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We develop a self-consistent, gravitoelectromagnetic (GEM) formulation of a slowly rotating, self-
gravitating, and dilute Bose-Einstein condensate (BEC), intended for astrophysical applications in the
context of dark matter halos. GEM self-consistently incorporates the effects of frame dragging to lowest
order in v=c via the gravitomagnetic field. BEC dark matter has attracted attention as an alternative to cold
dark matter and warm dark matter for some time now. The BEC is described by the Gross-Pitaevskii-
Poisson equation with an arbitrary potential allowing for either attractive or repulsive interactions. Owing
to the difficulty in obtaining exact solutions to the GEM equations of motion without drastic
approximations, we employ the variational method to examine the conditions under which rotating
condensates, stable against gravitational collapse, may form in models with attractive and repulsive quartic
interactions. We also describe the approximate dynamics of an imploding and rotating condensate by
employing a collective coordinate description in terms of the condensate radius.
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I. INTRODUCTION

The standard (ΛCDM) model for the matter-energy
distribution of the universe posits that the universe consists
primarily of a cosmological constant (Λ) plus cold dark
matter (CDM). It has been fairly successful on scales larger
than the typical galactic scale (≳50 kpc) but appears to
make predictions that are somewhat inconsistent with
observations on smaller scales (≲50 kpc). In this model,
only about 4% of the matter-energy budget of the universe
is ordinary baryonic matter as we know it, 22% is non-
baryonic dark matter (DM) and the rest is a mysterious
form of energy [dark energy (DE)], which appears to be
reasonably well described by a positive cosmological
constant [1–3]. The model has provided a useful framework
for understanding structure formation via density fluctua-
tions and has had some success in explaining the power
spectrum of the mass fluctuations in the cosmic microwave
background (CMB) radiation [4–6], the large scale struc-
ture [7,8], and the large scale structure of DM halos [9–11].
On smaller scales, however, numerical simulations [12–15]
predict unobserved cusps in the central dark matter density
profiles of galactic halos. On the contrary, observations of
rotation curves prefer cored distribution profiles, i.e.,
having a nearly constant DM density near the center
[16–19]. Furthermore, because of the hierarchical growth
of structure in the CMB models, they predict an excess of
low mass subhalos within the galaxy as well as an excess of

massive subhalos, capable of being bright enough to be
observed as satellite galaxies [20–26]. Other problems also
indicate that the ΛCDM model may be in need of tuning:
for example, pure disk (bulge free) galaxies cannot be
simulated in this model [27,28] and some anomalies
between the CMB mass power spectrum obtained by the
Sloan Digital Sky Survey and that predicted by the CDM
paradigm have been found [29].
A proposed alternative to CDM is a light boson whose

mass is small enough that its critical temperature is well
above that of the CMB. This ensures that a significant
fraction of the bosons settle in the ground state and form a
Bose-Einstein condensate (BEC) [30–35]. If the particle
mass is small enough so that its de Broglie wavelength is on
the order of the typical galactic scale (say ∼50 kpc),
smaller scale structure will be suppressed while on the
large scale it would be virtually indistinguishable from
CDM [36–47]. Such low masses are not inconceivable,
considering that ultralight bosons (of mass even as low as
∼10−33 eV) are predicted by multidimensional cosmology
and string theory [48–51]. Larger particle masses lead to
smaller, asteroid sized, stable, BEC structures (one example
is the QCD axion), which, in sufficient numbers, could
form one component of DM [52–68]. Of interest in either
case, but particularly for large halos, is the description of
rotating condensates [69–72].
In this work, we provide a gravitoelectromagnetic

(GEM) description of gravitationally bound, nonrelativis-
tic, rotating BECs. It is not our intention to obtain exact
solutions of the equations of motion. Instead, we analyze
the effects of the rotation by applying the variational
method. The variational method is widely used in the
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study of BECs, in condensed matter physics [73,74] and
was adopted early in the boson star literature (e.g., [43]) as
well, owing to the difficulty in obtaining solutions of the
coupled system of equations.
In Sec. II, beginning with the relativistic Klein-Gordon

field in a weak, axisymmetric gravitational field, we set up
the effective Gross-Pitaevskii-Poisson (GPP) action,
describing a BEC cloud with rotation and including the
gravitational action appropriate to an axisymmetric space-
time in the weak field approximation. In Sec. III, we
describe stable configurations by applying the variational
method with a single Gaussian vortex ansatz appropriate to
rotating BEC clouds. In Sec. IV we examine the problem of
vortex collapse, and in Sec. V we summarize our results.

II. ACTION

As the candidate field for BEC halos is generally taken to
be a light, but not massless, scalar field, we begin with the
action for a complex scalar field in a curved background
spacetime, S ¼ Sϕ þ SG, where

Sϕ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ½gαβð∇αϕÞ�ð∇βϕÞ þ VðjϕjÞ�; ð1Þ

and VðjϕjÞ is an arbitrary potential, which we take to be of
the form

VðjϕjÞ ¼ m2c2

ℏ2
jϕj2 þ 2m

ℏ2
Ṽ1ðjϕjÞ: ð2Þ

This action is supplemented by the gravitational action

SG ¼ c3

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð3Þ

linearized about flat space, taking gμν ¼ ημν þ hμν.

A. The GPP action

In the weak field approximation [75,76], gμν ¼ ημν þ hμν
where jhμνj ≪ jημνj; if we set

ffiffiffiffiffiffi−gp ≈ 1þ 1
2
h, where h ¼

ημνhμν is the trace of hμν, then the scalar field action can be
written as the sum of three terms,

Sϕ ¼ S0½ϕ� −
Z

d4x

�
1

2
hðηαβð∇αϕÞ�ð∇βϕÞ

þ VðjϕjÞÞ − hαβð∇αϕÞ�ð∇βϕÞ
�

ð4Þ

to linear order in hμν. The zeroth order action, S0½ϕ�, is the
action in (1), but on a flat background. Wewill call the trace
term S1½h;ϕ� and the second correction term S2½hαβ;ϕ�. In
the nonrelativistic limit, the field can be described by a
complex wave function ψ according to

ϕ ¼ ℏffiffiffiffiffiffiffi
2m

p e−imc2t=ℏψ ; ð5Þ

which, at low temperatures, describes a condensed,
N-particle state and will be normalized as

R
d3r⃗jψ j2 ¼ N

in what follows. We will also take the scalar field potential
to be of the form

VðjϕjÞ ¼ mc2

2
jψ j2 þ Ṽðjψ jÞ: ð6Þ

Expanding the zeroth order action in the nonrelativistic
limit, one finds

S0½ϕ� ≈
Z

dt
Z

d3r⃗

�
iℏ
2
ψ�∇↔tψ −

ℏ2

2m
j∇ψ j2 − Ṽðjψ jÞ

�
;

