we allow the ionization fraction to vary
between zmin ¼ 6 and zmax ¼ 30, using a bin width of Δz ¼ 0.25,
and a fiducial model with xeðzÞ ¼ 0.15 in this range.
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at most five principal components (or independent pieces of
information) on the ionization history, we show in Fig. 7 that
remote quadrupole measurements allow us to constrain more
than twice as many principal components. Furthermore, the
signal to noise with which these principal components can be
measured can be increased by more than a factor of 5, as
shown in Fig. 8.

IV. DISCUSSION AND CONCLUSIONS

Wehave shown howmeasurements of remote temperature
quadrupoles can be used to probe the cosmic reionization
history. While the method we described has the potential to
greatly improve over measurements using the CMB alone,
obtaining sufficiently precise measurements of the remote

quadrupole field to realize this improvement will prove
challenging. No experiment has yet been able to detect the
pSZ effect, though the first detection should occur with
upcoming CMB and galaxy surveys.
Despite these limitations, our analysis clearly demon-

strates that remote quadrupole measurements are potentially
very useful for probing reionization. While we have focused
here on the pSZ effect to map out remote quadrupoles, there
are other methods which are capable of achieving the same
goal. For example, distant temperature quadrupoles result in
circular polarization of 21-cm photons [56]. The methods of
nonlinear reconstruction of large-scale modes, using their
gravitational influence on the statistics of small-scale density
fluctuations [57], could be used to map out the large-scale
modes which source remote temperature quadrupoles.
The objects we assumed for our forecasts corresponded

to massive clusters that would be found internally in a
futuristic CMB survey using the thermal Sunyaev-
Zel’dovich effect. It remains to be seen whether including
a catalog of lower-mass, more numerous objects—such as
optically- or infrared-selected galaxies—would approach
the optimistic case that we also calculated, namely, all of
the ionized gas to a given redshift. We also assumed that the
CMB survey aimed for a uniform noise over a wide patch
of sky; better results might be obtained from dedicated
microwave observations of polarization in the direction of
a small number of known objects [30].
We have neglected a number of effects which complicate

the simple forecasts we presented here, such as the addi-
tional variance that comes from polarization generated by
multiple scattering in objects, the kinematic quadrupole due
to their transverse motion relative to the CMB, and lensing
of background polarization by the halos hosting these
objects [22,30,58]. We have not included secondary
sources of polarization on small scales such as from patchy
reionization [36] or from polarized emission from galaxies.
A more careful treatment of the effect of incomplete sky
coverage is warranted, since the analysis on very large
angular scales is complicated by missing modes [37].
We have also neglected the additional uncertainty that

comes from the inference of the optical depth of the objects
from an external survey. This inference could be made, for
example, by using a galaxy survey and assuming that gas is a
biased tracer of large-scale structure; by relating the ampli-
tude of the thermal Sunyaev-Zel’dovich effect [59] or the
x-ray flux [60] in each object to the optical depth of the object
using a calibrated relationship; or by observing the screening
of CMB fluctuations by the objects [61]. Scatter of these
inferences about the true optical depth of the objects (due
either to measurement error or intrinsic scatter in a calibrated
relationship) increases the noise of the remote quadrupole
reconstruction by a factor which decreases as the square root
of the number of objects in the survey. A systematic offset
on these inferences would bias the reconstruction of the
remote quadrupole field, leading in turn to an offset on the

FIG. 7. Number of principal components of the redshift-
dependent ionization fraction xeðzÞ which can be constrained
with greater than 1σ precision with the same assumptions and
conventions as used in Fig. 5.

