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Combining galaxy cluster and void abundances is a novel, powerful way to constrain deviations from
general relativity and the ΛCDM model. For a flat wCDM model with growth of large-scale structure
parametrized by the redshift-dependent growth index γðzÞ ¼ γ0 þ γ1z=ð1þ zÞ of linear matter perturba-
tions, combining void and cluster abundances in future surveys with Euclid and the four-meter multiobject
spectroscopic telescope could improve the figure of merit for (w; γ0; γ1) by a factor of 20 compared to
individual abundances. In an ideal case, improvement on current cosmological data is a figure of merit
factor 600 or more.
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I. INTRODUCTION

Clusters and voids in the galaxy distribution are rare
extremes of the cosmic web. As biased samples of the
matter distribution, they can be used to place constraints on
cosmological models. The abundances of clusters and voids
are sensitive probes of dark energy [1–3], modified gravity
[2,4], neutrino properties [5,6], and non-Gaussianity [7].
In earlier work [8], we derived the first statistically

significant cosmological constraints from voids, showing
that the joint existence of the largest known cluster and void
strongly requires dark energy in the flat ΛCDM model.
We also reported a powerful parameter complementarity
between clusters and voids in the ΛCDM model. Here, we
extend the modeling to the case where the dark energy
equation of state and matter perturbation growth index
are independent, free parameters. We investigate the
complementarity between cluster and void abundances
for constraining deviations from the general relativity
ðGRÞ þ ΛCDM model, and forecast ideal-case, prior-free
constraints from future surveys.

II. FIDUCIAL SURVEYS

We consider the Euclid Wide Survey [9] and the four-
meter multiobject spectroscopic telescope (4MOST)
Galaxy Redshift Survey [10]. Survey specifications are
listed in Table I. For voids, we limit ourselves to the
spectroscopic segment of Euclid and the 4MOST spectro-
scopic survey, for which observational systematics should

be relatively minimal (photometric redshifts can signifi-
cantly distort the void shapes). We note that there is also a
4MOST cluster survey planned, which we do not consider
here; our aim is to highlight the complementarity of clusters
and voids, and of Euclid and 4MOST for void surveys.

A. Cluster selection and limiting cluster mass

The limiting cluster mass is chosen as M200;c ¼
8 × 1013 h−1M⊙ (whereM200;c is the halo mass as defined
by an overdensity of 200 above the critical density), with a
constant 80% completeness [11]. A constant completeness
level is not exact, but sufficiently accurate for our fore-
casting purposes.

B. Void selection and limiting void radius

We assume that void selection is complete for voids
above the limiting radius Rlim (with radii defined in the
galaxy field). The limiting radius is set by demanding that
the void radius R > 2Rmps ¼ 2n̄−1=3gal ðzÞ [1], where n̄galðzÞ is
the mean comoving galaxy number density.
We use the following prescription for Euclid, which

provides a good fit to the galaxy densities in [12]:

TABLE I. Fiducial survey specifications.

Survey Area [sq. deg.] Redshift

Euclid clusters 15 000 0.2–2.0
Euclid voids 15 000 0.7–2.0
4MOST voids 12 000 0.05–1*msahlen@msahlen.net

PHYSICAL REVIEW D 97, 103504 (2018)

2470-0010=2018=97(10)=103504(9) 103504-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.103504&domain=pdf&date_stamp=2018-05-03
https://doi.org/10.1103/PhysRevD.97.103504
https://doi.org/10.1103/PhysRevD.97.103504
https://doi.org/10.1103/PhysRevD.97.103504
https://doi.org/10.1103/PhysRevD.97.103504


RlimðzÞ
h−1 Mpc

¼ 118.272 − 334.64zþ 399.22z2 − 207.26z3

þ 40.838z4: ð1Þ

For 4MOST, we assume that

RlimðzÞ
h−1 Mpc

¼

8>>>>>><
>>>>>>:

13; 0.05 ≤ z ≤ 0.5

31; 0.5 < z ≤ 0.7

15; 0.7 < z ≤ 0.8

17; 0.8 < z ≤ 0.9

42; 0.9 < z ≤ 1.0

; ð2Þ

based on the current survey plans [13].