ð7Þ

where we have dropped terms quadratic in _ψ=c, using the
fact that, in the nonrelativistic approximation, the differ-
ence between the total energy and the rest mass energy is
supposed to be small. In the same approximation,

S1½ϕ� ≈
Z

dt
Z

d3r⃗h

�
iℏ
2
ψ�∇↔tψ −

ℏ2

2m
j∇ψ j2 − Ṽðjψ jÞ

�
:

ð8Þ

Assuming the gravitational field is weak (jhj ≪ 1), this
term may therefore be dropped, as also the last term in the
expansion of S2½hαβ;ϕ�,

S2½hαβ;ϕ�

¼
Z

d4xhαβð∇αϕÞ�ð∇βϕÞ

¼
Z

d4x½httj _ϕj2 þ htið _ϕ�∇iϕþ∇iϕ
� _ϕÞ þ hij∇ðiϕ�∇jÞϕ�

≈
Z

dt
Z

d3r⃗

�
1

2
mc4httjψ j2 þ iℏc2

2
htiðψ�∇iψ −∇iψ

�ψÞ
�
:

ð9Þ

If we call hti ¼ −Ai=c2, htt ¼ −2ΦG=c4, then this correc-
tion term looks like

S2½hαβ;ϕ� ≈
Z

dt
Z

d3r⃗½−mΦGjψ j2 − J · A�; ð10Þ

where ΦG is the gravitational potential energy (to be
obtained from the Einstein equations) and

Ji ¼
iℏ
2
ψ�∇↔iψ ð11Þ

is the scalar current. Putting everything together, the
nonrelativistic, weak field GPP action for the scalar field is
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Sψ ≈
Z

d4x

�
iℏ
2
ψ�∇↔tψ −

ℏ2

2m
j∇ψ j2

− Ṽðjψ jÞ −mΦGjψ j2 − J · A

�
: ð12Þ

The third term in the action above represents the self-
interaction of the nonrelativistic field, the fourth term
represents its interaction with the gravitational field, and
the last term is the gravitomagnetic term, which incorpo-
rates frame dragging.
The nonrelativistic action may be put in a more sugges-

tive form if we define Aμ ¼ ð−ΦG; AiÞ and the “covariant”
derivative

Dμψ ¼
�
∇μ −

im
ℏ
Aμ

�
ψ : ð13Þ

Then,

iℏ
2
ψ�D

↔

tψ ¼ iℏ
2
ψ�∇↔tψ þmAtjψ j2 ¼

iℏ
2
ψ�∇↔tψ −mΦGjψ j2

ð14Þ

and

−
ℏ2

2m
ðDiψÞ�ðDiψÞ ¼ −

ℏ2

2m
j∇ψ j2 − J · A ð15Þ

upon dropping terms that are quadratic in the gravitational
field. Thus our action reads

Sψ ≈
Z

d4x

�
iℏ
2
ψ�D

↔

tψ −
ℏ2

2m
jDiψ j2 − Ṽðjψ jÞ

�
; ð16Þ

so, in the weak field limit, the interaction of the scalar field
with the gravitational field has the (well-known) form of an
“electromagnetic” coupling.

B. The gravitational action

Turning to the gravitational part of the action, we first
examine the Einstein equations of motion to determine the
general form of the metric. It is convenient to work in
the harmonic gauge, defining h̄μν ¼ hμν − 1

2
ημνh and

imposing the condition h̄μν;ν ¼ 0. The Einstein tensor is
Gμν ¼ 1

2
□h̄μν, and Einstein’s equations are

□h̄μν ¼
16πG
c4

Tμν: ð17Þ

The gauge condition, h̄μν;ν ¼ 0, tells us that the stress
tensor is conserved on a flat background, so Tμν is to be
evaluated for the field on a flat background,

Tμν ¼ ∇μϕ
�∇νϕþ∇νϕ

�∇μϕþ ημνL: ð18Þ

In the nonrelativistic limit, keeping only leading order
terms, we find

Ttt ≈mc4jψ j2;
Tti ≈ c2Ji;

Tij ≈ 0: ð19Þ

This shows that we can take h̄ij ¼ 0. In this case,
h̄ ¼ −h ¼ −h̄tt=c2. If we take h̄tt ¼ −4ΦG, then h̄ ¼
4ΦG=c2 and htt ¼ −2ΦG. The remaining metric coeffi-
cients are

hij ¼ h̄ij −
1

2
ηijh̄ ¼ −

2ΦG

c2
δij; hti ¼ h̄ti ¼ −Ai; ð20Þ

and the line element,

ds2 ¼ c2ð1þ 2ΦG=c2Þdt2 þ 2Aidtdxi

− ð1 − 2ΦG=c2Þδijdxidxj; ð21Þ

is subject to the gauge conditions,

h̄tμ;μ ¼
4 _ΦG

c2
−∇ · A ¼ 0; h̄iμ;μ ¼

1

c2
_Ai ¼ 0: ð22Þ

In the nonrelativistic limit, we may ignore the term _ΦG=c2,
so our gauge conditions become _Ai ¼ 0 ¼ ∇ · A.
To set up the total action it is convenient to compare the

line element in (21) to the standard line element of
Arnowitt, Deser, and Misner [77]

ds2 ¼ N2dt2 − Nidtdxi − γijdxidxj ð23Þ

and write the bulk Lagrangian for the gravitational field in
terms of the lapse function, N, the shift, Ni, the first
fundamental form, γij, the intrinsic curvature scalar of
spatial hypersurfaces, ð3ÞR, and the extrinsic curvature (of
spatial hypersurfaces), Kij,

LG ¼ c3N
16πG

ffiffiffi
γ

p ½ð3ÞRþ KijKij − K2�; ð24Þ

where K is the trace of Kij. This gives us the lapse, shift,
and first fundamental form, respectively, in linear approxi-
mation,

N ≈ c

�
1þΦG

c2

�
;

Ni ¼ −Ai;

γij ¼ δij

�
1 −

2ΦG

c2

�
; ð25Þ

from which we find the intrinsic curvature of the spatial
hypersurfaces up to second order
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ð3ÞR ¼ 4

c2
∇2ΦG þ 2

c4
½3ð∇ΦGÞ2 þ 8ΦG∇2ΦG� ð26Þ

and, up to first order, the extrinsic curvature

Kij ¼
1

2N
½_γij −∇ðiNjÞ� ≈

1

2c
∇ðiAjÞ ¼

fij
2c

; ð27Þ

where we have defined fij ¼ ∇ðiAjÞ. In this approximation,
the trace of the extrinsic curvature, K ¼ ηijKij, vanishes by
virtue of the gauge condition. After some algebra, we find
the gravitational action

SG ¼ β

Z
dt

Z
d3r⃗

�
−ð∇ΦGÞ2 þ

c2

8
fijfij

�
; ð28Þ

where β ¼ ð8πGÞ−1. The resulting total effective action,

S ¼
Z

dt
Z

d3r⃗

�
iℏ
2
ψ�∇↔tψ −

ℏ2

2m
j∇ψ j2 − Ṽðjψ jÞ

−mΦGjψ j2 − J · A − βð∇ΦGÞ2 þ
βc2

8
fijfij

�
; ð29Þ

now allows us to use the nonlinear Schrödinger equation to
describe large scale structure, so long as ψðt; r⃗Þ is inter-
preted as a Schrödinger field, normalized to the particle
number, as mentioned earlier.