FIG. 8. Total signal to noise with which principal components
of the redshift-dependent ionization fraction xeðzÞ can be
measured with the same assumptions and conventions as used
in Fig. 5.
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determination of the mean optical depth. If the method to
obtain object optical depths is correlated across redshift bins,
nondiagonal terms will also appear in the noise covariance
matrix appearing in Eq. (14).
The determination of cosmological parameters which are

key targets of future cosmological surveys, such as the sum
of neutrino masses, will be limited by the uncertainty on the
mean optical depth [7]. Additionally, the epoch of reioni-
zation is an exciting frontier which marks the emergence of
the first luminous sources in our Universe. Understanding
the physical properties of these sources which reionized the
Universe requires measurements of the ionization history
[1,62,63]. We demonstrated that combining maps of remote
temperature quadrupoles with CMB polarization on large
angular scales can provide exquisite constraints on the
cosmic reionization history, far better than can be achieved
with the CMB alone.
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APPENDIX: REMOTE QUADRUPOLE
ESTIMATOR

In this appendix, we will derive the minimum variance
estimator of the remote quadrupole field, given maps of the
CMB polarization and of the electron density. Angular
scales relevant for remote quadrupole reconstruction are
sufficiently small that we can use the flat-sky approxima-
tion. We aim to construct an estimator of the form

p̂�ðn̂; ηÞ ∼ ½ðQðn̂Þ � iUðn̂ÞÞobsδτextðn̂; ηÞ�f; ðA1Þ

where Q and U are the Stokes parameters of the CMB
polarization, and δτextðn̂; ηÞ is the optical depth in direction
n̂ at a conformal look-back time η inferred from an external
survey. The subscript f refers to the filtering that will be
applied to the maps to minimize the variance of the
estimator. The derivation and results of this appendix are
very similar to those of Ref. [37], except we perform them
here for the flat sky.
The observed polarization in some direction n̂ contains a

“primary” piece which would be present even in the
absence of free electrons at the redshift of interest, a piece
that results from the scattering of the temperature quadru-
pole at the space-time location of objects containing free
electrons, and instrumental noise

ðQ� iUÞobsðn̂Þ ¼ ðQ� iUÞprimðn̂Þ
þ p�ðn̂; ηÞδτðn̂; ηÞ þ n�ðn̂Þ: ðA2Þ

We can express this in harmonic space using E and B
modes for both the observed polarization and the remote
quadrupole field, as in Eqs. (3) and (5),

ðQ� iUÞðℓ Þ ¼ ðE ∓ iBÞðℓ Þe∓2iϕℓ

p�ðℓ ; ηÞ ¼ ðpE ∓ ipBÞðℓ ; ηÞe∓2iϕℓ ; ðA3Þ

which gives

ðE ∓ iBÞobsðℓ Þ ¼ ðE ∓ iBÞprimðℓ Þ þ ðnE ∓ inBÞðℓ Þ

þ
Z

d2ℓ0

2π
ðpE ∓ ipBÞðℓ 0; ηÞ

× e∓2iðϕℓ 0−ϕℓ Þδτðℓ − ℓ 0; ηÞ: ðA4Þ

The independently inferred map of the optical depth
δτextðn̂; ηÞ will typically be incomplete, containing only the
contributions from objects which can be resolved in the
survey being considered. Notice that when the inferred map
is a subset of the true map (δτ ¼ δτext þ δτunobs with
hδτextδτunobsi ¼ 0), we find that

hδτextðℓ ; ηÞδτextðℓ 0; ηÞi ¼ hδτextðℓ ; ηÞδτðℓ 0; ηÞi
¼ δð2Þðℓ þ ℓ 0Þρ2ℓðηÞCδτδτðηÞ

ℓ ; ðA5Þ

where CδτδτðηÞ
ℓ is the power spectrum of the optical depth

due to all of the free electrons at the time of interest, and we
have introduced a cross-correlation coefficient ρ2ℓðηÞ ≤ 1,
which accounts for the incompleteness of the inferred map
of δτ. The cross-correlation coefficient is also reduced
when the inferred optical depth scatters about the true value
due either to observational noise or an intrinsic scatter in
the relationship between a given tracer of optical depth and
its true value.
We can compute the power spectrum of the optical depth

in a halo model as follows:

CδτδτðηðzÞÞ
ℓ ¼

Z
zmax

zmin

dz
dV
dz

Z
∞

0

dM
dn

dMdz
jτM;zðℓÞj2

þ Plin
m ðℓ; zÞ

�Z
zmax

zmin

dz
dV
dz

Z
∞

0

dM

×
dn

dMdz
bðM; zÞτM;zðℓÞ

�
2

; ðA6Þ

where dn
dMdz is the comoving number density of halos of

massM at redshift z, τM;zðℓÞ is the optical depth profile of a
given halo, and bðM; zÞ is the linear halo bias. The redshift
integral is performed over a bin which should be chosen to
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be small compared to the coherence length of the field of
remote quadrupoles. The first line represents the one-halo
term, and the second line represents the two-halo term
describing the clustering of objects. For a given survey, we
can calculate the coefficient ρ2ℓðηÞ by computing Eq. (A6)

with a mass cutMmin defined by the survey and dividing by
Eq. (A6) computed with no mass cut. See Fig. 4 for an
example of this correlation coefficient when only galaxy
clusters are assumed to have been measured.
We can then write an estimator for pE as

p̂EðLÞ ¼ NEðLÞ
Z

d2ℓ
2π

δτextðL − ℓ ÞðfEpEðℓ ;LÞEobsðℓ Þ þ fBp
Eðℓ ;LÞBobsðℓ ÞÞ; ðA7Þ

and we are suppressing the explicit redshift dependence. We demand that our estimator is unbiased,

p̂EðLÞ ¼ hp̂EðLÞi

¼ NEðLÞ
Z

d2ℓ
2π

Z
d2ℓ 0

2π
hδτextðL− ℓ Þδτðℓ − ℓ 0Þi½fEpEðℓ ;LÞðpEðℓ 0Þ cosð2ðϕℓ 0 −ϕℓ ÞÞ−pBðℓ 0Þ sinð2ðϕℓ 0 −ϕℓ ÞÞÞ

þ fBp
Eðℓ ;LÞðpEðℓ 0Þ sinð2ðϕℓ 0 −ϕℓ ÞÞ þpBðℓ 0Þ cosð2ðϕℓ 0 −ϕℓ ÞÞÞ�; ðA8Þ

which fixes the filters to be related by

fEp
Eðℓ ;LÞ

cosð2ðϕL − ϕℓ ÞÞ
¼ fBp

Eðℓ ;LÞ
sinð2ðϕL − ϕℓ ÞÞ

≡ fEðℓ ;LÞ; ðA9Þ

and the normalization to be

NEðLÞ ¼
�Z

d2ℓ
ð2πÞ2 f

Eðℓ ;LÞρ2jℓ−LjC
δτδτ
jℓ−Lj

�−1
: ðA10Þ

Next, we choose our filter to minimize the variance of our
estimator. The variance is

hp̂EðLÞp̂E�ðL0Þi¼δð2ÞðL−L0ÞjNEðLÞj2

×
Z

d2ℓ
ð2πÞ2 jf

Eðℓ ;LÞj2

×ðCEE;obs
ℓ cos2ð2ðϕL−ϕℓ ÞÞ

þCBB;obs
ℓ sin2ð2ðϕL−ϕℓ ÞÞÞρ2jℓ−LjC

δτδτ
jℓ−Lj;

ðA11Þ

and the filter which minimizes the variance is

fEðℓ ;LÞ ¼ ðCEE;obs
ℓ cos2ð2ðϕL − ϕℓ ÞÞ

þ CBB;obs
ℓ sin2ð2ðϕL − ϕℓ ÞÞÞ−1: ðA12Þ

Using this choice of filter in Eq. (A11) then gives the
variance of our estimator.
We can follow the same steps as above to derive the

unbiased, minimum-variance estimator for pB (which is
expected to vanish in the absence of tensor fluctuations),
and we find

p̂BðLÞ ¼ NBðLÞ
Z

d2ℓ
2π

δτextðL − ℓ ÞfBðℓ ;LÞð−Eobsðℓ Þ

× sinð2ðϕL − ϕℓ ÞÞ þ Bobsðℓ Þ cosð2ðϕL − ϕℓ ÞÞÞ;
ðA13Þ

with the filter and normalization given by

fBðℓ ;LÞ ¼ ðCEE;obs
ℓ sin2ð2ðϕL − ϕℓ ÞÞ

þ CBB;obs
ℓ cos2ð2ðϕL − ϕℓ ÞÞÞ−1;

NBðLÞ ¼
�Z

d2ℓ
ð2πÞ2 f

Bðℓ ;LÞρ2jℓ−LjC
δτδτ
jℓ−Lj

�
−1
: ðA14Þ
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