C. Binning

We use bins in redshift Δz ¼ 0.1, cluster mass
Δ logðM200Þ ¼ 0.2, void radius Δ logðRÞ ¼ 0.1, and void
density contrast Δδdm ¼ 0.3 (from −1 up). This binning
should accommodate expected measurement uncertainties.

III. MODEL

We predict cluster and void abundances adopting models
and methodology developed in earlier work [8,14].

A. Cosmological model

We assume a flat wCDM background evolution. The
primordial density perturbations follow a power-law power
spectrum, and neutrinos are massless. The linear growth of
perturbations is determined by the growth index γðaÞ, with
the linear growth rate given by [15]

f ≡ d ln δ
d ln a

¼ ΩγðaÞ
m ðaÞ; ð3Þ

where the scale factor a ¼ 1=ð1þ zÞ. The model is
specified by today’s values of the Hubble parameter h,
mean matter density Ωm, dark energy equation of state w,
mean baryonic matter density Ωb, statistical spread of the
matter field at quasilinear scales σ8, scalar spectral index ns,
and growth index γðzÞ. We consider (i) γðzÞ ¼ γ0 þ
γ1z=ð1þ zÞ, (ii) γðzÞ ¼ γ0 e.g. [16].

B. Number count model

We model cluster and void number counts as in [8], but
with the growth of linear perturbations described by growth
index γðaÞ, and background by a flat wCDM model with a
constant dark-energy equation of state w.
The abundance model is given by

N̄ ¼
ZZZ

pðOjOtÞn½MðOtÞ; z�
dM
dOt

dV
dz

dzdOtdO; ð4Þ

where O is the observable (mass, radius) for clusters or
voids, Ot the true physical value of the observable O, and
MðOtÞ the (unbiased) mass estimate of the object. The
differential number density is nðM; zÞ, pðOjOtÞ is the
probability density function (PDF) of assigning an
observed value O for a true value Ot, and dV=dz is the
cosmic volume element. For integrating Eq. (4), we
use Mvoid ¼ 4

3
πR3ρmð1þ δdmÞ.

C. Number density

The differential number density of objects in a mass
interval dM about M at redshift z is

nðM; zÞdM ¼ −Fðσ; zÞ ρmðzÞ
MσðM; zÞ

dσðM; zÞ
dM

dM; ð5Þ

where σðM; zÞ is the dispersion of the density field at
some comoving scale RL ¼ ð3M=4πρmÞ1=3, and ρmðzÞ ¼
ρmðz ¼ 0Þð1þ zÞ3 the matter density. The expression can
be written in terms of linear-theory radius RL for voids. The
multiplicity function (MF) denoted Fðσ; zÞ is described in
the following for clusters and voids.

D. Cluster MF

The cluster (halo) MF FhðσÞ encodes halo collapse
statistics. We use the MF of Watson et al. [17], their
Eqs. (12)–(15). Mass conversions are performed using the
methods in Appendix C of [18].

E. Void MF

We employ the simulation-calibrated void MF in [1]
based on a Sheth–van de Weygaert form [19],

Fv ¼
ffiffiffiffiffi
2ν

π

r
e−ν=2; ð6Þ

where ν ¼ δ2v=σ2ðRL; zÞ, and for which a critical density
threshold δv ¼ −0.45 was derived for shell-crossed voids.
We find that void-in-cloud corrections [19] are negligible
for our analysis, so neglected those in Eq. (6). We general-
ize this prescription to other density contrasts through the
spherical-expansion relationship [20],