C. Equations of motion

Extremizing the action in (29) with respect to variations
in ψ and employing the gauge conditions gives the non-
linear Schrödinger equation for ψ,

iℏDtψ ¼ −
ℏ2

2m
∇2ψ þmΦGψ þ Ṽ 0ðjψ jÞψ ; ð30Þ

where Dt ¼ ð∇t − Ai∇iÞ is the transport derivative, which
takes into account frame dragging due to the rotation.
Likewise, varying Ai and ΦG give

∇jfji ¼ ∇2Ai ¼ −
16πG
c2

Ji ð31Þ

(employing the gauge condition) and

∇2ΦG ¼ 4πGmjψ j2; ð32Þ

up to first order. These are readily solved by

ΦGðr⃗Þ ¼ −4πGm
Z

d3r⃗0
ψ�ðt; r⃗0Þψðt; r⃗0Þ

jr⃗ − r⃗0j ;

Aiðr⃗Þ ¼
8πiGℏ
c2

Z
d3r⃗0

ψ�ðt; r⃗0Þ∇↔0
iψðt; r⃗0Þ

jr⃗ − r⃗0j ; ð33Þ

respectively.

It is often useful to treat the BEC as a superfluid. We now
consider the hydrodynamic analogy by employing the
Madelung transformation [78] to rewrite Eq. (30).
Setting [34,43,79]

ψðt; r⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
νðt; r⃗Þ

p
eiSðt;r⃗Þ; ð34Þ

where ν is the number density of particles and S is the real
action. By comparing the real and imaginary parts of the
Schrödinger equation for ψ we find

Dtνþ
ℏ
m
ð∇ν ·∇Sþ ν∇2SÞ ¼ 0;

DtSþ ℏ
2m

ð∇SÞ2 þm
ℏ
ΦG þ 1

ℏ
Ṽ 0ðνÞ þQðνÞ ¼ 0; ð35Þ

where Q is the “quantum potential”

Q ¼ −
ℏ
4m

�∇2ν

ν
−
1

2

�∇ν
ν

�
2
�
: ð36Þ

If we introduce the velocity field, u ¼ ℏ∇S=m, then the
first of the above equations,

Dtνþ∇ · ðνuÞ ¼ 0; ð37Þ
has the form of a continuity equation. The second can also
be put in an interesting form: write it as

∇tu −∇ðA · uÞ þ 1

2
∇ðuÞ2 þ∇ΦG þ∇

�
1

m
Ṽ 0ðνÞ

�

þ ℏ∇Q
m

¼ 0 ð38Þ

and notice that u is irrotational, so ∇iuj ¼ ∇jui implying
that ∇ðu2Þ ¼ 2ðu ·∇Þu. Likewise, ∇iðA · uÞ ¼ ðA ·∇Þui þ
uj∇iAj, and therefore

Dtui þ ðu ·∇Þui ¼ −
1

mν
∇iP−∇iΦG þ uj∇iAj −

ℏ
m
∇iQ;

ð39Þ
where mν represents the mass density of the BEC and P is
the pressure given by

∇iP ¼ ν∇iṼ 0ðνÞ: ð40Þ
This is the general form of the equation of state. For
example, for quartic interactions, ṼðνÞ ¼ λ

4
ν2, we find [34]

P ¼ λ

4
ν2: ð41Þ

Thus, not surprisingly, a repulsive interaction (λ > 0) leads
to a positive pressure and an attractive interaction (λ < 0)
to a negative pressure. The effect of frame dragging is
contained in the transport derivative, Dt. In terms of the
particle density and real action, the gravitational potential
and shift are given by
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ΦGðr⃗Þ ¼ −4πGm
Z

d3r⃗0
νðt; r⃗0Þ
jr⃗ − r⃗0j ;

Aiðr⃗Þ ¼ −
16πGm

c2

Z
d3r⃗0

νðt; r⃗0Þuiðt; r⃗0Þ
jr⃗ − r⃗0j ; ð42Þ

respectively.

III. STABLE CONFIGURATIONS

(Meta)stable, rotating BEC configurations may be
obtained by extremizing the total energy of the system,
which, according to (29), will be given by

H ¼
Z

d3r⃗

�
ℏ2

2m
j∇iψ j2 þ Vðjψ jÞ þm

2
ΦGjψ j2 þ

1

2
J · A

�
:

ð43Þ
Introducing a length parameter, R, a general ansatz for ψðr⃗Þ
representing a rotating condensate in spherical coordinates
would be

ψðt; r⃗Þ ¼ w
X

k≥jlj¼0;1;…

Fklðr=RÞYklðθ;ϕÞeiμt; ð44Þ

where w is a normalization, μ is the nonrelativistic
chemical potential associated with the BEC, k, l are
integers, −k ≤ l ≤ k, Fklðr=RÞ are real functions of r,
and Ykl are the spherical harmonics. In what follows,
we will treat Fklðr=RÞ as a variational function. Here
R is a variational parameter. We hold the particle number
and the total angular momentum fixed in the variational
computation.