δv ¼ c½1 − ð1þ b−1effδdmÞ−1=c�; ð7Þ

where c ¼ 1.594, and we have set δm ¼ b−1effδdm (which
also defines beff ). For the calibration in [1] we have δv ¼
−0.45 and δdm ¼ −0.8, which yields beff ≈ 2.44. We then
use Eq. (7) for other values of the dark-matter density
contrast δdm, to convert to a linear density contrast δv to be
used as the corresponding density threshold in the void MF.
The void MF for (nonlinear) radius R is evaluated at
corresponding linear radius RL, which here is related as
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R=RL ¼ð1þδdmÞ−1=3. Note that these spherical-expansion
dynamics do not include any dark-energy or modified-
gravity effects, but such corrections are subdominant for
the model we consider [20].
While our prescription for generalizing the void MF to

general density contrasts should in principle be calibrated
with full simulations of the galaxy field, it is robust with
respect to our conclusions (e.g. we have tested the effect of
varying the value of the bias, and of a bias defined on the
linear density field).

F. Scatter

We include scatter in cluster and void properties as log-
normal PDFs pðOjOtÞ for the observableO (i.e.M200 or R)
given its true value Ot. The intrinsic scatter between
observed and true cluster mass is given by [11]

σ2lnMðzÞ ¼ σ2lnM;0 − 1þ ð1þ zÞ2β ð8Þ

with σ2lnM;0 ¼ 0.2, β ¼ 0.125, based on N-body simulation
results. The intrinsic scatter between observed and true
(spherical-equivalent) void radius is not well studied. We
assume that

σ2lnRðzÞ ¼ σ2lnR;0 ð9Þ

with σ2lnR;0 ¼ 0.2, which is a reasonable first approximation
given that e.g. ellipticity varies but typically is of the order
15% [21].

G. Fiducial parameters

We assume h ¼ 0.7, Ωm ¼ 0.3, γ0 ¼ 0.545, γ1 ¼ 0,
Ωb ¼ 0.045, σ8 ¼ 0.8, w ¼ −1, ns ¼ 0.96, Σmν ¼ 0 eV,
and three neutrino species so that the early-Universe
effective relativistic degrees of freedom Neff ¼ 3.046.

IV. LIKELIHOOD

We model the number counts of clusters and voids as
Poisson distributed in each bin, and bins to be statistically
independent. Hence, the log likelihood is

lnL ¼
X
i

Ni ln N̄i − N̄i; ð10Þ

where Ni is the observed number of objects in bin i, and N̄i
is the model prediction, Eq. (4), for the expected number of
objects in the same bin.

V. COMPUTATION

We compute a Fisher matrix estimate of expected
parameter constraints based on the Poisson likelihood
[1]. This leads to a Fisher matrix,

Fmn ¼
X
i

1

N̄i

∂N̄i

∂θm
∂N̄i

∂θn ; ð11Þ

where N̄i is the fiducial expected number of objects in bin i
and θm are the different model parameters under consid-
eration. The corresponding covariance matrix C ¼ F−1.
The space of eight free parameters is defined by
fΩm; γ0; γ1; w; σ8; ns; h;Ωbg, and we also consider the
seven-parameter case where γ1 ¼ 0. Background evolution
and linear power spectrum computations are performed
using a modified version of CAMB [22].

VI. RESULTS

A. Expected numbers

We predict 5 × 105 clusters and 9 × 105 voids in the
Euclid cluster and void surveys, and 4 × 105 voids in the
4MOST void survey. These numbers are consistent with
earlier predictions [1,11].

B. Parameter constraints

The forecast ideal-case parameter constraints are shown
in Fig. 1 (marginalized constraints on γ0, γ1 for both
growth-index models) and Fig. 2 (complete set of 1D and
2D PDFs, redshift-dependent growth index only) for the

Sahlén & Silk 2018

FIG. 1. Forecast marginalized PDFs for the growth index γðzÞ
from cluster and void abundances in Euclid and 4MOST surveys,
for a flat wCDM model with separate growth index γðzÞ. Two
different parametrizations are shown, with the two-parameter
case ðγ0; γ1Þ displaying 68% confidence contours. A PDF
representative of current data precision [23,24] is included as
a dashed line. The fiducial value of γ0 ¼ 0.545, γ1 ¼ 0 for GRþ
ΛCDM is also indicated.
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separate data sets and combinations thereof. Tables II and
III list the forecast marginalized parameter uncertainties. In
this ideal scenario, all surveys can improve substantially on
current parameter uncertainties except for h, Ωb and ns.
Hence, including data more informative on these param-
eters (e.g. cosmic microwave background data) will be a
valuable, but here not crucial, addition.