A. The total energy

For simplicity, we will analyze the situation when all
particles are in the k ¼ 1 ¼ l eigenstate of angular momen-
tum; i.e., we take

ψðt; r⃗Þ ¼ wFðr=RÞ sin θeiφeiμt: ð45Þ

The procedure below can be extended to arbitrary angular
momentum states. The normalization condition gives

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3N
8πR3C22

s
; ð46Þ

where N is the number of bosons in the BEC and
C22 ¼

R∞
0 dξξ2F2ðξÞ. To find an expression for ΦG, we

use the expansion of the Green function in spherical
harmonics with vanishing boundary conditions at the origin
and at infinity,

1

jr⃗ − r⃗0j ¼ 4π
X
l;m

1

2lþ 1

rl<
rlþ1
>

Y�
lmðθ0;φ0ÞYlmðθ;ϕÞ; ð47Þ

and find

ΦGðr; θÞ ¼ −
3GmN
2C22R

×

�
2

3

�
R
r

Z
r=R

0

dηη2F2ðηÞ þ
Z

∞

r=R
dηηF2ðηÞ

�

þ 1

15
ð1 − 3cos2θÞ

×

�
R3

r3

Z
r=R

0

dηη4F2ðηÞ þ r2

R2

Z
∞

r=R

dη
η
F2ðηÞ

��
:

ð48Þ

Now from (33) it follows that only Aϕ survives (in this
stationary state), and

Aϕðr; θÞ ¼
4ℏ
mc2

ΦGðr; θÞ: ð49Þ

Putting these results into (43), and taking, for simplicity,
quartic interactions of arbitrary sign, Vðjψ jÞ ¼ λ

4
jψ j4, we

find the four terms in the total energy to be

HKðRÞ ¼
Nℏ2

2mR2C22

Z
∞

0

dξ½ξ2F02ðξÞ þ 2F2ðξÞ�;

HVðRÞ ¼
3λN2

40πR3C2
22

Z
dξξ2F4ðξÞ;

HΦðRÞ ¼ −
Gm2N2

2RC2
22

�Z
∞

0

dξξF2ðξÞ
Z

ξ

0

dηη2F2ðηÞ þ
Z

∞

0

dξξ2F2ðξÞ
Z

∞

ξ
dηηF2ðηÞ

þ 1

25

Z
∞

0

dξ
ξ
F2ðξÞ

Z
ξ

0

dηη4F2ðηÞ þ 1

25

Z
∞

0

dξξ4F2ðξÞ
Z

∞

ξ

dη
η
F2ðηÞ

�
;

HAðRÞ ¼
3ℏ2GN2

c2C2
22R

3

�Z
∞

0

dξ
ξ
F2ðξÞ

Z
ξ

0

dηη2F2ðηÞ þ
Z

∞

0

dξF2ðξÞ
Z

∞

ξ
dηηF2ðηÞ

�
; ð50Þ
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where ξ ¼ r=R is a dimensionless variable. The second
term in the integral in the expression for the kinetic energy,
HK , represents the contribution of the azimuthal motion of
the condensate. HΦ and HA are the contributions of the
gravitational field. These expressions may be put into
simpler form in terms of the coefficients

Cmn ¼
Z

∞

0

dξξmFnðξÞ;

Bmn ¼
Z

∞

0

dξξmF0nðξÞ;

Dmn ¼
Z

∞

0

dξξmF2ðξÞ
Z

ξ

0

dηηnF2ðηÞ;

Amn ¼
Z

∞

0

dξξmF2ðξÞ
Z

∞

ξ
dηηnF2ðηÞ: ð51Þ

We find

HðRÞ ¼ HΦðRÞ þHKðRÞ þHVðRÞ þHAðRÞ

¼ −
Gm2N2

2RC2
22

�
D12 þ A21 þ

1

25
ðD−14 þ A4;−1Þ

�

þ Nℏ2ðB22 þ 2C02Þ
2mR2C22

þ 3λN2C24

40πR3C2
22

þ 3Gℏ2N2

c2R3C2
22

ðD−12 þ A01Þ: ð52Þ

HðRÞ does not include the rest mass energy, Nmc2, of the
condensate, and the total energy can be written as
EðRÞ ≈ Nmc2 þHðRÞ. If HBðRÞ is the binding energy
per particle, then EðRÞ ¼ Njmc2 −HBðRÞj. We can there-
fore identify jHBðRÞj ¼ jHðRÞj=N. In fact, using previous
results [63], let us define the dimensionless parameters ρ
and n by

R ¼ Mp

m

ffiffiffiffiffiffi
jλj
ℏc

r
ρ; N ¼ nMp

m2

�
ℏ
c

�
3=2 cffiffiffiffiffijλjp ; ð53Þ

whereMp ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p
is the Planck mass. Then the binding

energy per unit mass may be given as

HðρÞ ¼ H
mN

¼ ℏ3c
jλjM2

p

�
A
ρ
þ B
ρ2

þ C
ρ3

�
; ð54Þ

where

A¼ −
n

2C2
22

�
D12 þA21 þ

1

25
ðD−14 þA4;−1Þ

�
;

B¼ 1

2

�
B22 þ 2C02

C22

�
;

C¼ n

�
sgnðλÞ 3C24

40πC2
22

þ 3ℏ3

jλjcM2
pC2

22

ðD−12 þA01Þ
�
: ð55Þ

The coefficient A characterizes the contribution of the
gravitational potential energy to the total energy and is
negative, and B represents the contribution of the kinetic
energy of the bosons. The effects of the rotation are
contained in a contribution to the kinetic energy through
the coefficient C02 in B and in the last term in the
expression for C, which combines the contributions of
the scalar potential and frame dragging. This term is
proportional to 3n=b2, where b is a dimensionless param-
eter, b2 ¼ jλjcM2

p=ℏ3, characterizing the strength of the
self-interactions.

B. Minimum energy configuration

The extrema ofH in (54) are readily found to be given by

ρeq ¼
B
jAj ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

jAj2 þ
3C
jAj

s
; ð56Þ

assuming it is real, i.e., provided that B2 > 3jAjjCj when
C < 0. In what follows, we set

A ¼ an;

C ¼ qn

�
d
qb2

þ sgnðλÞ
�
; ð57Þ

where the parameters a, q, and d are obtained from the
constants defined in (55), viz.,

a ¼ −
1

2C2
22

�
D12 þ A21 þ

1

25
ðD−14 þ A4;−1Þ

�
;

q ¼ 3C24

40πC2
22

;

d ¼ 3

C2
22

ðD−12 þ A01Þ: ð58Þ

The first, a, characterizes the strength of the gravitational
interaction; the second, q, characterizes the strength of the
self-interaction; and the last, d, the effect of the frame
dragging. In terms of these, the dimensionless equilibrium
radius is

ρeq ¼
B
jajn

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3jajq

B2

�
d
qb2

þ sgnðλÞ
�
n2

s #
: ð59Þ

For it to exist, we must require the quantity under the
radical to be non-negative. If the kinetic energy of the
bosons is ignored, as in the Thomas-Fermi approximation,
B approaches zero and the equilibrium radius approaches a
constant independent of the number of particles. In the
absence of rotation (d ¼ 0) this equilibrium is possible only
for repulsive self-interactions. If one does not ignore the
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kinetic energy of the bosons, then the equilibrium radius
decreases with increasing n.
When C > 0 an absolute minimum of the energy exists,

as the interactions together with the rotations are able to
stabilize the condensate. When C < 0 only attractive
interactions are permitted and the energy of the system
is unbounded from below, but we have found a local
minimum in (59), not an absolute minimum, of the energy.
This local minimum exists only when the number of
particles is below a certain critical value, nc, which will
be determined below. It is important to discuss the validity
of this solution.
There are three criteria that it must satisfy in order to be

self-consistent, the first two arising from the GEM approxi-
mation. First, the de Broglie wavelength of the bosons
should be much larger than their Compton wavelength to
ignore special relativistic corrections. Second, the size of the
condensate at the minimum has to be much greater than the
Schwarzschild radius of the corresponding mass, to justify
not using general relativistic corrections. The impact of these
two conditions on the range of the parameters is determined
below, and the conditions are satisfied by the examples we
give. When the energy is unbounded from below (in the case
C < 0, λ < 0), the local minimum we have found could be
unstable. This can be avoided if additional stabilizing terms
exist in the effective potential (as is the case for QCD axions,
where the effective potential is given by the Bessel function
J0 [63]). Irrespective of whether there is a stabilization term,
the configuration at the local minimum could be a viable
state, provided it has a lifetime greater than the age of the
universe. This would occur if the probability of tunneling out
of it is sufficiently small. The lifetime of metastable BECs
formed by bosonic atoms with attractive interactions, con-
fined by a harmonic trap, was estimated using instanton
methods in [80,81]. One can use similar techniques to
compute the lifetimes of gravitationally bound BEC systems
against tunneling out of the metastable local minimum state.
The result is that the tunneling rate behaves approximately as
∼ expð−2NJ=ℏÞ, whereN is the number of particles and J is
the Wentzel-Kramers-Brillouin expression for the exponent
of the tunneling rate. In the case of an astrophysical BEC, the
number of particles is very large (N ∼ 1058–10100) and the
Wentzel-Kramers-Brillouin expression, J, is not vanishingly
small unless the fraction f ¼ n=nc is commensurately close
to unity. Thus so long as f < 1 the lifetime of the metastable
state grows exponentially with the particle number.

1. C > 0

If C > 0, there is an absolute minimum of the energy and
either λ > 0 or

λ < 0 and b <

ffiffiffi
d
q

s
: ð60Þ

For attractive self-interactions (λ < 0), rotation provides a
stabilization mechanism. In the absence of rotation (d ¼ 0),
C > 0 is possible only for repulsive interactions.
So long as C > 0, the number of particles, n, and the

interaction strength, b, are limited only by the GEM
approximation. As mentioned, we obtain a criterion for
the validity of the nonrelativistic approximation by requir-
ing that the de Broglie wavelength of the bosons, λdB, is
much larger than the Compton wavelength, λC. As the de
Broglie wavelength is roughly the typical size of the
condensate, which is on the order of the scale factor, R,
for a BEC and, from (53), Req ∼ bρeqλC, it follows that the
condition for the nonrelativistic approximation to hold is

bρeq ≫ 1: ð61Þ

To justify not including higher order general relativistic
effects one also wants a stable configuration whose
equilibrium radius is much larger than the Schwarzschild
radius, ρS ¼ 2n=b2, so requiring that ρS ≪ ρeq, we find

n ≪
b
2

ffiffiffiffiffiffi
3q
jaj

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Bþ 3d

3q
þ b2sgnðλÞ

s
¼def nS; ð62Þ

which places an upper limit on the particle number for any
given value of b.
It will be seen from (61) and (62) that, for attractive

self-interactions, the weak gravity approximation holds
only for condensates with small n because b is bounded
from above according to (60). On the contrary, there
is no such restriction on n for repulsive interactions as b
can be arbitrarily large [52]. As mentioned, in this case (59)
represents an absolute minimum of the energy. Increasing
the particle number, n, also increases the strength of the
gravitational attraction; therefore the radius of the system
decreases with increasing n. In the limit of large n
(repulsive self-interactions) the system approaches the
equilibrium radius,

ρ∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q
jaj

�
d
qb2

þ 1

�s
: ð63Þ

2. C < 0

If C < 0, the energy is not bounded from below, but
there is a local minimum of the energy. This case is only
possible when

λ < 0 and b >

ffiffiffi
d
q

s
: ð64Þ

The condition for the validity of the nonrelativistic approxi-
mation is (61), the same as in the case C > 0 above. As b
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can be arbitrarily large, this condition can always be
verified. The energy is not bounded from below, but a
local minimum exists provided that there is an upper limit
on the number n,

n ≤
Bffiffiffiffiffiffiffiffiffiffiffi
3jajqp �

1 −
d
qb2

�
−1=2

¼def nc: ð65Þ

This therefore defines a critical number of particles above
which there is no metastable configuration. The local
equilibrium radius, which can now be written as

ρeq ¼
B
jajn

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

n2

nc2

s #
; ð66Þ

continues to decrease with increasing n, so the smallest
metastable condensate size occurs for n ¼ nc. The exist-
ence of a minimum size (maximum number of particles) for
the case of negative self-interactions can be understood as
follows: for an equilibrium solution it is necessary for the
inward gravitational and self-interaction pressures to be
balanced by the outward quantum pressure. This condition
was used in [72] to estimate the mass and radius of a
nonrotating axion drop. They found an upper bound on the
drop mass (as previously determined by Chavanis [43]) as
well as the virial relation between the radius and mass of an
object supported against gravity by pressure.
Finally, to consistently ignore general relativistic cor-

rections, we ask that nc is small enough so that the
equilibrium radius remains much larger than the
Schwarzschild radius. This gives

nc ≪ b

ffiffiffiffiffiffiffiffi
B
2jaj

s
¼def nS; ð67Þ

and ρc ¼ B=ðjajncÞ is the critical radius.

C. Single vortex ansatz

We can get a rough idea of the size of the rotating
condensates by taking a variational approach [43,64,71,73].
This approach is known to be in good agreement with more
precise (numerical) analyses [30,31,61,63,73,82,83] and
requires some ansatz for the function FðξÞ. We ask for a
trial wave function that behaves as a vortex of width R and
that is continuous everywhere. As a trial wave function, it is
not required to be a solution of the equations of motion.
Continuity at the origin suggests that, as ξ approaches zero,
FðξÞ should behave as ξl, where l ≥ 1. We therefore take

FðξÞ ¼ ξe−ξ
2=2; ð68Þ

so that the wave function in cylindrical coordinates has the
form

ψðζ;ϕÞ ¼ ζe−ðζ2þz2Þ=R2

eiϕ; ð69Þ

where ζ is the cylindrical radius. The gravitational potential
becomes

ΦGðr; θÞ ¼ −
GmN
r

��
1þ R2

4r2
ð1 − 3cos2θÞ

�
erfðr=RÞ

þ re−r
2=R2ffiffiffi
π

p
R

��
1

2
þ 3R2

4r2

�
cos 2θ −

1

2
þ R2

4r2

��
;

ð70Þ

and we find

a ¼ −
23

30
ffiffiffiffiffiffi
2π

p ;