C. Figures of merit

The figures of merit (FoM) for the dark-energy and
modified-gravity parameters, defined by

FoM ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det covðparametersÞp ; ð12Þ

are listed in Table IV. Compared to current data, an impro-
vement factor Oð102–103Þ is expected for both growth-
index models in this ideal case. The Euclid cluster survey is
at least as informative (roughly) as are the combined
Euclidþ 4MOST void surveys. When all surveys are
combined, a factor ∼4–20 improvement in FoM is seen
in comparison. With more detailed modeling of the galaxy
cluster and void distributions including mass-observable

FIG. 2. Forecast 68% parameter contours, and marginal PDFs, from cluster and void abundances in future Euclid and 4MOST surveys,
for a flat wCDM model with separate growth index γðzÞ ¼ γ0 þ γ1z=ð1þ zÞ.

TABLE II. Forecast parameter uncertainties for growth-index model γðzÞ ¼ γ0 þ γ1z=ð1þ zÞ.
Survey σðΩmÞ σðγ0Þ σðγ1Þ σðwÞ σðσ8Þ σðnsÞ σðhÞ σðΩbÞ
ECa 0.002 0.13 0.30 0.006 0.01 0.09 0.10 0.010
EVb 0.005 0.53 0.97 0.01 0.07 0.03 0.02 0.003
4Vc 0.002 0.26 0.75 0.01 0.02 0.04 0.03 0.003
EVþ 4V 0.002 0.12 0.25 0.005 0.01 0.02 0.02 0.002
All 0.0006 0.03 0.09 0.003 0.003 0.01 0.01 0.002

aEuclid Clusters.
bEuclid Voids.
c4MOST Voids.

MARTIN SAHLÉN and JOSEPH SILK PHYS. REV. D 97, 103504 (2018)

103504-4



scaling relations and other sources of uncertainty, the
relative improvement can be expected to be greater, since
such physics and systematics are mostly independent
between clusters and voids. The details of this, particularly
for voids, is the subject for ongoing work in the field.

D. Parameter sensitivity

Clusters.—Cluster sensitivity to cosmological parame-
ters is described extensively in the literature, e.g. [2,26].
Voids: General.—To examine the sensitivity of void

abundance to cosmological parameters, we consider the
redshift-dependent growth indexmodel and a generic survey
with a fixed limiting void radius Rlim ¼ 10h−1 Mpc and
galaxy bias akin to Euclid and 4MOST. The survey is
assumed large enough to give an unbiased sample of the
largest voids (sky coverage fsky ≳ 0.1), and z ¼ 0.05–2.05.
The effects of variations in cosmological parameters on

void abundance, and their statistical significance, are
shown in Fig. 3. The limiting radii of the Euclid and
4MOST surveys are also indicated in the figure. We
discuss deep voids (δdm ∼ −0.85) only, but the translation
to medium-deep (δdm ∼ −0.55) or shallow (δdm ∼ −0.25)
voids is straightforward, as Fig. 3 indicates. We illustrate
the void sensitivity to cosmological parameters with the
relative change

Δχreli;jðΔθkÞ≡ ΔχðRi; zj;Δθk; fskyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δχ2ðΔθk; fskyÞ

q ð13Þ

for some small, positive single-parameter change Δθk
away from the fiducial model (k indexes the cosmological
parameters). Here,