B ¼ 5

4
;

q ¼ 1

16
ffiffiffi
2

p
π3=2

;

d ¼ 5

3

ffiffiffi
2

π

r
; ð71Þ

applying (55) and (58).
When C > 0, the conditions for the validity of the GEM

approximation are (61) and (62),

bρeq ¼
4.09b
n

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4.66 × 10−3

�
168

b2
þ sgnðλÞ

�
n2

s #

≫ 1;

nS
n

¼ 0.140b
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
378þ b2sgnðλÞ

q
≫ 1: ð72Þ

These conditions can be met by small condensates with
attractive interactions and a suitably limited value of b
(b < 12.9). For repulsive interactions there is no upper
limit on b and large condensates are possible. The shaded
regions in Figs. 1 and 2 represent the portion of the
parameter space satisfying these conditions for the case
of attractive interactions (Fig. 1) and repulsive interactions
(Fig. 2). In each case, the trustworthy portion of the
parameter space is limited by the second inequality in (72).
When C < 0 only a metastable state may exist. The

critical (maximum possible) number of bosons is

nc ¼ 14.6

�
1 −

168

b2

�
−1=2

; ð73Þ

and the minimum possible equilibrium radius is given by
the limit as n → nc,

ρc ¼ ρeqðn → ncÞ ¼ 0.279

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

168

b2

r
: ð74Þ
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The two conditions (61) and (67) for the validity of the
GEM approximation can therefore be stated as

bρc ≫ 1;

nS
nc

¼ 1.43b
nc

≫ 1: ð75Þ

As there is no upper limit on b, they are readily met so long
as b is sufficiently large. In addition, to ensure a large
lifetime, the actual mass of the BEC cannot be too close to
its maximum mass; i.e., the fraction f ¼ n=nc should not
be too close to unity.
The parameters nc and ρc of the BEC cloud are uniquely

determined by the size of the self-interaction, b, so the
length scale, R, and the total mass, M ¼ mN, depend only
on the strength of the self-interaction and the particle mass.

D. Asteroid vs galaxy size halos

As an example, we consider the condensates formed by
particles of mass and interaction strength typical of the
QCD axion, m ∼ 10−5 eV and b ∼ 2 × 107, where the
axion decay constant is taken to be roughly fa=Mp ∼ 5×
10−8ðcℏÞ3=2. QCD axions have attractive interactions, and
the size of b indicates that we are considering the case
C < 0. From (53) we find that

Nc ¼
nc
b

�
Mp

m

�
2

≈ 1.10 × 1060; ð76Þ

with a total mass ofMc ¼ mNc ¼ 1.95 × 1019 kg. We also
find the critical length scale associated with the ball,

Rc ¼ bρc

�
ℏ
mc

�
≈ 5.6 × 106

ℏ
mc

: ð77Þ

The Compton wavelength of the 10−5 eV boson is about
0.02 m, which gives the radius as about Rc ≈ 110 km. The
radius inside of which about 99.9% of the matter is
confined, denoted by R99, is roughly 3.5 times this radius,
so we find R99 ≈ 385 km.
Continuing with attractive self-interactions and assum-

ing that b ≫ 102, Eq. (65) suggests that we take the
maximum (critical) size to be approximately independent
of b. Then ρc ∼ 1=nc is also approximately independent of
b, and the dependence of Mc and Rc on m and b is simple.
Using (53) one finds that the particle mass and interaction
strength required to produce a desired value of Rc and Mc
are given by

m ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BℏM2

p

jajcMcRc

s
; b ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BcM2

pRc

3qℏMc

s
: ð78Þ

Taking R99 ∼ 50 kpc, and a mass of roughly 3 times that of
the visible galaxy, Mc ≈ 1042 kg, we find mc2 ∼ 10−24 eV
and b ∼ 104. The condensate continues to be nonrelativ-
istic, satisfying the condition bρc ≫ 1, with a total angular
momentum of L ¼ Nℏ ≈ 1067 J s, which is comparable to
that of the luminous matter [84]. For the vortex wave
function in (68), however, the gravitational force in the
equatorial plane, F ¼ −∇ΦGjθ¼π=2, is outward directed up
to a distance of about 0.609R (see Fig. 3). This can be
attributed to the shape of the density profile which vanishes

FIG. 1. The shaded region represents the possible values of the
parameters n and b in (72) for which bρeq ∼ nS=n > 104 for the
case C > 0 and λ < 0. Here b is required to be < 12.9.

FIG. 2. The shaded region represents the possible values of the
parameters n and b in (72) for which bρeq > 104 and nS=n > 108

for the case C > 0 and λ > 0. Here there is no limit on b.
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at the center and increases until about 0.707R as one moves
outward in the equatorial plane before falling off, all the
while decaying exponentially perpendicular to the equato-
rial plane. For stable orbits to exist within this distance from
the center, the region must be dominated by ordinary
(baryonic) matter. This can be used to set the scale for
the wave function. For example, there is good evidence via
near-infrared and optical photometry [85–87] to suggest
that the Milky Way is dominated by ordinary baryonic
matter up to about 6–8 kpc from the center, which is
roughly the location of our solar system. This implies that
Rc ≈ 10–13 kpc, which gives R99 ≈ 35–50 kpc. On the
other hand, for r ≫ R the gravitational force obeys the
usual inverse square law.
A straightforward analysis of circular orbits within the

BEC on the equatorial plane at r > 0.609R shows that the
tangential speed may be given as the sum of two con-
tributions,

vϕ ¼ �
ffiffiffiffiffiffiffiffiffi
rΦ0

G

q
þ ℏΦG

mc2r
; ð79Þ

where the prime refers to a derivative with respect to r. The
first is due to the gravitational force, and the second
represents the effect of frame dragging. The latter is,
however, negligible compared with the contribution due
to the gravitational force. In the interior, r < 0.609R, the
expression for the tangential speeds will be the same, but
the first term will be significantly modified by the baryonic
matter, which we assume dominates. However, the con-
tribution from the BEC cloud due to frame dragging
persists and may get significant near the center as it
depends only on the depth of the gravitational potential
well and not its gradient.

IV. VORTEX OSCILLATIONS

To describe the approximate dynamics of an imploding
BEC, we employ a collective coordinate description in
terms of the condensate radius [73,80,81,88], taking

ψðt; r⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N

π3=2RðtÞ3
s

r
RðtÞ e

− r2

2RðtÞ2 sin θe
imr2
2ℏ ΓðtÞþiϕ; ð80Þ

where RðtÞ and ΓðtÞ represent two independent variables
characterizing the dynamics of the imploding cloud.
Instead of proceeding via the Madelung equations, it is
more expedient to obtain the action of the condensate (29)
as a functional of these two variables and vary this action to
obtain equations of motion for RðtÞ and ΓðtÞ.
Applying (42) and integrating by parts, the action (29)

can be expressed as

S ¼
Z

dt
Z

d3r⃗

�
iℏ
2
ψ�∇↔tψ −

ℏ2

2m
j∇ψ j2 − Ṽðjψ jÞ

−
1

2
mΦGjψ j2 −

1

2
J · A

�

¼ −
Z

dt

�
N

�
5

4
mðR2 _Γþ Γ2R2Þ þ 5ℏ2

4mR2

�

þ N2

�
1

R3

�
5

ffiffiffi
2

p
Gℏ2

3c2
þ λ

16
ffiffiffi
2

p
π3=2

�
−

23Gm2

30
ffiffiffiffiffiffi
2π

p
R

þ 288Gm2Γ2R
25c2

ffiffiffi
π

p −
499Gm2Γ2R

50c2
ffiffiffiffiffiffi
2π

p
��

: ð81Þ

The time dependence in (80) implies that the radial
component of the shift, Ar, is no longer vanishing, as it
was in the stationary case, and contributes to the equations
of motion. Varying with respect to ΓðtÞ we find

ΓðtÞ ¼ 125c2
ffiffiffi
π

p
_RðtÞ

ð1152 − 499
ffiffiffi
2

p ÞGmN þ 125
ffiffiffi
π

p
c2RðtÞ : ð82Þ

It is better to work with the dimensionless variables
defined in (53), in terms of which ΓðtÞ may be
expressed as

ΓðtÞ ¼ _ρðtÞ
ρðtÞ þ 1152−499

ffiffi
2

p
125

ffiffi
π

p n
b2

: ð83Þ

Inserting this into the equation of motion for the con-
densate, ∂L=∂RðtÞ ¼ 0, yields

ρ̈þ _ρ2

2ρð1þ μρÞ ¼ FðρÞ; ð84Þ

where

FðρÞ ¼ −
m2c4

h2

�
P1

ρ2
þ P2

ρ3
þ P3

ρ4
þ P4

ρ5

�
ð85Þ

and μ, P1, P2, P3 and P4, are the dimensionless
coefficients

FIG. 3. Gravitational acceleration in the equatorial plane due to
the vortex BEC.
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μ ¼ 125
ffiffiffi
π

p

1152 − 499
ffiffiffi
2

p b2

n
;

P1 ¼
23n

75
ffiffiffiffiffiffi
2π

p
b4

;

P2 ¼
23ð576 ffiffiffi

2
p

− 499Þn2 − 9375πb2

9375πb6
;

P3 ¼
3nð−sgnðλÞ25 ffiffiffi

2
p

b2 þ 16ð−384þ 83
ffiffiffi
2

p ÞπÞ
2000π3=2b6

;

P4 ¼ −
ðsgnðλÞ3b2 þ 160πÞð576 ffiffiffi

2
p

− 499Þn2
5000π2b8

: ð86Þ

The first integral of the motion is easily given as

1

2

�
μρ

1þ μρ

�
_ρ2 − μ

Z
ρ
dρ0

ρ0Fðρ0Þ
1þ μρ0

¼ E; ð87Þ

so we may identify E with the total energy of the system,

meffðρÞ ¼
�

μρ

1þ μρ

�
ð88Þ

with its effective mass, and

VeffðρÞ ¼ −μ
Z

ρ
dρ0

ρ0Fðρ0Þ
1þ μρ0

ð89Þ

with the effective potential energy. Direct integration
reveals that

Veff ¼
2m2c4

5ℏ2b4

�
A
ρ
þ B
ρ2

þ C
ρ3

�
; ð90Þ

where A, B, and C are given (55), (57), and (71), which
confirms that equilibrium (_ρ ¼ 0) is achieved according to
the conditions laid out in Sec. III C. We will now consider
the dynamical collapse of a rotating BEC that begins at a
radius larger than the equilibrium radius.
The equilibrium energy, Eeq, can be determined from the

equilibrium radius, Eeq ¼ VðρeqÞ. In terms of the rescaled
time and energy,

τ ¼
�
2m2c4

5ℏ2b4

�
1=2

t; E ¼
�
5ℏ2b4

2m2c4

�
E; ð91Þ

the rescaled form of (87),

1

2
meffðρÞ

�
dρ
dτ

�
2

þ V̄effðρÞ ¼ E; ð92Þ

has the general solution

τ − τ0 ¼ −
Z

ρ
dρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meffðρ0Þ

2½E − V̄effðρ0Þ�

s
; ð93Þ

where

V̄effðρÞ ¼
A
ρ
þ B
ρ2

þ C
ρ3

:

A solution beginning with a total energy E > V̄effðρeqÞ will
collapse and will oscillate about the local minimum of
V̄effðρÞ, provided that E < V̄max (in the case of attractive
self-interactions).
BEC clouds with repulsive self-interactions always

admit a global minimum of the energy functional. This
is because the repulsive interactions in combination with
the quantum pressure ensures that the potential energy
grows without bound as ρ → 0 (see Fig. 4). There is
therefore no limit to the size of the condensate apart from
the requirement that the equilibrium radius is larger than the
Schwarzschild radius. However, if we consider a halo of
mass M ≈ 1042 kg made of condensed bosons of mass
energy mc2 ≈ 10−24 eV and b ≈ 104, we find n ≈ 37.5 and
ρeq ≈ 0.409 (bρeq ∼ 4 × 103 ≫ 1). Figure 5 represents a
numerical integration of (84) with these conditions if the
halo is assumed to begin with zero initial velocity at
ρð0Þ ¼ 3ρeq, and it shows the collapse rebounce and
subsequent oscillation of the cloud about equilibrium.
The cloud collapses in τ ≈ 0.76 or approximately 2.5
billion years.
We have seen that there is no local minimum with a

positive ρ for clouds with attractive self-interactions unless
the number of bosons is below some critical value, nc,
which is determined by the strength of the interactions. One
can understand this as saying that beyond nc the attractive
interparticle energy is sufficient to overcome the quantum

FIG. 4. The effective potential for a rotating BEC with repulsive
interactions as a function of radius, ρ, for various values of n. We
have taken b ¼ 104. The bottom-most curve represents n ¼ 140,
the uppermost n ¼ 20. All curves admit global minima.
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pressure and the condensate implodes. When a local
minimum exists, the equilibrium radius, ρeq depends on
the actual number of bosons, n, present (see Fig. 6). The
equilibrium energy Eeq ¼ VðρeqÞ and also depends on the
number of bosons. For an example, we have taken b ≈ 104

and n=nc ¼ 0.8 (ρeq ¼ 0.583, bρeq ∼ 6 × 103 ≫ 1) and
integrated (84) to obtain a snapshot of the collapse process
beginning at ρð0Þ ¼ 3ρeq with _ρð0Þ ¼ 0 (see Fig. 7). As is
to be expected because of the negative pressure and
weakened gravitational field, the collapse of the halo is
extremely slow, taking on the order of 10 billion years to
cross equilibrium.
The first integral of the motion (87) allows us to

determine the frequency of small oscillations about equi-
librium. They occur with characteristic period

T ¼ 2π

ffiffiffi
5

2

r
ℏb2

mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meffðρeqÞ
V̄ 00
effðρeqÞ

s
: ð94Þ

This gives approximately 1.3 billion years for repulsive self-
interactions with the above parameters and roughly 4 times
longer for attractive self-interactions. This discrepancy is to
be expected as the contribution to the BEC pressure from
repulsive interactions strengthens the gravitational attraction
and weakens it when the interactions are negative.