ΔχðRi; zj;Δθk; fskyÞ

≡ N̄i;jðθk þ Δθk; fskyÞ − N̄i;jðθk; fskyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̄i;jðθk; fskyÞ

q ð14Þ

is the number count change in bin i, j relative to the fiducial
model, in units of the corresponding Poisson uncertainty;
and Δχ2ðΔθk; fskyÞ ¼ Σi;jΔχ2ðRi; zj;Δθk; fskyÞ is the total
(Poisson) Δχ2 across all bins.
For small Δθk, we approximate

ΔχðRi; zj;Δθk; fskyÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2fsky
N̄i;j

s
∂N̄i;j

∂θk Δθk: ð15Þ

Then, Δχreli;j is independent of fsky and Δθk (normalizing to
the same total Δχ2 implicitly picks some set of Δθ’s which
all separately produce the same total Δχ2).
The results in Fig. 3 show a few general features:

(i) suppression of small voids, (ii) relative enhancement
of large voids, (iii) a redshift-dependent turnover between
suppression and enhancement, and (iv) variation in scale
dependence. (Suppression and enhancement switch with
change of sign in Δθ.) We discuss these features in the
following.
(i) Small-scale suppression is generically produced by

changes of the comoving volume. Variations in Ωm
and w will have this effect.

(ii) Large-scale enhancement is usually accompanied by
small-scale suppression. This is because these varia-
tions are all due to changes in the matter-field
dispersion σðR; zÞ. A positive shift Δσ (due to varia-
tion in parameters affecting power spectrum or
growth) effectively changes the curvature of the void

TABLE III. Forecast and current parameter uncertainties for growth-index model γðzÞ ¼ γ0.

Survey σðΩmÞ σðγ0Þ σðwÞ σðσ8Þ σðnsÞ σðhÞ σðΩbÞ
EC 0.001 0.03 0.003 0.008 0.07 0.08 0.009
EV 0.005 0.04 0.01 0.01 0.03 0.02 0.003
4V 0.002 0.04 0.01 0.01 0.04 0.03 0.003
EVþ 4V 0.002 0.02 0.005 0.005 0.02 0.02 0.002
All 0.0006 0.01 0.002 0.003 0.01 0.01 0.001
Current [23,24] 0.01 0.08 0.05 0.02 0.006 0.01 0.001

TABLE IV. Forecast and current figures of merit (FoM) for the
dark-energy and modified-gravity parameters w, γ0 and γ1 in the
two growth-index cases considered.

Survey FoM (w; γ0) FoM (w; γ0; γ1)

EC 1.1 × 104 3.4 × 104

EV 2.6 × 103 2.6 × 103

4V 3.0 × 103 3.8 × 103

EVþ 4V 1.7 × 103 4.2 × 104

All 3.9 × 104 6.6 × 105

Current ∼300 [23,24] Oð102–103Þa
aEstimated based on using σðwÞ; σðγ0Þ in [23] and σðγ1Þ in

[25]. These are upper limits on current uncertainties. These are
then scaled up according to the factor differences between
Tables II and III. The estimate is robust with respect to
parameter correlations.
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MF, such that small scales are suppressed and large
scales enhanced. This follows from noting that

d lnFv

d ln σ
¼ ν − 1; ð16Þ

where ν≡δ2v=σ2ðR;zÞ, so small/common voids (ν<1)
are suppressed and large/rare voids (ν > 1) enhanced.

(iii) The redshift-dependent turnover scale between sup-
pression and enhancement is also explained by
Eq. (16). For voids with νðR; zÞ ¼ 1, ΔFv=Fv ≈ 0.
The turnover scale Rto, defined by the equation

σðRto; zÞ ¼ jδvj ð17Þ
is fairly insensitive to variations in cosmological para-
meters. For shallow voids Rtoðz ¼ 0Þ ∼ 65h−1 Mpc,

medium-deep voids Rtoðz ¼ 0Þ ∼ 35h−1 Mpc, and
deep voids Rtoðz ¼ 0Þ ∼ 25h−1 Mpc. (Note that Rto
depends on survey characteristics, e.g. galaxy bias.)