V. SUMMARY

While the standard CDM paradigm for DM does well on
very large scales, few of its predictions on scales less that
∼50 kpc have been successful. Chief among these are the
absence of DM cusps at the centers of galaxies and the
absence of an abundance of low mass and massive subhalos
predicted by the model. It is therefore worthwhile to
analyze alternative models that behave like CDM on large
scales but are more in keeping with observations on smaller
scales. One such model proposes that at least a component
of DM may consist of ultralight condensed bosons.
We have analyzed a model for gravitationally bound

BEC dark matter vortices based on the Gross-Pitaevskii
equation with quartic interactions, taking into account the
effects of rotation. To include rotation, we introduced an
axisymmetric background differing only weakly from flat
space. By analyzing the weak field Einstein equations in the
harmonic gauge, we determined the form of the metric and
set up the nonrelativistic action for the combined matter and
gravitational fields. From this action we determined the
equations governing the system and analyzed the criteria
for stability.
In order to get a better feeling for stable configurations of

the BEC, we used the variational approach. With a standard
Gaussian vortex ansatz for the trial wave function, in which
the BEC halo is assumed to have a radial dependence of

FIG. 7. Collapse and rebounce of a rotating BEC with attractive
self-interactions beginning at ρ ¼ 3ρeq with _ρð0Þ ¼ 0. We have
taken f ¼ n=nc ¼ 0.8 and b ¼ 104. The dashed line indicates the
equilibrium radius.

FIG. 6. The effective potential for a rotating BEC with
attractive interactions as a function of radius, ρ, for various
values of f ¼ n=nc. We have taken b ¼ 104. The bottom-most
curve represents f ¼ 1, the uppermost f ¼ 0.5. The local
minimum is shallow as f → 1 and becomes deeper as f
decreases.

FIG. 5. Collapse and rebounce for a rotating BEC with
repulsive interactions beginning at ρð0Þ ¼ 3ρeq with zero initial
velocity. We have taken n ¼ 37.5 and b ¼ 104. The dashed line is
the equilibrium value of ρ.
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r=R, we obtained estimates for small and large conden-
sates. The number of bosons in the condensate and its size
depend only on the mass of the bosons and the strength of
the self-interactions. As in the case of nonrotating BECs,
two distinct cases arise with the vortex ansatz as well.
When the self-interactions are attractive, a local minimum
of the effective potential energy is present only when the
number of bosons in the cloud is below a certain critical
value. There is also a local maximum of the effective
potential energy. If the number of particles exceeds the
upper limit or when the total energy is greater than the
maximum of the potential energy, it appears that the cloud
would collapse into a black hole. However, one cannot be
sure of this outcome due to the nonrelativistic, linear
approximation used in this paper. Harko [89], Levkov et al.
[65], and Eby et al. [90] have proposed, in an alternative
scenario, that as the central density grows and exceeds a
certain critical value, a fraction of the bosons will get
expelled from the condensate, which will then stabilize.
When the interaction strength is large enough, we obtained
a simple relation between the critical (maximum) mass and
the critical (minimum) radius of the cloud on the one hand
and the mass and the coupling strength of the bosons on the
other. Even in the nonrelativistic limit examined here, no
such upper limit on the number of bosons (except the
Schwarzschild limit) is apparent when the self-interactions
are repulsive. In this case, there is always a global
minimum of the effective potential energy.
For example, we considered attractive interactions, input-

ting the values of the interaction strength, b ∼ 107, and mass,
m ∼ 10−5 eV, for the QCD axion. We obtained stable
condensates approximately 400 km in radius having a mass
of approximately 1019 kg. On the other hand, for sufficiently
light bosons it is possible to achieve BECs of galactic size.
We found that taking the boson mass m ∼ 10−24 eV along
with an interaction strength of b ∼ 104 yielded a cloud with
an outer radius (the radius within which 99% of the matter is
contained) of roughly 50 kpc. Because of the density profile
of a vortex, the gravitational field due to the BEC inside
the core is outward directed up to a distance of about 17% of
the outer radius. In this example, the central region is roughly
6–8 kpc in radius and dominated by ordinary (baryonic)
matter, with the BEC taking over the gross gravitational
dynamics beyond this distance.

We also analyzed the dynamics of rotating BECs by
considering time dependent wave functions. The time
dependence was introduced by employing a collective
coordinate description in terms of the condensate radius,
R ¼ RðtÞ. Equations for the evolution of RðtÞ were
obtained from an effective action, achieved by integrating
the action for the combined BEC and gravitational field.
The choice of the trial wave function is not unique of
course, and the extent to which the results obtained with
different trial wave functions differ qualitatively from one
another is a topic for future investigation. In our ansatz
there is just one free parameter and the system is one
dimensional. The Poisson equations can be solved exactly,
and the gravitational potentials of the halo can be evaluated
in analytical form. The motion of the condensate then
becomes analogous to the motion of a single particle of
variable mass in an effective potential. In an ansatz with
multiple parameters one may expect multiple coupled
equations, which could be considerably more difficult to
solve. We showed from the dynamics that the equilibrium
conditions are identical to the ones obtained earlier in the
static case. Moreover, in both the attractive and the
repulsive cases, collapse from a diffuse state into the
equilibrium state is a process that takes billions of years.
We have also examined the time scale for small oscillations
about equilibrium and found it to be, not surprisingly, on
the same order of magnitude.
There are several aspects of this description that have not

been addressed in this work. For one, our model does not
include a microscopic mechanism for varying the number
of particles in the condensate, so we cannot say what
happens, for example, if a BEC near its critical mass is
immersed in a cloud of free bosons. Again, our model does
not include damping, so a BEC will oscillate about its
equilibrium radius essentially forever. We will consider
damped BEC models in a future work. It would also be
interesting to examine what happens when several types of
BECs or even a single boson with multiple accessible states
share a single gravitational well.
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