(iv) Variation in scale dependence of suppression/
enhancement arises primarily due to different
parameters having different effects on the small-
scale matter power spectrum. Small voids
(RL ≲ 25h−1 Mpc) are sensitive to the baryon acoustic
peaks, and hence both shifts in scale (Ωmh) and power
suppression (Ωbh2; ns) will distinctly impact the void
distribution. Large voids (RL≳90h−1 Mpc) are also
sensitive to the turnover scale of the matter power
spectrum set by matter-radiation equality (Ωmh). In
addition, the relative importance of comoving volume
vs density-field statistics may also play a role.

(a) (b)

FIG. 3. Void distribution parameter sensitivity in the redshift-dependent growth index model. We assume the same fiducial
cosmological and galaxy bias models as elsewhere, but consider a generic survey of deep voids with Rlim ¼ 10h−1 Mpc and
z ¼ 0.05–2.05;Δlog10ðR=h−1 MpcÞ ¼ 0.1;Δz ¼ 0.2. For each parameter, the figure shows Δχreli;j when that parameter only is varied
(hence, σ8 is kept normalized to the fiducial value at z ¼ 0 when other parameters are varied). The indicated turnover radius RtoðzÞ
(black, dotted lines) is clearly visible in the sensitivity to power-spectrum and growth parameters. Scales related to the cosmological
parameters are in brown, dotted lines (kql ¼ 0.13h Mpc−1, kBAO ¼ 0.06h Mpc−1, kns ¼ 0.05h Mpc−1, keq ¼ 0.012h Mpc−1). Note the
distinct baryon acoustic oscillation signature in the Ωb panels. The radius-redshift coverage of the surveys is also shown (4MOST,
yellow solid lines; Euclid, red dashed lines). Some θ’s are defined with negative sign to aid comparison. Note also that Δχreli;j does not

depend on fsky. The normalization Δθ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δχ2=fsky

q
is also given for each parameter. Quantities are described further in the text.
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Thanks to tracer bias and the nonlinear evolution of
voids, a particular tracer-defined void radius Rtr will
correspond to a linear comoving scale,

RL ≈ Rtr
ð1þ b−1tr δtrÞ1=3

βðbtrÞ
≳ Rtr

2βðbtrÞ
; ð18Þ

where btr and δtr are the tracer-defined bias and density
contrast, and βðbtrÞ≡ Rtr=R relates the tracer and matter-
field radii. Thus, the deepest voids correspond to the
smallest scales. For btr > 1, βðbtrÞ > 1, e.g. βð1.4Þ ≈ 1.2
[8]. Hence, a survey of deep voids can probe linear
comoving scales up to a factor ∼2–4 smaller than the
limiting void radius of the survey.
For medium-deep and shallow voids, the Δχreli;j patterns

are qualitatively the same as in Fig. 3, but with scales
shifted a factor 1.9 and 2.6, respectively.
Putting these considerations together, we suggest the

following conceptual picture of how void counts constrain
parameters. The relative numbers of deep and shallow
voids at a given redshift give an effective measure of the
matter power spectrum on small scales relative to large
scales (i.e. its shape)—independent of growth or volume.
Since the characteristic scale of the void samples change
with redshift, and deep and shallow voids probe different
scales in the primordial power spectrum, a wide range
of scales can be constrained. Some relevant scales are
indicated in Fig. 3, also showing the sensitivity to baryon
acoustic oscillations. The characteristic void scale is a
direct measure of the turnover radius RtoðzÞ, so its evolution
additionally measures σðRto; zÞ. The absolute number
counts can then measure the background expansion via
the direct effect of Ωm and w on cosmic volume and
their indirect effect on the growth rate. The turnover radius
roughly defines the boundary between volume-dominated
and growth-dominated voids. The growth-dominated
counts also additionally constrain σðR; zÞ. This picture
suggests that void counts can constrain the background
expansion, shape of the power spectrum, and growth
history independently.
Voids: Parameters with Euclidþ 4MOST.—We find

that deep voids provide the strongest parameter constraints,
except for Ωm and w with Euclid, where shallow voids do
best. Looking at Fig. 3 this is not surprising, since the
sensitivity within the Euclid region is greater for shallow
voids. However, shallow-void parameter constraints are
also similar and complementary to deep voids, such that the
combined constraints are tighter than the individual ones.
An exception to this is γ0, γ1 with 4MOST, where the deep
voids provide almost all constraining power.
Looking at Tables II and III, there is a difference in

constraining power between the one-parameter and two-
parameter growth models only in the normalization and
redshift evolution of the power spectrum (σ8, γ0, γ1).

This agrees well with the expectation that background
expansion, power spectrum shape and growth history can
be independently constrained. Indeed, the dominant degen-
eracy is contained within σ8ðzÞ.
The 4MOST survey constrains Ωm better than Euclid.

This derives from 4MOST containing deep voids smaller
than the turnover radius (see Fig. 3). Such voids
are sensitive to the growth of cosmic volume, not just
growth of structure (as larger voids predominantly are).
This produces degeneracy directions between Ωm and w
which rotate with redshift up to z ∼ 0.8 (where the turnover
radius exits the survey, and volume growth slows down)
and settle on the growth-dominated degeneracy seen in
Fig. 2. The successively rotated degeneracies, when com-
bined, constrain Ωm better than the growth-only constraints
obtained with Euclid.
Differences in redshift sensitivity explains why Euclid

and 4MOST void constraints are complementary (Fig. 2),
due to different redshift coverage (despite the Euclid void
sample being twice as large). Specifically, the redshift
evolution of σðR; zÞ across the survey is much weaker
in Euclid (5%) than in 4MOST (20%) and ΩmðzÞ gets
close to 1. This implies that sensitivity to this redshift
evolution will be correspondingly weaker. Uncertainties on
σ8, γ0, γ1 should then scale roughly as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4V=NEV

p
×

½Δσ4V=ΔσEV� ≈ 2.7 between Euclid and 4MOST (neglect-
ing parameter correlations). This agrees well with Table II,
where Euclid void uncertainties are ∼1.3–3.5 times
the 4MOST uncertainties on those parameters. In the
constant growth-index model, this difference largely dis-
appears thanks to breaking the γ0 − γ1 degeneracy by
setting γ1 ¼ 0.
Medium-deep void counts add marginal additional

information relative to shallowþ deep void counts (add-
ing them produces at most a 25% reduction in the standard
deviation of any parameter), but may be useful for
calibration/systematics or tests of scale-dependent features.
The results are consistent with the finding that most voids
in the baryon oscillation spectroscopic survey (BOSS) have
a density contrast minimum between −0.9 and −0.6, and
radius between 20 and 40h−1 Mpc [27]. Voids that fall
outside these ranges are relatively rare, with great statistical
weight. Consequently, the intermediate density-contrast bin
adds relatively little constraining power compared to the
deep and shallow bins. The BOSS analysis, finding a 3σ
discrepancy in the number of deep voids relative to the
simplest allowed ΛCDM model, also independently hints
that the void density-contrast distribution contains novel
cosmological information.
Cluster-void complementarity.—Cluster and void num-

ber count parameter constraints are complementary for
several parameters. In the redshift-dependent growth-index
model, γ0 and γ1 are strongly correlated (Pearson correla-
tion coefficient ρ ∼ −0.98) regardless of data combina-
tion. However, w has varying correlation with γ0, γ1 in
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the different surveys. In the Euclid void survey, the
correlations are ρ ∼ −0.07 to 0.07. For all other survey
combinations, the correlations vary between jρj ∼ 0.2–0.5,
but complementarity still reduces the overall uncertainty.
In the constant growth-index model, the parameters w

and γ0 are weakly correlated. For the individual surveys,
ρ ∼ −0.28 to 0.28. For the combined Euclidþ 4MOST
void surveys, ρ ¼ −0.09, and for all surveys combined
ρ ¼ 0.13. For current data constraints, ρ ∼ −0.6 [23,24].
Complementary parameter degeneracies arise between

clusters and voids, because they have different sensitivity
to structure growth vs volume expansion with redshift,
comoving linear scales, and orthogonal sensitivities
between matter dispersion σ and Ωm; see Sec. 4.5 of [8].
While Euclid clusters are better, separately, at constraining
structure growth, the void samples are better at constraining
the shape of the matter power spectrum.

E. Systematics

We do not explicitly marginalize over any systemat-
ics, but have included a net effect on number counts
through statistical scatter in cluster masses and void
radii. The value of this scatter is assumed to be known
in the forecasts, since our purpose is to establish an
ideal-case limit. In the case of voids, the expected value
of this scatter is not well known, but we consider only
spectroscopic data to limit photometric shape distor-
tions. It could arise due to e.g. intrinsic ellipticity,
projection and Alcock-Paczynski effects, and redshift-
space distortion. We also expect linear voids to have
more irregular shapes than nonlinear voids, so scatter
should vary with density contrast and redshift. The
impact of these effects is a subject for further study;
some also contain additional cosmological information.
Since shallowþ deep voids contain most of the cosmo-
logical information of a void-count survey, medium-
deep voids could potentially be used to self-calibrate
void surveys.
Our void MF is a rough approximation, suited to this

proof of concept. Accurate theoretical predictions based on
large-scale simulations including nonlinear modified grav-
ity effects, detailed void characteristics, selection methods,
and survey specifications are required for detailed forecasts
and future real analyses. The detailed completeness in R
and δ, and sources of bias such as survey boundary effects
[27,28], all require further study.
Cluster samples can suffer bias due to poor mass

calibration and scaling relations, skewed redshift estimates,
poorly understood selection, or MF modeling, but these
issues are not expected to prevent percent-level cluster
cosmology with e.g. Euclid [11].
Ultimately, combining clusters and voids (in conjunction

also with e.g. cosmic microwave background data) will
help limit the impact of systematics since they, as shown
here, are relatively independent probes.

VII. CONCLUSION

We find that shallowþ deep voids contain almost all the
cosmological information of void counts, unless models with
e.g. additional scale dependence are considered. Medium-
deep voids should, nonetheless, be useful for survey self-
calibration. Combined constraints from voids of different
depth help break degeneracies, such that background
expansion, growth rate of structure, and power spectrum
can be estimated fairly independently of each other.
Combining parameter constraints from cluster and void

abundances in future surveys could ideally constrain devia-
tions from GRþ ΛCDM on cosmological scales to percent
level. The combination can improve the dark-energy/modi-
fied-gravity figures of merit a factor of 20 or more relative to
individual abundances, and ideally a factor 600þ relative to
current cosmological data. This is due to clusters and voids
having complementary redshift sensitivity to growth of
structure vs volume expansion, and voids probing the matter
power spectrum more directly and across a wider range of
scales than clusters do. Void surveys are sensitive to linear
comoving scales up to a factor 2–4 smaller than their limiting
radius, and can cover the full range in scale from matter-
radiation equality turnover keq ∼ 0.01h Mpc−1, through
baryon acoustic peaks kBAO ∼ 0.06h Mpc−1, to the cluster
quasilinear regime kql ∼ 0.1h Mpc−1. The statistical power is
independent of data from the cosmic microwave background,
andhencecanprovideapreciseand independent late-Universe
probe of the power spectrum of density fluctuations (but
cosmicmicrowavebackgrounddatawill improveconstraints).
Including additional statistics (e.g. correlation functions)

and properties (e.g. measurements of cluster masses, void/
cluster density profiles, gravitational lensing, ellipticities)
of the void and cluster distributions should improve on this
significantly. The ongoing development of void cosmology
carries great potential to provide added value to current and
future large-area surveys for constraining deviations from
the cosmological concordance model, at low or no addi-
tional cost.
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